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Abstract. Self-assembly, the process by which objects autonomously come together to form
complex structures, is omnipresent in the physical world. Recent experiments in self-assembly demon-
strate its potential for the parallel creation of a large number of nanostructures, including possibly
computers. A systematic study of self-assembly as a mathematical process has been initiated by
L. Adleman and E. Winfree. The individual components are modeled as square tiles on the infinite
two-dimensional plane. Each side of a tile is covered by a specific “glue,” and two adjacent tiles will
stick iff they have matching glues on their abutting edges. Tiles that stick to each other may form
various two-dimensional “structures” such as squares and rectangles, or may cover the entire plane.
In this paper we focus on a special type of structure, called a ribbon: a non-self-crossing rectilinear
sequence of tiles on the plane, in which successive tiles are adjacent along an edge and abutting
edges of consecutive tiles have matching glues. We prove that it is undecidable whether an arbitrary
finite set of tiles with glues (infinite supply of each tile type available) can be used to assemble an
infinite ribbon. While the problem can be proved undecidable using existing techniques if the ribbon
is required to start with a given “seed” tile, our result settles the “unseeded” case, an open problem
formerly known as the “unlimited infinite snake problem.” The proof is based on a construction,
due to R. Robinson, of a special set of tiles that allow only aperiodic tilings of the plane. This con-
struction is used to create a special set of directed tiles (tiles with arrows painted on the top) with
the “strong plane-filling property”—a variation of the “plane-filling property” previously defined by
J. Kari. A construction of “sandwich” tiles is then used in conjunction with this special tile set,
to reduce the well-known undecidable tiling problem to the problem of the existence of an infinite
directed zipper (a special kind of ribbon). A “motif” construction is then introduced that allows
one tile system to simulate another by using geometry to represent glues. Using motifs, the infinite
directed zipper problem is reduced to the infinite ribbon problem, proving the latter undecidable.
An immediate consequence of our result is the undecidability of the existence of arbitrarily large
structures self-assembled using tiles from a given tile set.
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1. Introduction. Self-assembly, the process by which objects autonomously
come together to form complex structures, is omnipresent in the physical world.
Atoms bind to each other by chemical bonds to form molecules, molecules may form
crystals or macromolecules, and cells interact to form biological organisms. Recently
it has been suggested that complex self-assembly processes will ultimately be used in
circuit fabrication, nanorobotics, DNA computation, and amorphous computing. In-
deed, in electronics, engineering, medicine, material science, manufacturing, and other
disciplines, there is a continuous drive toward miniaturization. Unfortunately, current
“top-down” techniques such as lithography may not be capable of efficiently creat-
ing structures with features the size of molecules or atoms. Self-assembly provides a
“bottom-up” approach by which such fine structures might be created.

Experimental research on self-assembly includes simulation of one-dimensional
cellular automata by using macroscopic plastic tiles that assemble at an oil/water
interface [38], studies of self-directed growth of hybrid organic molecules on a silicon
substrate [31], self-assembly of regular lipid hollow icosahedra [14], self-assembly of
patterns of lead on a copper surface as templates for fabricating nanostructures [35],
formation of electrical networks by self-assembly of small plastic and metal objects
[22], [49], self-assembly of molecular machines [20], the construction by self-assembly of
a molecular-thickness transistor [43], and DNA nanomachines made by self-assembly
(e.g., molecular switches [30], tweezers [53], [33], walkers [44], autonomous DNA mo-
tors [47], [9], [23]), as well as algorithmic self-assembled Sierpinski triangles [41],
self-assembled cloneable DNA octahedra [45], stiff self-assembled tetrahedra for three-
dimensional electronic circuits [21], and DNA origami [40].

Investigations into DNA computing [2] and amorphous computing [1] have pointed
out a strong connection between self-assembly and computation. While [52], [29], [36],
[50] have shown the potential of DNA self-assembly for computation, [51] has exper-
imentally demonstrated the self-assembly of periodic two-dimensional arrays from
DNA “tiles,” in which “binding” is regulated by the “sticky” ends of the DNA tiles.
Reference [32] has demonstrated the execution of logical operations (cumulative XOR)
by self-assembly of DNA triple cross-over molecules and [10] has demonstrated the
potential for programmable self-assembled computing devices.

A systematic study of self-assembly as a computational process has been initiated
in [3]. The individual components are therein modeled as square tiles on the infinite
two-dimensional plane. The tiles cannot be rotated. Each side of a tile is covered
by a specific “glue,” and two adjacent tiles will stick iff they have matching glues
on their abutting edges. As such, tiles have been previously studied in the context
of classic questions about tilings of the plane [48]. The tiling problem, for example
(proved undecidable in [11], [37]), asks whether a given set of tiles (supply of each
tile type unlimited) can be used to correctly tile the entire plane. However, the new
requirements of experimental self-assembly of tiles into required nanoscale shapes pose
new types of questions. What is the minimal number of tiles required for the self-
assembly of a desired shape [5], [19], [13], [46], [25], [39]? What is the running time of
such a self-assembly [5], [4]? Do the results still hold if one generalizes the model by
making the “sticking” reversible, or by defining different bond strengths and requiring
more than one bond for sticking to occur [42], [4], [6], [5]? Do reversible self-assemblies
achieve equilibrium [6]? What is the optimal initial concentration of tile types that
guarantees the fastest assembly of a required shape [5]? Can a self-assembled shape
recover from the loss of arbitrary many tiles [12]? What are possible computational
primitives for algorithmic self-assembly [8]?

One of the interesting problems of self-assembly is whether or not a given set of
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tiles allows uncontrollable growth, that is, whether arbitrarily large structures can
be produced. It turns out that this question is equivalent to asking whether or not,
given a set of tiles, there exists an infinite ribbon that can be formed with tiles from
this set. A ribbon is a non-self-crossing sequence of tiles on the plane, in which
successive tiles are adjacent along an edge and abutting edges of consecutive tiles
have matching glues. If a given “seed” tile is specified, the problem of existence of
an infinite ribbon starting at that tile has been proved undecidable [16], [15], [17].
However, when no such seed is specified, existing proof techniques failed to produce
an answer and the problem was declared open in [17]. The unseeded problem is also
relevant given that, in some physical simulations of self-assembly [38], the growth
mechanism was deemed incompatible with computations that use a chosen input.
(More recently, in [18], successful experimental “seeded” self-assembly of fixed-length
Sierpinski-patterned ribbons was reported. The assemblies, which use DNA tiles, start
their growth from DNA “origami seeds”—special DNA tiles obtained by using the
origami method [40].) Here we prove that the unseeded problem is also undecidable.
This result settles an open problem known hitherto as the “unlimited infinite snake
problem” [17]. Our results are placed within the framework of the “classical” tiling by
self-assembly, in that our model does not take into account physical phenomena that
may affect experimental DNA self-assembly such as concentrations of tiles, different
glue strengths, and glue-matching errors.

The paper is organized as follows. Section 2 introduces the notions of tile, glue,
tile system, sticking, ribbon, zipper, valid tiling of the plane, and directed tiles. In par-
ticular, a zipper is a ribbon with the additional requirement that even nonconsecutive
tiles that touch must have matching glues at their abutting edges.

Section 3 starts with defining a directed tile system with the strong plane-filling
property: in such a system, any infinite directed zipper is forced to follow a specific
plane-filling self-similar path, and, moreover, an infinite directed zipper is always
guaranteed to exist. The construction of a directed tile system with the above property
uses a 3× 3 block construction based on directed tiles defined in [27], [26], which, in
turn, resemble tiles devised by Robinson in [37] to produce only aperiodic tilings of
the plane. These tiles were augmented in [26], [27] with directions that forced any
directed tiled path to form a self-similar plane-filling Hilbert curve that recursively fills
arbitrarily large squares by filling each of their quadrants. The original construction
used the condition that no glue mismatch be present in the 3×3 neighborhood of any
tile on the path, to force the path to follow the desired curve. Here, the additional 3×3
block construction is needed to ensure that the weaker condition of no glue mismatch
between any two tiles on the directed tiled path is enough to force its course.

Section 4 then proves the undecidability of the existence of an infinite directed
zipper by reducing the tiling problem to it. The reduction is based on a construction
of sandwich tiles, which have directed tiles from the directed tile system with the
strong plane-filling property on top and undirected tiles from a given tile system on
the bottom. The next result of the section proves the undecidability of the existence
of an infinite ribbon by reducing the undecidable infinite directed zipper problem to
it. The proof uses a “ribbon motif” construction that simulates each directed zipper
tile by a ribbon of undirected tiles following its contours, and it uses geometry (bumps
and dents) to simulate zipper-tile glues.

Sections 5 and 6 point to the implications of the undecidability of existence of
infinite ribbons for the problem of self-assembly of arbitrarily large supertiles, and
they summarize our results.
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2. Notation and definitions. A tile is an oriented unit square. The north,
east, south, and west edges of the tile are each labeled with a symbol called a glue
from a finite alphabet X . Tiles can be placed on the plane but not rotated. The
positions of the tiles on the plane are indexed by Z

2, the set of pairs of integers.
Formally, a tile t is a quadruple t = (tN , tE , tS , tW ) ∈ X4, where X is a finite

set. The components tN , tE , tS , tW will be called the glues on the north, east, south,
and west edges of the tile, respectively. A tile system T is a finite subset of X4. For
all tiles t = (tN , tE , tS , tW ) and t′ = (t′N , t

′
E , t

′
S , t

′
W ), t sticks on the north to t′ iff

tN = t′S . Sticking on the east, south, and west is defined similarly.
The directions D = {N,E, S,W} are functions from Z

2 to Z
2: N(x, y) = (x, y+1),

E(x, y) = (x+1, y), S(x, y) = (x, y−1), W (x, y) = (x−1, y). We say that the positions
(x, y) and (x′, y′) are adjacent iff (x′, y′) ∈ {N(x, y), E(x, y), S(x, y),W (x, y)}. In
addition, (x, y) abuts (x′, y′) on the north iff (x′, y′) = N(x, y), and similarly for the
other directions.

Given a tile system T , a T -tiling of the plane is a total function f : Z
2 −→ T .

The tiling f is valid at position (x, y) iff f(x, y) sticks on the north to f(N(x, y)),
f(x, y) sticks on the east to f(E(x, y)), f(x, y) sticks on the south to f(S(x, y)), and
f(x, y) sticks on the west to f(W (x, y)). That is to say, f is valid at (x, y) iff the tile
at position (x, y) sticks on the appropriate sides to all the tiles that are at positions
adjacent to it. The tiling is valid iff it is valid at every position (x, y) ∈ Z

2. The
well-known tiling problem posed by Wang asks the following: Given a tile system T ,
does there exist a valid T -tiling of the plane? The tiling problem was first proved
undecidable by Berger [11], and the result was improved by Robinson [37]. One can
generalize the notion of T -tiling of the entire plane by defining a partial T -tiling as a
partial function g : Z

2 −→ T . A partial tiling g is valid on a region R ⊆ dom(g) iff,
for all (x1, y1), (x2, y2) ∈ R, if (x1, y1) abuts (x2, y2) on the north (east, south, west),
then g(x1, y1) sticks to g(x2, y2) on the north (east, south, west). The partial tiling g
is called valid iff it is valid on the entire dom(g).

A path is a function P : I −→ Z
2, where I is a set of consecutive integers and

for all (i, i + 1 ∈ I), P (i) and P (i + 1) are adjacent. That is, a path is a sequence
of adjacent positions on the plane. For all i ∈ I, we denote P (i) as (xi, yi). We say
that (x, y) is on P iff (x, y) ∈ range(P ). For all tile systems T , a T -tiled path is a pair
(P, r), where P is a path and r is a function r : range(P ) −→ T .

A T -tiled path (P, r) is a T -ribbon iff
(a) P is one-to-one, and
(b) for all (i, i + 1 ∈ dom(P )), if (xi+1, yi+1) abuts (xi, yi) on the north (south,

east, west), then r(xi+1, yi+1) sticks to r(xi, yi) on the north (south, east,
west).

Informally, a tiled path is a ribbon iff it does not cross itself and the glue between
tiles at consecutive positions along the path match.

A T -ribbon (P, r) is a T -zipper iff for all (x, y), (x′, y′) on P , if (x′, y′) abuts (x, y)
on the north (south, east, west), then r(x′, y′) sticks to r(x, y) on the north (south,
east, west). Note that the notion of a zipper is more restrictive than the notion of a
ribbon in that a zipper requires all of its tiles (consecutive or not) in adjacent positions
to stick.

A directed tile system is a pair (T, d), where T is a tile system and d : T −→
{N,E, S,W} is a function from the tile system to the direction functions. A directed
tile system can be thought of as a tile system in which each tile has an arrow painted
on it pointing north, east, south, or west.
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A (T, d)-directed tiled path is a pair (P, r), where (P, r) is a T -tiled path and for
all (i, i + 1 ∈ dom(P )) we have that (xi+1, yi+1) = d(r(xi, yi))(xi, yi). A directed
tiled path is a tiled path in which each tile points to its successor on the path. If
(P, r) is a (T, d)-directed tiled path and (P, r) is a T -ribbon (zipper), then (P, r) is a
(T, d)-directed ribbon (zipper).

A path, (directed) tiled path, (directed) ribbon, or (directed) zipper is called
finite, semi-infinite, or infinite iff the domain of the associated path is finite, has a
least or greatest element and is infinite, or is Z, respectively.

To prove the undecidability of existence of infinite ribbons, we shall first prove
the undecidability of existence of infinite directed zippers. Afterwards, a “ribbon
motif” construction will be employed to prove the result for ribbons: the construction
simulates a directed zipper by a ribbon motif of smaller tiles that goes around the
contours of the zipper tiles, and it uses geometry to simulate zipper-tile glues.

In order to prove the undecidability of existence of infinite directed zippers, we
shall use the undecidability of the tiling problem in conjunction with a sandwich
construction that makes use of the existence of a directed tile system with the so-
called strong plane-filling property.

Definition 2.1. A directed tile system (T, d) has the strong plane-filling property
iff

(i) there exists an infinite (T, d)-directed zipper, and
(ii) for all infinite (T, d)-directed zippers (P, r), for all natural numbers n there

exists (x, y) such that (x + i, y + j) is on P for i = 0, 1, 2, . . . , n and j =
0, 1, 2, . . . , n.

If a directed zipper (or ribbon or path) (P, r) satisfies the property in Defini-
tion 2.1(ii), we also say that it covers arbitrarily large squares.

Definition 2.1 states that in a directed tile system with the strong plane-filling
property any infinite directed zipper is forced to be plane-filling (by filling arbitrarily
large squares) and, moreover, that such an infinite directed zipper always exists.

3. A directed tile system with the strong plane-filling property. An
essential element of our subsequent proofs will be the main result of this section,
Theorem 3.1, namely the construction of a directed tile system that satisfies the
strong plane-filling property of Definition 2.1. In fact, our directed tiles satisfy an
even stronger requirement than (ii): any infinite directed tiled path is either plane-
filling or it has a glue mismatch between two of its tiles. In particular, using our
tiles, an infinite directed tiled path may not even form a loop without encountering
a glue mismatch along the way. Consequently, every infinite directed tiled path that
does not fill the plane must necessarily contain two neighboring tiles with a glue
mismatch. The constructed tiles therefore satisfy a stronger version of Definition 2.1,
thus satisfying a stronger property than the original plane-filling property defined in
[26, 27].

In [27], any infinite directed tiled path was forced to be plane-filling unless there
was a mismatch of glues inside the 3 × 3 neighborhood of some tile of the path. As
described in subsections 3.2 and 3.3, directed tiles with this weaker plane-filling prop-
erty were explicitly constructed by augmenting Robinson’s aperiodic tiles [37] with
directions. With these tiles, all directed tiled paths consisting of tiles without errors
in their 3×3 neighborhood formed self-similar plane-filling curves of the kind used by
Hilbert [24] to show that the unit square is a continuous image of the unit segment.
The constructed tiles filled arbitrarily large squares recursively, by first filling the in-
dividual quadrants of a square. The process was guided by the direction associated
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with each tile, which forced the construction to proceed along the self-similar Hilbert
curve that traversed each quadrant of a square and linked the quadrants to each other.

In the present application we need the stronger variant of the plane-filling property
introduced in Definition 2.1. In our case the infinite directed tiled path must be forced
to be plane-filling even under the weak assumption that there is no glue mismatch
between any two tiles belonging to it. It turns out that such a directed tile system
is obtained by taking 3 × 3 blocks of the tiles in [27], as described in subsection 3.4.
For this particular set of tiles, our 3× 3 block construction ensures that the weak
requirement of absence of glue mismatches between any two tiles belonging to the
directed tiled path is sufficient to determine its uniqueness. Namely, we can prove
that the constructed directed tile system has the property that, starting with any
arbitrary tile, the only way to build an infinite error-free directed zipper is by forming
a Hilbert curve that covers arbitrarily large squares.

3.1. Generalized tile systems. We begin by generalizing the notion of neigh-
borhood from section 2, where the “neighbors” of a position were the positions at its
north, east, south, and west.

Definition 3.1. A neighborhood vector is a k-tuple

V = (x̄1, x̄2, . . . , x̄k), x̄i ∈ Z
2, 1 ≤ i ≤ k.

The neighbors of a position x̄ ∈ Z
2 are the positions x̄+ x̄i for 1 ≤ i ≤ k.

The classical von Neumann neighborhood is defined by the vector

VvN = [(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)].

In the von Neumann neighborhood, each position has five neighbors: itself and its
four adjacent positions, as defined in section 2. In fact, all notions defined in section 2
are based on the von Neumann neighborhood.

Another particular neighborhood of interest, the Moore neighborhood, is defined
as follows:

VM = [(−1, 1), (0, 1), (1, 1), (−1, 0), (0, 0), (1, 0), (−1,−1), (0,−1), (1,−1)].

The Moore neighborhood of a position is a 3× 3 block centered at that position, where
the eight directions of the compass are used when we refer to the eight surrounding
positions.

In contrast, in the generalized sense of Definition 3.1, the neighbors of a position
need not be adjacent to it. Under this generalized definition, the neighborhood of a
position may even have holes in it; i.e., adjacent positions may not belong to its neigh-
borhood, while positions further away may. For example, V = [(−2, 2), (0, 2), (2, 2),
(−1, 1), (1, 1), (−2, 0), (0, 0), (2, 0), (−1,−1), (1,−1), (−2,−2), (0,−2), (2,−2)] defines
a checkerboard type of neighborhood, where the neighbors of the center “white” po-
sition are all the “white” positions in the 5 × 5 square centered at it.

We shall now use the generalized notion of neighborhood to define a generalized
tile system and its corresponding notion of valid tiling.

Definition 3.2. A generalized tile system is a triple (T, V,R), where T is a
finite set, V = (x̄1, x̄2, . . . , x̄k), x̄i ∈ Z

2, 1 ≤ i ≤ k, is a neighborhood vector, and
R ⊆ T k is a k-ary relation on T .

As usual, a (partial) (T, V,R)-tiling (shortly T -tiling if the other elements are
obvious from the context) is a (partial) function ψ : Z

2 o−→ T.
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Definition 3.3. A (T, V,R)-tiling ψ is valid at x̄ ∈ dom(ψ) iff there exists r ∈ R
such that, for all i, 1 ≤ i ≤ k, either (x̄ + x̄i) ∈ dom(ψ) and ψ(x̄ + x̄i) = r(i) or
otherwise ψ(x̄+ x̄i) is undefined.

A (T, V,R)-tiling ψ is valid on a region S ⊆ dom(ψ) iff ψ|S is valid at every point
x̄ ∈ S. We say that ψ is valid iff it is valid on dom(ψ). If ψ is valid on Z

2, then ψ is
called a valid (T, V,R)-tiling of the plane.

As before, we can define a generalized directed tile system (T, V,R, d), where
(T, V,R) is a generalized tile system and d : T −→ {N,E, S,W} is a function from
the generalized directed tile system to the direction functions.

3.2. Microtiles. The starting point of our construction of a directed tile system
(T0, d0) with the strong plane-filling property will be a generalized directed tile system
(Tµ, Vµ, Rµ, dµ) constructed in [27]. The elements of Tµ are called microtiles. Instead
of glues, they use labeled arrows to define their correspondence so that arrow heads
match arrow tails on the edges of tiles. A Tµ-tiling will sometimes be called microtiling.

There are five different types of microtiles in Tµ (Figure 1): (a) single and (b) dou-
ble crosses, (c) single, (d) double, and (e) mixed arms. The arms can be horizontal
or vertical arms. There are also labeled diagonal arrows assigned to microtiles in
[27]. They play a role in proofs of Lemmata 3.1 and 3.2. Since these proofs are not
reproduced here, we omit the description of the diagonal arrows.

e)a) b) c) d)

Fig. 1. The five types of microtiles: (a) single cross, (b) double cross, (c) single arm, (d) double
arm, and (e) mixed arm. Diagonal arrows are not shown. Reprinted from the Journal of Computer
and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity problems of cellular
automata, pages 149–182, 1994, with permission from Elsevier.

A cross, either single or double, has its arrow heads labeled from {SE ,SW ,NE ,
NW }, but all four arrow heads must have the same label. The principal arrow of
an arm (single, double, or mixed) has a label from {SE ,SW ,NE ,NW }, with the
same label on both ends. The side arrows of mixed arms have labels as described in
Figure 2. A single or double horizontal arm has its upper (lower) arrow labeled SX
(NX, respectively) for X ∈ {E,W}. A single or double vertical arm has its left (right)
arrow labeled YE (YW, respectively) for Y ∈ {N,S}. To conclude the description of
microtiles, we note that more labels will be described in the next section.

NE

SE

NW

SW

NW NE SW SE�
� �
� ��

�
� �� �

�

Fig. 2. The possible labels of the two side arrows on a mixed arm. Reprinted from the Journal
of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity problems
of cellular automata, pages 149–182, 1994, with permission from Elsevier.

Definition 3.4 (see [27]). A microtile system is a generalized directed tile system
(Tµ, Vµ, Rµ, dµ), where
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(2 - 1)-SE-square

(2 - 1)-NW-square
n

XY

n
(2 - 1)-SW-square

n

n
(2 - 1)-NE-square

Fig. 3. Constructing the (2n+1 − 1)-XY -square. Reprinted from the Journal of Computer
and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity problems of cellular
automata, pages 149–182, 1994, with permission from Elsevier.

• Tµ is the set of tiles with labeled arrows described above;
• Vµ is the Moore neighborhood;
• Rµ is the set of all v ∈ T 9

µ such that in the 3× 3 tiling {(Vµ(i), v(i)) | 1 ≤ i ≤
9} all arrow heads meet on the edges of tiles matching arrow tails with the
same labels and vice versa.

The labeling of microtiles described above allows that, for each n ∈ N, four special
squares called (2n − 1)-XY -squares can be defined recursively.

Definition 3.5. A (2n − 1)-XY -square, n ≥ 1, XY ∈ {NE ,NW ,SE ,SW }, is a
microtiling fXY : Sn −→ Tµ, where Sn = {(x+ i, y + j) | 1 ≤ i, j ≤ 2n − 1} for some
(x, y) ∈ Z

2. It is iteratively constructed in the following way.
A single cross labeled XY is a 1-XY -square. A (2n+1 − 1)-XY -square consists

of four (2n − 1)-X ′Y ′-squares, X ′Y ′ ∈ {NW ,NE ,SW ,SE}, ordered as in Figure 3.
These squares are separated by a double cross labeled XY at the position (x+2n, y+2n),
called the central cross of the square, and rows of arms radiating from it. The arms
are double near the central cross, but halfway the mixed arms make them single.

The iterative construction is illustrated in Figure 3. By the construction of a
microtile system, all (2n − 1)-XY -squares are valid microtilings. Figure 4 provides
an example of a 7-XY -square. We may sometimes refer to a (2n − 1)-XY -square as
(2n−1)-square if XY is arbitrary. Proofs of the following results can be found in [27].

Lemma 3.1 (see [27]). Let f : S(1) −→ Tµ, g : S(2) −→ Tµ be two (2n−1)-squares
with the same n. If f |S(1)∩S(2) = g|S(1)∩S(2) and there exists (x, y) ∈ S(1) ∩ S(2) such



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2364 L. ADLEMAN, J. KARI, L. KARI, D. REISHUS, AND P. SOSIK

XY

NW

NW

NW

NW NW

NE NE

NE NE

NE

SW SW

SW SW

SW SE

SESE

SESE

Fig. 4. The 7-XY -square with the labels on the crosses. Only the principal arrows of the arms
are drawn. Reprinted from the Journal of Computer and System Sciences, Volume 48, Jarkko Kari,
Reversibility and surjectivity problems of cellular automata, pages 149–182, 1994, with permission
from Elsevier.

that f(x, y) is a single cross, then S(1) = S(2).
In other words, if S(1) and S(2) have a nonempty common overlap containing a

single cross, then they are identical.
Lemma 3.2 (see [27]). Let f : Z

2 −→ Tµ be a microtiling of the plane and
assume there exists a (2n − 1)-XY -square fXY : Sn −→ Tµ such that f |Sn = fXY

and, moreover, f is valid on Sn. Let XY = SW (NW, NE, SE). Then
(i) the microtile just outside the NE (SE, SW, NW, respectively) corner of the

square is a double cross;
(ii) the row of arms radiating Y -wise (X-wise) from this double cross has the

length 2n − 1 and consists of 2n−1 − 1 horizontal (vertical) double arms,
followed by a horizontal (vertical) mixed arm, and then followed by 2n−1 − 1
horizontal (vertical) single arms;

(iii) the microtile just outside the SE (NE, NW , SW , respectively) corner is
a horizontal arm and the microtile just outside the NW (SW , SE, NE,
respectively) corner is a vertical arm.

In Figure 4, for example, the double cross right outside the NE corner of the
3-SW-square is the double cross microtile labeled XY , with the row of microtiles
radiating westwise and southwise as required.

3.3. Minitiles. Another type of tile needed in our construction is a minitile [27].
Each minitile will be a 2 × 2 block of microtiles that has exactly one single cross in
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its upper right corner ; see Figure 8(center).
Definition 3.6. Consider the microtile system (Tµ, Vµ, Rµ, dµ). A minitile is a

quadruple a = (μa
1 , μ

a
2 , μ

a
3 , μ

a
4) ∈ T 4

µ such that μa
1 is a single cross, μa

2 , μ
a
3 , μ

a
4 are not,

and the microtiling {((1, 1), μa
1), ((1, 0), μa

2), ((0, 0), μa
3), ((0, 1), μa

4)} is valid.
Therefore, by the above definition, all the arrow heads and tails between μa

1 , μ
a
2 , μ

a
3 ,

μa
4 match. Let Tm be a set of minitiles; then a Tm-tiling will be called minitiling. If
f : Z

2 o−→ Tm is a minitiling, then its corresponding microtiling m(f) : Z
2 o−→ Tµ is

defined as follows. If f(x, y) = a = (μa
1 , μ

a
2 , μ

a
3 , μ

a
4), then

m(f)(2x+ 1, 2y + 1) = μa
1 ,

m(f)(2x+ 1, 2y) = μa
2 ,

m(f)(2x, 2y) = μa
3 ,

m(f)(2x, 2y + 1) = μa
4 .

Next, directions are added to minitiles. As we restricted ourselves to 2× 2 blocks
having exactly one single cross located in the upper right corner, attaching directions
to minitiles will amount to attaching directions to single-cross microtiles. Let us
describe first the types of directed minitiled paths (or simply paths, if no danger of
confusion exists) these directions will define. The paths are constructed recursively
through squares of size 2n × 2n minitiles.

Definition 3.7. For each n ≥ 0 we define recursively an A2n (B2n , C2n , D2n)
-minitiled path as follows. For n = 0, a minitile with its single cross labeled X is an
X1-path for X ∈ {A,B,C,D}.

For each n ≥ 0, a A2n+1 (B2n+1 , C2n+1 , D2n+1)-path is built recursively from four
X2n-paths, X ∈ {A,B,C,D}, as described in Figure 5.

A2n A2n

D2n C2n

�
�

�

D2n C2n

B2n B2n

���

C2n B2n

C2n A2n

�

�

�
B2n D2n

A2n D2n

�

�

�

A2n+1 B2n+1 C2n+1 D2n+1

Fig. 5. Constructing paths through squares of 2n+1 × 2n+1 minitiles. Reprinted from the
Journal of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity
problems of cellular automata, pages 149–182, 1994, with permission from Elsevier.

For example, the A4-path starts in the lower right corner of the square, visits all
its minitiles, and ends in the lower left corner (see Figure 6). Paths created using
Definition 3.7 form the familiar Hilbert curve. One can easily verify the following
result.

Lemma 3.3. For each n ≥ 0 the A2n (B2n , C2n , D2n)-path starts in the SE
(NW, SE, NW, respectively) corner, ends in the SW (NE, NE, SW, respectively)
corner, visits all minitiles of the underlying 2n×2n minitile square, and does not visit
any minitiles outside of the underlying square.

Let fXY : Sn+1 −→ Tµ be a (2n+1 − 1)-XY -square of microtiles, where Sn+1 =
{(x+i, y+j) | 1 ≤ i, j ≤ 2n+1−1}.Then, by the iterative construction in Definition 3.5,
those (and only those) microtiles at positions (x+2i−1, y+2j−1), 1 ≤ i, j ≤ 2n, are
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Fig. 6. The paths A4 and A16. Reprinted from the Journal of Computer and System Sciences,
Volume 48, Jarkko Kari, Reversibility and surjectivity problems of cellular automata, pages 149–182,
1994, with permission from Elsevier.

Table 1

The labeling of mixed arms. The four rows of the table represent (i) the direction of the principal
arrow of the arm, (ii) the label of the principal arrow, (iii) the label of the arrow situated clockwise
relative to the principal arrow, and (iv) the label of the arrow situated counterclockwise relative to
the principal arrow.

(i) E W N S E W N S E W N S E W N S
(ii) A A A A B B B B C C C C D D D D
(iii) C A A D B D C B A C B C D B D A
(iv) A D A C C B D B B C C A D A B D

single crosses. Since, moreover, fXY is a valid microtiling, all 2 × 2 squares of Sn+1

with single crosses in their upper right corner form minitiles. The single crosses in the
leftmost column and the bottommost row of Sn+1 can be easily completed by adding
another column and a row of microtiles to fXY so that they again form valid 2 × 2
squares of microtiles. Therefore, by Definition 3.6, we obtain a (partial) minitiling
f : Z

2 o−→ Tm from which the square fXY arose, i.e., m(f)|Sn+1 = fXY .
If a minitile has its single cross in Sn+1, we say that it is attached to Sn+1.

Recall that there are exactly 2n × 2n single crosses in Sn+1; therefore there will be
2n × 2n = 4n minitiles attached to it. The directions will be defined in such a way
that the path these minitiles form is exactly an A2n -, B2n -, C2n -, or D2n-path.

In order to control which of the four possible paths the directions define in a
specific square, additional labels are assigned to arrows in microtiles [27]. Each arrow
(single or double) can be given any label from the set {A,B,C,D}, the only restric-
tions we impose on crosses and mixed arms. As usual, in each cross all four arrow
heads must have the same label. The central cross of each (2n+1 − 1)-square will
determine the type of path the directions define on the square (see Lemma 3.6). The
labeling of mixed arms is crucial for the composition of A-, B-, C-, or D-squares and
is specified in Table 1. As usual, in a valid microtiling the meeting arrow heads and
arrow tails must have the same label.

One can verify that the labels in Table 1 correspond exactly to the construction
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A A

A

AA

C

A

D

A A D C�
� �
� ��

�
� �� �

�

Fig. 7. The labeling of mixed arms whose principal arrow has the label A.

of the paths in Figure 5. For example, the mixed arms in the first four columns in
Table 1 are illustrated in Figure 7. The first of these mixed arms has its principal
arrow labeled A. This indicates that the mixed arm is a connector in a (2n+1 − 1)-
square whose central cross is labeled A and which therefore contains an A2n+1-path.
The vertical arrow incoming from the north (south) is labeled A (C, respectively).
These facts indicate that the (2n − 1)-NE-square on top of the mixed arm contains
an A2n -path, and that the (2n − 1)-SE-square below it contains a C2n -path, as they
should, according to the recursive construction of A2n -paths in Figure 5.

Table 2

The definition of directions assigned to minitiles (or to their respective single crosses).
Reprinted from the Journal of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility
and surjectivity problems of cellular automata, pages 149–182, 1994, with permission from Elsevier.

The direction of a single cross is
N if its NE neighbor is a double cross with label C or a vertical arm whose

left edge has a side arrow with label A or B,
E if its NE neighbor is a double cross with label B or a horizontal arm whose

lower edge has a side arrow with label C or D,
S if its SW neighbor is a double cross with label D or a vertical arm whose

right edge has a side arrow with label A or B,
W if its SW neighbor is a double cross with label A or a horizontal arm whose

upper edge has a side arrow with label C or D.

The definitions of directions are summarized in Table 2. It has been shown in
[27] that if fXY : Sn −→ Tµ is a (2n − 1)-XY -square, then for each single cross whose
Moore neighborhood is contained in Sn there exists exactly one rule in Table 2 that
can be applied. All the above defined elements forming the directed paths, i.e., the
new labels A,B,C,D and the directions of minitiles, are unified together by means
of the neighborhood relation Rm. Now we can complete the formal definition of a
minitile system, based on the above described microtile system (Tµ, Vµ, Rµ, dµ).

Definition 3.8. A minitile system is a generalized directed tile system (Tm, Vm,
Rm, dm) such that

(i) Tm is the set of all minitiles as defined in Definition 3.6;
(ii) Vm is the Moore neighborhood;
(iii) Rm is the set of all 9-tuples r ∈ T 9

m such that all the following conditions are
met:
(a) the underlying 6 × 6 microtiling m({(Vm(i), r(i)) | 1 ≤ i ≤ 9}) is valid;
(b) exactly one rule in Table 2 is applicable to the single cross μr(5)

1 of the
central minitile r(5);

(c) exactly one of the following four conditions holds: dm(r(2)) = S,
dm(r(4)) = E, dm(r(6)) = W, dm(r(8)) = N ;

(iv) dm(a) = dµ(μa
1) for each a = (μa

1 , μ
a
2 , μ

a
3 , μ

a
4) ∈ Tm.

Recall that a 9-tuple r ∈ Rm corresponds to a 3 × 3 block of minitiles. The
condition (a) states that a necessary condition for the minitiling f to be valid at
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Fig. 8. Left: a microtile; center: a minitile is a 2 × 2 block of microtiles having exactly one
single cross, in its upper right corner; right: a macrotile (shaded); the nonshaded minitiles define
the “glues” of the macrotile.

(x, y) ∈ Z
2 is that its corresponding microtiling m(f) be valid at (2x + i, 2y + j) for

all −1 ≤ i, j ≤ 2. In other words, inside the 6 × 6 block of microtiles corresponding
to the 3× 3 Moore neighborhood of (x, y), all arrow heads match meeting arrow tails
and their labels match as well, including the new labels A,B,C,D.

The condition (b) adds another necessary requirement that the direction of the
minitile at (x, y) must be uniquely defined via Table 2. Finally, by the condition (c)
a minitiling is not valid at (x, y) unless exactly one of the four adjacent minitiles at
its N, S, E, W has its direction pointing towards it.

Recall that, due to Definition 3.3, if some minitiles in the Moore neighborhood
of (x, y) are missing, we consider the minitiling valid at (x, y) if the missing positions
can be filled with minitiles such that conditions (iii)(a)–(c) would be met.

3.4. Macrotiles: The 3 × 3 block construction. In this section we finalize
the construction of a directed tile system (T0, d0) with the strong plane-filling prop-
erty. We will use the generalized directed tile system of minitiles (Tm, Vm, Rm, dm)
constructed so far to obtain the directed tile system of macrotiles (T0, d0). When
dealing with (T0, d0) we revert to the usual notion of tiles sticking by glues as defined
in section 2.

The idea of the construction is as follows. Consider all the validly minitiled
Moore neighborhoods as defined by Rm. With each such 9-tuple, which intuitively is
a 3× 3 block of minitiles, we associate a macrotile (see Figure 8). The position of the
macrotile in a plane is identical with the position of its center minitile. The glues of
a macrotile will be the 2 × 3 and 3 × 2 subblocks of minitiles corresponding to each
side. Two adjacent macrotiles will stick if they have the same glues at their abutting
edges (see Figure 9).

Definition 3.9. Consider the minitile system (Tm, Vm, Rm, dm). A macrotile
system is a directed tile system (T0, d0), T0 ⊆ X4

0 , where the following hold:
(i) X0 = T 6

m.
(ii) T0 is constructed as follows. For each validly minitiled Moore neighborhood

t ∈ Rm, there exists a macrotile t∗ ∈ T0 with glues
t∗N = (t(1), t(2), t(3), t(4), t(5), t(6)),
t∗S = (t(4), t(5), t(6), t(7), t(8), t(9)),
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Fig. 9. Two adjacent macrotiles m∗ and n∗ (shaded) stick iff their glues at the abutting edges
are equal. This means that the overlapping 2 × 3 portions of their Moore neighborhoods coincide,
i.e., m(2) = n(1), m(3) = n(2), m(5) = n(4), etc.

t∗E = (t(2), t(3), t(5), t(6), t(8), t(9)),
t∗W = (t(1), t(2), t(4), t(5), t(7), t(8)).

(iii) d0(t∗) = dm(t(5)).
If intuitively a macrotile corresponds to a 3 × 3 block of minitiles, its north glue

is the 2 × 3 top subblock, the south glue is the bottom 2 × 3 subblock, the west glue
the left 3 × 2 subblock, and the east glue the right 3 × 2 subblock of minitiles.

The direction of a macrotile t∗ is the direction of its center minitile t(5) which we
will denote also by c(t∗). Similarly as with minitiles, we say that t∗ is attached to a
(2n − 1)-square Sn −→ Tµ if the single cross of c(t∗) is located within Sn.

Two adjacent macrotiles will stick iff the glues on their abutting edges are iden-
tical. For example, two macrotiles at positions (x, y), (x + 1, y) will stick if, when
viewed as 3 × 3 blocks centered at (x, y), respectively, (x + 1, y), their overlapping
minitiles coincide. (See Figure 9.)

Definition 3.10. Consider the macrotile system (T0, d0) and a T0-tiling f :
Z

2 o−→ T0.
(i) The overlap map o(f) : Z

2 o−→ 2Tm is a function defined as follows. For all
x̄ ∈ dom(f), if f(x̄) = t∗, then t(i) ∈ o(f)(x̄+ Vm(i)).

(ii) The projection map p(f) : Z
2 o−→ Tm is a function defined as follows: If

(x, y) ∈ dom(f) and f(x, y) = t∗, then p(f)(x, y) = c(t∗).
In other words, the overlap map of a set of macrotiles situated on the plane will

place at each position all the minitiles that would occupy it if we were to view each
macrotile at (x, y) as a 3×3 block centered at (x, y) and covering a 3× 3 neighborhood
around it. The projection map replaces each macrotile at (x, y) with the minitile c(t∗)
at its center. Note that, while dom(p(f)) = dom(f), dom(f) ⊆ dom(o(f)).

Consider the following special case of the overlap map: for all (x, y) ∈ Z
2, either

o(f) is undefined or card(o(f)) = 1. Such a one-to-one overlap map is called a perfect
overlap. The following results are straightforward.

Lemma 3.4. Let f : Z
2 o−→ T0 be a T0-tiling with dom(f) = {(x, y), (x′, y′)} and

the positions (x, y) and (x′, y′) be adjacent; then f(x, y) will stick to f(x′, y′) iff o(f)
is a perfect overlap.
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In other words, two macrotiles situated at adjacent positions will stick (in the glue-
match-at-abutting-edges sense defined in section 2) iff the overlap map they define is
one-to-one.

Let us introduce the following notation for the set of positions on the plane
belonging to the Moore neighborhood of x̄ ∈ Z

2 : NM (x̄) = {x̄+ VM (i) | 1 ≤ i ≤ 9}.
Lemma 3.5. Let f : Z

2 o−→ T0 be a T0-tiling and let x̄, ȳ ∈ dom(f). Further let f
contain a T0-ribbon (P, r) such that {x̄, ȳ} ⊆ range(P ) and

NM (x̄) ∩NM (ȳ) ⊆
⋂

z̄∈range(P )

NM (z̄).

Then the overlap map o(f |{x̄,ȳ}) is perfect.
Informally, let two macrotiles x∗ and y∗ be connected with a (short) ribbon such

that the intersection of the Moore neighborhoods of x∗ and y∗ is included in (and
hence is equal to) the intersection of the Moore neighborhoods of all tiles in the
ribbon. Then, by Lemma 3.4, each two adjacent tiles in the ribbon have perfect
overlap. By transitivity, we deduce that the intersection of overlap maps of all the
tiles in the ribbon is one-to-one and hence so is the common overlap map of x∗ and y∗.

The following lemma states that each infinite directed zipper of macrotiles covers
arbitrarily large squares.

Lemma 3.6. Let n ∈ N and let (P, r) be a T0-directed zipper, P : I −→ Z
2,

r : range(P ) −→ T0, such that there exists i ∈ I with min(I) + 4n ≤ i ≤ max(I)− 4n.
Denote P (i) = (xi, yi) and r(xi, yi) = t∗. Then the following hold:

(i) There exists a (2n+1 − 1)-square fXY : Sn+1 −→ Tµ such that (2xi + 1, 2yi +
1) ∈ Sn+1, Sn+1 ⊆ dom(m(p(r))) and fXY = m(p(r))|Sn+1 .

(ii) Let Q = {(k, l) ∈ Z
2 | (2k+1, 2l+1) ∈ Sn+1}. If the central cross of Sn+1 has

label A (B, C, D), then p(r|Q) is an A2n (B2n , C2n , D2n , respectively)-path.
(iii) The overlap map o(r|Q) is a perfect overlap.
Informally, consider a directed zipper of macrotiles that passes through a macrotile

t∗ and extends for at least 4n positions preceding and the 4n positions succeeding the
position of t∗. Then (i) the single cross of the minitile c(t∗) belongs to a (2n+1 − 1)-
square fXY : Sn+1 −→ Tµ. Moreover, (ii) the projection of the portion of the directed
zipper consisting of the macrotiles attached to Sn+1 is an A2n -, B2n -, C2n -, or D2n-
directed minitiled path if the central cross microtile of the square has label A, B, C,
or D, respectively. Last, (iii) the overlap map of that portion of the directed zipper
is a perfect overlap.

Proof. The proof is by induction on n.
n = 0. Assume there is no zipper error involving 40 = 1 macrotile before and one

macrotile after t∗. Then the required 2n+1 − 1 = 21 − 1 = 1-square consists of only
the single cross at the upper right corner of the minitile c(t∗) and the statement is
vacuously true.

Assuming the statement holds for n − 1, we prove it for n. Assume there are
no zipper errors involving any of the 4n macrotiles that precede or succeed t∗. By
induction hypothesis (I.H.) (i), the minitile c(t∗) is attached to a (2n − 1)-square
S(1) −→ Tµ with the required properties. Assume that it is a (2n−1)-SW-square (the
other cases are analogous.)

Properties of the square S(1).
Let Q1 = {(k, l) ∈ Z

2| (2k + 1, 2l + 1) ∈ S(1)} be the square of macrotiles
attached to S(1). By I.H. (iii), the overlap map of r|Q1 is perfect (one-to-one). The
underlying microtiling m(o(r|Q1 )) covers S(1) and the Moore neighborhood of all its
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Y

f g h

a

X

b

c d e

Z

S(1) S(4)

S(2) S(3)

Fig. 10. The (2n+1 − 1)-square constructed during the proof of Lemma 3.6. Reprinted from the
Journal of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity
problems of cellular automata, pages 149–182, 1994, with permission from Elsevier.

tiles (actually, it is even larger) and, by Definitions 3.8 and 3.9, is valid. Then, by
Lemma 3.2, the microtile just outside the upper right corner of S(1) is a double cross,
denoted by X in Figure 10. The double cross can have any of the four labels A, B,
C, D. Assume it has label C.

By Lemma 3.2 again, the microtiles exactly on top of S(1) are horizontal arms
(first double arms, then one mixed arm, then single arms) radiating westwise, with
the same label C. Then, by Table 1, the lower edge of the mixed arm has a side arrow
labeled C (column 10, row 4 of the table). Then the central cross of S(1) has the
same label C, due to the column of arms radiating from it northwise to the mentioned
mixed arm (see Definition 3.5). This means the path through S(1) is, by I.H. (ii), a
C-path which, by Lemma 3.3, starts at a single cross f and ends at a single cross a
(Figure 10).

Adding the square S(2).
As a has at its NE a double cross labeled C, according to Table 2, the direction

of a is N. This means that the path of macrotiles, passing through the macrotile a∗

with the center single cross a, will proceed to b∗. Denote by b the single cross of c(b∗)
(Figure 10).

Recall that for the macrotile t∗ attached to S(1) we assumed that it is preceded
and succeeded by at least 4n macrotiles on the path P. Since there are exactly 4n−1

macrotiles attached to S(1), the distance of t∗ and b∗ on the path P is at most 4n−1,
by Lemma 3.3. Hence the I.H. can be applied to b∗ because the number of macrotiles
preceding and succeeding b∗ on P is at least 4n − 4n−1 = 3 · 4n−1 > 4n−1. By I.H. (i),
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b belongs to a (2n − 1)-square S(2) −→ Tµ.

Observe that a is not in S(2) (otherwise, by Lemma 3.1, S(1) and S(2) would
coincide, which is impossible as b is in S(2) − S(1)). Hence S(1) and S(2) are disjoint.
By I.H. (ii), S(2) contains an A-, B-, C-, or D-path. As c(b∗) is the first minitile of the
path, and b is located just above a, by Lemma 3.3 the path must be either an A-path
or C-path. In both cases b is located in the SE corner of S(2), and we conclude that
S(2) is above S(1).

As S(2) has all the properties conferred by I.H., we repeat for S(2) the steps
previously made for S(1). In particular, let Q2 = {(k, l) ∈ Z

2| (2k+ 1, 2l+ 1) ∈ S(2)}.
By I.H. (iii), the overlap map o(r|Q2 ) of the macrotiles attached to S(2) is one-to-one.
Hence, the microtiling m(o(r|Q2 )) covering S(2) and its Moore neighborhood is valid.

By definition of mixed arms in Figure 2, the mixed arm under S(2) has an upper
edge with a side arrow labeled NW. As there is a column of arms connecting this
arrow with the central microtile of S(2), we have that S(2) is a (2n − 1)-NW-square.
By Lemma 3.2 we have to the right of S(2) a column of vertical arms with a mixed arm
in the middle. By Table 1, the left edge of this mixed arm has a side arrow labeled
C, and hence the central cross of S(2) is also labeled C. By I.H. (ii), the path through
S(2) is a C-path. By Lemma 3.3, the path enters through b∗ and exits through c∗

(Figure 10).
We know already that, when taken separately, the overlap maps of the partial

tilings with macrotiles attached to S(1), respectively, S(2), are one-to-one. When
considering the overlap map associated with S(1) and S(2), we have to inspect the
cases when there are two macrotiles, x∗ attached to S(1) and y∗ attached to S(2),
such that their Moore neighborhoods overlap. The possible cases are those described
in Figure 11 and the symmetrical ones. Recall that, by Lemma 3.3, the zipper (P, r)
visits all the macrotiles attached to S(1)∪S(2). Hence any adjacent pair of them sticks
and any tiled path forms a ribbon. Then, in each of the cases in Figure 11 the figure
also shows the short ribbon required by Lemma 3.5. (These ribbons have nothing to
do with the zipper (P, r).) Hence, by Lemma 3.5, the common overlap map of x∗

and y∗ is perfect. This further implies that the overlap map o(r|Q1∪Q2) of all the
macrotiles attached to S(1) and S(2) is one-to-one.

Fig. 11. Pairs of macrotiles attached to S(1) and S(2) with nonempty common overlap.

Adding the square S(3).
By Lemma 3.2(ii) applied to S(2), there is a row of vertical arms labeled C to the

right of S(2) which ends just to the right of the single cross c. By Lemma 3.2(iii) Z
must be a horizontal arm whose lower edge has its side arrow labeled C. As Z is the
NE neighbor of c, by Table 2, the direction of c is E. We can reason similarly as in
the case of tile b in S(2) to conclude that d is the first single cross in a B-path through
a (2n − 1)-NE-square S(3) −→ Tµ situated at the right side of S(2). The path ends
at tile e (Figure 10).

Reasoning as in the case of S(1) and S(2) we can conclude that the overlap map of
macrotiles associated with S(2) and S(3) is one-to-one. To conclude that the overlap
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map associated with S(1) and S(2) and S(3) is one-to-one, we have to consider pairs
of macrotiles, x∗ attached to S(1) and y∗ attached to S(3), such that their Moore
neighborhoods overlap. One can easily verify that there are at most nine such pairs.
Similarly as in the case of common overlap of S(1) and S(2), for each of these pairs
there exists a short ribbon satisfying the requirements of Lemma 3.5. By reasoning
similar to the previous case, the overlap map of x∗ and y∗ is one-to-one and so is the
common overlap map of macrotiles attached to S(1) ∪ S(2) ∪ S(3).

Adding the square S(4).
Consider the overlap map of macrotiles attached to S(1), S(2), and S(3) which

forms a valid minitiling. Let f∗ be the macrotile with the center single cross f , where
the C-path through S(1) starts. The overlap map extends one minitile to the east and
south of f∗, hence covering both microtiles g and Y. By Lemma 3.2, Y is a horizontal
arm whose upper edge has a side arrow labeled C. As Y is the SW neighbor of the
single cross g, it implies, by Table 2, that g has to have direction W.

Moreover, by the nonexistence of a zipper error on the path segment considered,
and the definition of the overlap map, there is no tiling error in the overlap map of
S(1), S(2), and S(3). Recall that, by Definition 3.8, in a valid minitiling each single
cross has only one other single cross pointing towards it. Consequently, g is the unique
predecessor of f on the path; therefore g∗ uniquely precedes f∗.

According to I.H. (i), g is known to belong to a (2n − 1)-square S(4) −→ Tµ. In
the same way as before, we conclude that S(4) is situated at the right side of S(1),
and the path through S(4) is an A-path starting at h and ending at g that visits all
its single crosses. We can also reason as before to prove that the overlap map of
macrotiles involved in S(1), S(2), S(3), and S(4) is one-to-one.

Conclusion.
Altogether, by Definition 3.5 and Lemma 3.2, the squares S(1), S(2), S(3), and

S(4) form a (2n+1 − 1)-square fXY : Sn+1 −→ Tµ. All its single crosses are visited
by the projection of the path and the macrotile t∗ is on this path, as required in the
statement (i) of the lemma.

Furthermore, by Definition 3.7, the A-, C-, C-, and B-paths through fXY form
a C2n+1 -path. As we have started with the assumption that the central cross X of
Sn+1 is labeled C, the statement (ii) of the lemma holds, too.

Finally, we have also shown that the common overlap map of the partial macrotil-
ing with macrotiles attached to S(1), S(2), S(3), and S(4) is a perfect overlap. This
verifies the statement (iii) of the lemma and concludes the induction step. The
other cases (X labeled by A, B, D, and S(1) having other label than SW) are analo-
gous.

Theorem 3.1. There exists a directed macrotile system (T0, d0) with the strong
plane-filling property.

Proof. Consider the macrotile system (T0, d0) from Definition 3.9. Observe that
there exists an infinite directed zipper of macrotiles from T0, namely the zipper (P, r)
constructed inductively in the proof of Lemma 3.6. Moreover, by the statement of
Lemma 3.6(i), any infinite path following the directions, which in addition has no
zipper errors, covers arbitrarily large squares.

4. Undecidability of existence of infinite ribbons. We shall now use The-
orem 3.1 to prove the undecidability of existence of an infinite directed zipper.

Theorem 4.1. The set {(T, d)|(T, d) is a directed tile system and there exists an
infinite (T, d)-directed zipper } is undecidable.

Proof. Reduce the undecidable tiling problem to our problem.
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a

b
Fig. 12. A sandwich tile σ(a, b) consists of a directed tile a ∈ T0 placed on top of a tile b ∈ T1.

The direction of σ(a, b) is d(σ(a, b)) = d0(a), the direction of its top tile.

By Theorem 3.1 there exists a directed tile system (T0, d0) with the strong plane-
filling property.

Let T1 be a tile system. Consider the following “sandwich tiles,” each consisting
of a tile from T0 placed on top of a tile from T1. That is, create a new directed tile
system (T, d) of sandwich tiles such that T = {σ(a, b)|a ∈ T0 and b ∈ T1}, where,
for all a = (aN , aE , aS , aW ) ∈ T0 and b = (bN , bE , bS, bW ) ∈ T1, the sandwich tile
σ(a, b) = ((aN , bN ), (aE , bE), (aS , bS), (aW , bW )) and the direction of the sandwich
tile is d(σ(a, b)) = d0(a) (see Figure 12).

Hence, a sandwich tile σ(a, b) sticks on the north (east, south, west) to σ(a′, b′) iff
a sticks on the north (east, south, west) to a′ and b sticks on the north (east, south,
west) to b′.

We will show now that there exists a valid T1-tiling of the plane iff there exists
an infinite (T, d)-directed zipper.

“⇒” Assume that there exists a valid T1-tiling of the plane f : Z
2 −→ T1.

Consider an infinite (T0, d0)-directed zipper (P, r) (which exists, since (T0, d0) has the
strong plane-filling property). Consider the T -tiled path (P, q) of sandwich tiles such
that, for all (x, y) on P , q(x, y) = σ(r(x, y), f(x, y)). Informally, the directed tiled
path of sandwich tiles consists of the infinite (T0, d0)-directed zipper on its top and
the corresponding partial valid T1-tiling f |range(P ) on the bottom. It is clear that in
fact (P, q) is an infinite (T, d)-directed zipper of sandwich tiles.

“⇐” Assume that there exists an infinite (T, d)-directed zipper (P, q) of sandwich
tiles. Then, let (P, r) be its top layer; i.e., for all (x, y) on P , r(x, y) = a iff q(x, y) =
σ(a, b) for some b ∈ T1. Then clearly, (P, r) is an infinite (T0, d0)-directed zipper.
Hence, as (T0, d0) has the strong plane-filling property, P contains “arbitrarily large
squares”: for all n there exists (x, y) such that, (x+i, y+j) is on P for i = 0, 1, 2, . . . , n
and j = 0, 1, 2, . . . , n. Let (P, z) be the bottom layer of (P, q), i.e., the T1-tiled path
such that, for all (x, y) on P , z(x, y) = b iff q(x, y) = σ(a, b). Then clearly, (P, z) is
in fact an infinite T1-zipper. It follows that range(P ) = dom(z) contains arbitrarily
large squares and, moreover, for all n, z : range(P ) −→ T1 is a partial tiling valid on
a square of size n. It now follows from the König infinity lemma [28] that there exists
a valid T1-tiling of the plane.

Having proved the undecidability of existence of an infinite directed zipper, we
shall use this result to show that the existence of an infinite ribbon is also undecidable.

Theorem 4.2. The set {T |T is a tile system and there exists an infinite T -ribbon}
is undecidable.

Proof. Reduce the set of Theorem 4.1 to this set.
Given a directed tile system (T, d), we will construct a tile system T ′ such that

there exists an infinite (T, d)-directed zipper iff there exists an infinite T ′-ribbon.
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Fig. 13. A ribbon motif with input tile on the west and output tile on the north.

Recall that a zipper differs from a ribbon in that in a ribbon only consecutive
tiles are required to have matching glues on abutting edges, while on a zipper even
nonconsecutive neighboring tiles have to have matching glues on their abutting edges.

The construction is as follows. For each directed tile t ∈ T , construct three T ′-
motifs. A motif is a finite T ′-ribbon (P, r) of special form. We construct these ribbon
motifs as follows (see Figure 13).

Each motif is essentially a tiled path that outlines the contours of a square. There
are dents and bumps on the north, east, south, and west sides of the motif. In addition,
if (P, r) is a motif, then the first position on P is midway along one side of the motif.
This side is called the input side of the motif and the tile at the first position is called
the input tile of the motif. The last position on P is midway along a side of the motif
different from the input side. This side is called the output side of the motif and the
tile at the last position is called the output tile of the motif.

Given a directed tile t ∈ T , we construct the three possible motifs with output side
d(t). We call these three motifs the “variants” of t (see Figure 14). On each variant,
we put a bump on the east (south) side, to encode the glue on the east (south) side
of t. We also put a dent on the west (north) side, to encode the glue on the west
(north) side of t. The dents and bumps are designed so that if, for example, t1 sticks
on the north to t2, then the dents on the north of t1 variant motifs fit the bumps on
the south of t2 variants (see Figure 15). If, however, t1 does not stick on the north to
t2, then the north sides of t1 variant motifs will overlap the bumps on the south of t2
variants. Since overlaps are not allowed in ribbons, if t1 does not stick on the north
to t2, no T ′-ribbon can have a t2 variant motif directly north of a t1 variant motif.

The glues on tiles in T ′ are chosen so that each tile can occur in exactly one
variant motif, and in each variant motif it occurs exactly once. To this aim, the
two edges of each ribbon tile connecting it with the preceding (succeeding) tile on a
variant motif are labeled so that this is the only sticking that can form along those
edges. The only exception to this rule are the input (output) tiles of motifs, which
have the edges connecting them to the preceding (succeeding) tiles labeled differently,
as detailed below.
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Fig. 14. The two remaining variant motifs corresponding to a directed zipper tile with direction
north (the first one is depicted in Figure 13). The bumps and dents are omitted from the variant
motifs for clarity.

Bump

Dent

Fig. 15. The bump-and-dent pair that simulates a glue. Each glue is assigned a unique position
on the side of a motif. If the glues on two directed zipper tiles situated at adjacent positions match,
then the bump on the first motif will be placed exactly at the necessary position to fit in the dent of
the second motif.
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So far, the bumps and dents were used to simulate the glues of zipper tiles. We
now simulate the direction of a zipper tile by incorporating it in the glues of the input
and output tiles of its variant motifs. We namely use four new glues, West-to-East,
East-to-West, North-to-South, and South-to-North as follows. If the direction of a
directed zipper tile t1 is north, i.e., d(t1) = N , then

(a) the output ribbon-tiles of all three variant motifs of t1 will have their north
edge labeled South-to-North, and

(b) the input tile of the variant motif of t1 with a west (east, south) input side will
have its west (east, south) edge labeled West-to-East (East-to-West, South-to-North).

We label in a similar way the appropriate edges of the input and output tiles of
other motifs, namely those edges that are meant to connect the motifs to each other.
This labeling ensures that the variant motifs will be connected to each other in the
proper order dictated by the direction of the originating directed zipper tiles.

Last, we want to ensure that only motifs of the kind described above can form,
and that motifs can connect to each other only through their input and output tiles.
To this aim, we have two new different “null” glues: null(1) and null(2). We label,
for all the above constructed ribbon tiles, the so-far-unlabeled north and west edges
with null(1) and the unlabeled east and south edges with null(2). Because null(1)
matches only null(1), and null(1) is used only on the west and north edges, the edges
of tiles labeled with these glues will not stick to any other tiles along those edges.
The same is true for null(2). These “nonstick” glues ensure that the ribbon will only
follow the intended motif and will not fill it in, or stick to anything outside it, except
at the input and output tiles.

To summarize, given the directed tile system (T, d) we can construct the tile
system T ′ consisting of the ribbon tiles used in all variant motifs of tiles in T , as
described above.

Assume that there exists an infinite directed (T, d)-zipper (P, r). One can easily
construct an infinite T ′-ribbon (P ′, r′). The idea is that, for each position (xi, yi) on
P , the tile r(xi, yi) is replaced by one of its variant motifs. The variant chosen is one
with input side opposite d(r(xi−1 , yi−1)).

Conversely, assume that there exists an infinite T ′-ribbon, (P ′, r′). It is clear from
our choice of ribbon tiles and glues that (P ′, r′) must consist of an infinite sequence
of motifs. Hence we can construct an infinite (T, d)-directed zipper by replacing each
motif with the tile t of which it is a variant.

Theorem 4.2 proves the undecidability of existence of an infinite ribbon. This
settles the open problem [17], stating the following: “Problem 4.1. Given a tiling
system T , is there an infinite T -snake within the infinite grid G = Z × Z?”

In the terminology of [17], a tiling system T is exactly as defined in section 2, a
finite set of tiles, i.e., of squares with colored edges that cannot be rotated and with
infinitely many copies of each tile available. The grid G is the integer grid of positions
in the plane. An infinite T -snake is a sequence of tiles on the plane in which successive
tiles are adjacent along an edge and touching edges have the same color; i.e., infinite
T -snakes are (possibly self-crossing) 2-way infinite ribbons where identical tiles must
be present at the crossing sites. In general [17], [34], an infinite snake problem asks,
given a tiling system T , and some portion P of the plane, whether there is an infinite
T -snake that lies entirely within P . Reference [17] proves that, given T and a strip
of width k ∈ N , the existence of an infinite T -snake that lies entirely within the
strip is decidable. Given a tile system T , and a specific tile t0 ∈ T , the problem of
whether there exists an infinite T -snake that contains t0 is proved undecidable in [17]
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using methods in [16] (the case of a 1-way infinite snake starting at t0 was proven
undecidable in [15]). If the special “seed” tile is not specified, like in Problem 4.1, [17]
conjectures the problem undecidable but states that “[. . .] it seems that this would
be difficult to prove. We have not been able to adjust the proof techniques of other
undecidability results for this purpose.”

Theorem 4.2, by showing the undecidability of existence of infinite non-self-
crossing snakes, proves Problem 4.1 undecidable.

5. Undecidability of self-assembly of arbitrarily large supertiles. Let us
return to the discussion of self-assembly. Supertiles are constructed by an incremental
process starting from a single tile and proceeding by addition of single tiles that “stick”
to the hitherto built structure. The problem we are addressing is whether or not, given
a tile system, an infinite supertile can self-assemble with tiles from that system. To
formalize our notions, we have the following definition.

Definition 5.1. A shape is a function f : I −→ Z
2 such that I is a set of

consecutive natural numbers, 0 ∈ I, and the following condition holds. For all i ∈ I,
if i > 0, then there exists j ∈ I such that j < i and f(i) and f(j) are adjacent.

A shape thus describes a connected region of the plane. The size of a shape f is
the cardinality of its range, i.e., the number of positions it contains, regardless of how
many times they are visited. If we fill in each position of a shape with tiles from a
given tile system T , we obtain the notion of a T -supertile.

Definition 5.2. For all tile systems T , a T -supertile is a pair (f, g), where f
is a shape and g : range(f) −→ T is a function such that the following condition
holds. For all i ∈ dom(f), if i > 0, then there exists j ∈ dom(f) such that j < i and
f(i) abuts f(j) on the north (east, south, west) and g(f(i)) sticks on the north (east,
south, west) to g(f(j)).

The size of a T -supertile (f, g) is the size of its corresponding shape f . Two
T -supertiles (f, g) and (f ′, g′) are equivalent iff there exists i, j ∈ Z such that for all
(x, y) ∈ Z

2, (x, y) ∈ range(f) iff (x+ i, y+ j) ∈ range(f ′) and for all (x, y) ∈ range(f),
g(x, y) = g′(x+i, y+j). That is, the T -supertile (f ′, g′) is equivalent to the T -supertile
(f, g) iff (f ′, g′) can be obtained by translating (f, g) on the plane.

Note that the definitions of shape and supertile may differ in other papers. The
ideas are similar, but the details may not be the same. The problem stated at the
beginning of this section is settled by the following result.

Theorem 5.1. The following sets are undecidable:
S1 = {T |T is a tile system and there exists an infinite T -supertile};
S2 = {T |T is a tile system and there exists infinitely many nonequivalent finite

T -supertiles}.
Proof. It is easily shown that sets S1 and S2 are identical to the set {T |T is a

tile system and there exists an infinite T -ribbon }. Hence Theorem 5.1 follows from
Theorem 4.2.

6. Conclusion. In this paper we prove the undecidability of the “unseeded ver-
sion” of the problem of distinguishing tile systems that allow infinite ribbons to self-
assemble from those that do not. The proof includes the construction of a special set
of directed tiles with the so-called strong plane-filling property, whereby any directed
zipper (a special kind of ribbon) is forced to be plane-filling and, moreover, such an
infinite directed zipper always exists.

This result settles an open problem formerly known as the “unlimited infinite
snake problem.”
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We also prove the undecidability of the “unseeded version” of the problem of
distinguishing tile systems that allow the self-assembly of infinite supertiles from those
that do not.

We introduce a “motif” construction that allows one tile system to simulate an-
other by using geometry to represent glues. This construction may be useful in other
contexts.
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