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Abstract

This work concerns formal descriptions of DNA code properties and related
(un)decidability questions. This line of research allows us to give a property
as input to an algorithm, in addition to any regular language, which can then
answer questions about the language and the property. Here we define DNA
code properties via transducers and show that this method is strictly more
expressive than that of regular trajectories, without sacrificing the efficiency of
deciding the satisfaction question. We also show that the maximality question
can be undecidable. Our undecidability results hold not only for the fixed DNA
involution but also for any fixed antimorphic permutation. Moreover, we also
show the undecidability of the antimorphic version of the Post Correspondence
Problem, for any fixed antimorphic permutation.
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1. Introduction

The study of formal methods for describing independent language proper-
ties (widely known as code properties) provides tools that allow one to give a
property as input to an algorithm and answer questions about this property.
Examples of such properties include classic ones [2–5] like prefix codes, bifix
codes, and various error-detecting languages, as well as DNA code properties
[6–17] like θ-nonoverlapping and θ-compliant languages. A formal description
method should be expressive enough to allow one to describe many desirable
properties. Examples of formal methods for describing classic code properties
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are the implicational conditions method of [18], the trajectories method of [19],
and the transducer methods of [20]. The latter two have been implemented to
some extent in the Python package FAdo [21]. A formal method for describing
DNA code properties is the method of trajectory DNA code properties [12, 22].

Typical questions about properties are the following:

Satisfaction problem: given the description of a property and the description
of a regular language, decide whether the language satisfies the property.

Maximality problem: given the description of a property and the description of
a regular language that satisfies the property, decide whether the language
is maximal with respect to the given property.

Construction problem: given the description of a property and a positive integer
n, find a language of n words (if possible) satisfying the given property.

In the above problems regular languages are described via (nondeterministic)
finite automata (NFA). Depending on the context, properties are described via
trajectory regular expressions or transducer expressions. The satisfaction prob-
lem is the most basic one and can be answered usually in efficient polynomial
time. The maximality problem as stated above can be decidable, in which case
it is normally PSPACE-hard. For existing transducer and trajectory properties,
both problems can be answered using the online (formal) language server LaSer
[23], which relies on FAdo. LaSer allows users to enter the desired property
and language, and returns either the answer in real time (online mode), or it
returns a Python program that computes the desired answer if executed at the
user’s site (program generation mode). For the construction problem a simple
statistical algorithm is included in FAdo, but we think that this problem is far
from being well-understood.

When it comes to DNA code properties in the context of formal languages,
there have been a few algorithms and implementations concerning specific such
properties—for example [11, 17, 24, 25]. These provide valuable insights and
contribute to the maturity of the research on DNA code properties. Most of
the implementations concern the construction problem for sets of words of fixed
length. In [17], the authors consider the efficient implementation of two DNA
code properties as well as the UD code (Unique Decipherability code) property.
The topic of DNA code properties is active and relevant, as there are laboratory
experiments involving computations on DNA molecules [26].

The general objective of this research is to develop methods for formally
describing DNA code properties that would allow one to express various combi-
nations of such properties and be able to get answers to questions about these
properties in an actual implementation. While the satisfaction and construction
questions are important from both the theoretical and practical viewpoints, the
maximality question is at least of theoretical interest and a classic problem in
the theory of codes. The contributions of this work are as follows:

1. The definition of a new simple formal method for describing many DNA
code properties, called θ-transducer properties, some of which cannot be
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described by the existing transducer and trajectory methods for classic
code properties; see Sect. 3. These methods are closed under intersection
of code properties. This means that if two properties can be described
within the method then also the combined property can be described
within the method. This outcome is important as in practice it is de-
sirable that languages satisfy more than one property.

2. The demonstration that the new method of transducer DNA code prop-
erties is properly more expressive than the method of trajectories; see
Sect. 4. Also the demonstration that the satisfaction problem is decid-
able for all θ-transducer properties (Sect. 5) in such a way that when
these properties are trajectory DNA code properties the efficiency of the
satisfaction algorithm is asymptotically the same (Remark 22).

3. The demonstration that the maximality problem can be decidable for some
of these properties but undecidable for some others; see Sect. 6.

4. The demonstration that some classic undecidable problems (like PCP,
the Post Correspondence Problem) remain undecidable when rephrased
in terms of any fixed (anti-)morphic permutation θ of the alphabet, with
the case θ = id corresponding to these classic problems, where id is the
(morphic) identity ; see Sect. 7.

5. The presentation of a natural hierarchy of DNA properties which are all θ-
transducer properties; see Sect. 8. This hierarchy generalizes the concept
of bond-free properties in [7–9].

Even though our main motivation is the description of DNA-related proper-
ties, we follow the more general approach which considers properties described
by transducers involving a fixed (anti-)morphic permutation θ; again, the clas-
sical transducer properties are obtained by letting θ = id. As it turns out, in
the case when θ is morphic all questions that we consider in this paper can be
answered analogously to the solutions for the classical case of θ = id. Therefore,
we focus on the transducer properties involving antimorphic permutations in
this paper.

2. Basic Notions and Background Information

We assume the reader to be familiar with the fundamental concepts of lan-
guage theory; see e. g., [27, 28]. In Sect. 2.1–2.3, we lay down our notation
for formal languages, (anti-)morphic permutations and involutions, automata
and transducers, and trajectories and related word operations. In Sect. 2.4 we
recall the method of transducers for describing classic code properties, and in
Sect. 2.5 we recall the method of trajectories for describing DNA code prop-
erties. In Sect. 2.6, we describe what technical tools are used to establish the
main results of the paper.
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For a set S, we write |S| to denote its cardinality. The symbols N and
N+ denote, respectively, the set of nonnegative integers and the set of positive
integers.

2.1. Formal Languages and (Anti-)morphic Permutations

An alphabet A is a finite set of letters; A∗ is the set of all words or strings
over A; ε denotes the empty word ; and A+ = A∗ \ {ε}. A language L over A is
a subset L ⊆ A∗; the complement Lc of L is the language A∗ \L. For an integer
m ∈ N we let A≤m denote the set of words whose length is at most m; i. e.,
A≤m =

⋃
i≤mA

i. The DNA alphabet is ∆ = {A, C, G, T}. Often it is convenient
to consider the generic alphabet Ak = {0, 1, . . . , k − 1} of size k rather than
a general alphabet; note that A2 ⊆ A3 ⊆ A4 ⊆ · · · . Throughout this paper
we only consider alphabets with at least two letters because our investigations
would become trivial over unary alphabets.

Let w ∈ A∗ be a word. Unless confusion arises, by w we also denote the sin-
gleton language {w}, e. g., L∪w means L∪{w}. If w = xyz for some x, y, z ∈ A∗,
then x, y, and z are called prefix, infix (or factor), and suffix of w, respectively.
For a language L ⊆ A∗, the set Pref(L) = {x ∈ A∗ | ∃y ∈ A∗ : xy ∈ L} de-
notes the language containing all prefixes of words in L. If w = a1a2 · · · an
for letters a1, a2, . . . , an ∈ A, then |w| = n is the length of w; for b ∈ A,
|w|b = |{i | ai = b, 1 ≤ i ≤ n}| is the tally of b occurring in w; the i-th letter
of w is w[i] = ai for 1 ≤ i ≤ n; the infix of w from the i-th letter to the j-
th letter is w[i;j] = aiai+1 · · · aj for 1 ≤ i ≤ j ≤ n; and the reverse of w is
wR = anan−1 · · · a1.

Consider a generic alphabet Ak with k ≥ 2. The identity function on Ak
is denoted by idk; when the alphabet is clear from the context, the index k is
omitted. For a permutation (or bijection) θ : Ak → Ak, the permutation θ−1

is the inverse of θ as usual; i. e., θ ◦ θ−1 = idk (“◦” is the composition of two
functions (g ◦ h)(x) = g(h(x)) for all x). For i ∈ Z, the permutation θi is the
i-fold composition of θ; i. e., θ0 = idk, θi = θ ◦ θi−1, and θ−i = (θi)−1 = (θ−1)i

for i > 0. There exists a number n, called the order of θ, such that θn = idk.
An involution θ is a permutation of order 2; i. e., θ = θ−1.

A permutation θ over Ak can naturally be extended to operate on words
in A∗k as (a) morphic permutation: θ(uv) = θ(u)θ(v), or (b) antimorphic per-
mutation: θ(uv) = θ(v)θ(u), for u, v ∈ A∗k. As before, the inverse θ−1 of the
(anti-)morphic permutation θ over A∗k is the (anti-)morphic extension of the
permutation θ−1 over A∗k. Note that the composition of two antimorphic or two
morphic permutations yields a morphic permutation, whereas the composition
of a morphic and an antimorphic permutation yields an antimorphic permuta-
tion. Therefore, if θ is an antimorphic permutation, then θi is morphic if and
only if i is even. The identity idk always denotes the morphic extension of idk
while the antimorphic extension of idk, called the mirror image or reverse, is
usually denoted by the exponent R.

Example 1. The DNA involution, denoted as δ, is an antimorphic involution
on ∆ = {A, C, G, T} such that δ(A) = T and δ(C) = G, which implies δ(T) = A and
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δ(G) = C.

2.2. Automata and Transducers

A nondeterministic finite automaton with empty transitions, ε-NFA for
short, or just automaton, is a quintuple a = (Q,A,E, I, F ) such that Q is
the set of states, A is the alphabet, I ⊆ Q is the set of start (or initial) states,
F ⊆ Q is the set of final states, and E ⊆ Q × (A ∪ ε) × Q is the finite set of
edges (or transitions). Let (p, x, q) be an edge of a. Then x is called the label
of the edge, and we say that p has an outgoing edge (with label x). We also use
the notation

p x−→ q

for the edge (p, x, q). The ε-NFA a is called an NFA, if no edge label is empty,
that is, E ⊆ Q×A×Q. If in addition a is such that |I| = 1 and there is no state
having two outgoing edges with the same label, then a is called a deterministic
finite automaton, DFA for short. A path of a is a finite sequence of edges of the
form

(p0, x1, p1), (p1, x2, p2), . . . , (p`−1, x`, p`),

for some nonnegative integer `. The word x1 · · ·x` is called the label of the
path. We write p0

x−→∗ p` to indicate that there is a path with label x from p0

to p`. A path as above is called accepting if p0 is the start state and p` is a final
state. The language accepted by a, denoted as L(a), is the set of labels of all
the accepting paths of a. The automaton a is called trim, if every state appears
in some accepting path of a.

A transducer t is a non-deterministic finite state automaton with output;
see e. g., [29, 30]. In general, a transducer can have an output alphabet B which
is different from its input alphabet A. In this paper however, we only consider
transducers where the input alphabet coincides with the output alphabet, A =
B, which leads to the following simplified definition: a transducer is a quintuple
t = (Q,A,E, I, F ), where A is the input and output alphabet, Q is a finite set
of states, E is a set of edges between states from Q which are labeled by word
pairs (u, v) ∈ A∗×A∗, I is the set of initial states, and F the set of final states.
For an edge label (u, v), the word u is called input, while the word v is called
output. The transducer t realizes the pair (x, y) ∈ A∗ × A∗, if x is formed by
concatenating the inputs, and y is formed by concatenating the outputs of the
labels in a path of t from an initial to a final state. The transducer t realizes
the relation R(t), which is the set of all pairs (x, y) ∈ A∗ × A∗ realized by t.
If t realizes (x, y) then we write y ∈ t(x). The set t(x) consists of all possible
outputs of t on input x. The domain of t is the set of all words x such that
t(x) 6= ∅. For a language L we naturally extend the notation t(x) such that

t(L) = ∪x∈Lt(x). (1)

The size |m| of a finite-state machine (automaton or transducer) m is the
sum of: the number of states, the number of edges, and the sum of the lengths
of all labels on the edges.
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It is well known that for two regular languages R1, R2 there exists a trans-
ducer t that realizes the relation R1 × R2; i. e., t realizes (x, y) if and only if
x ∈ R1 and y ∈ R2. The transducer t−1 is the inverse of t; that is,x ∈ t−1(y) if
and only if y ∈ t(x) for all words x, y. Note that t−1 is of size (|t|) and obtained
from t by simply swapping the input with the output word on each edge in t.
Let t and s be transducers and a be an automaton. Then:

• there is a transducer (t∨s) of size O(|s|+ |t|) realizing the relation R(t)∪
R(s) such that (t ∨ s)(x) = t(x) ∪ s(x), for all words x;

• there is a transducer (t ◦ s) of size O(|s| · |t|) realizing all word pairs (x, z)
for which there is a word y such that y ∈ s(x) and z ∈ t(y);

• there is a transducer (t ↑ a) of size O(|t| · |a|) such that y ∈ (t ↑ a)(x) if
and only if y ∈ t(x) ∩ L(a), for all words x, y [31];

• there is a transducer (t ↓ a) of size O(|t| · |a|) such that y ∈ (t ↓ a)(x) if
and only if y ∈ t(x) and x ∈ L(a), for all words x, y.

A transducer t is called functional if |t(x)| ≤ 1 for all x ∈ A∗. It is called
input-altering if for all words x we have x /∈ t(x). It is called input-preserving
if for all words x in the domain of t, we have that x ∈ t(x).

2.3. Language Operators, Trajectories and Related Word Operations

A language operator is any mapping Op: 2A
∗ → 2A

∗
. The prefix function

Pref defined earlier is an example of a language operator. A transducer can be
viewed as a language operator—see Eq. (1). Any (anti-)morphic permutation,
as well as any other function, h : A∗ → A∗ over words is extended to a language
operator such that for L ⊆ A∗

h(L) = ∪x∈L{h(x)}.

If Op1 and Op2 are language operators, then (Op1 ∨ Op2) is the language
operator such that (Op1 ∨Op2)(X) = Op1(X) ∪Op2(X), for all languages X.

A trajectory regular expression is a regular expression over the alphabet
{0, 1}. We shall use symbols with bars, like ā, to denote trajectory regular
expressions. Then, L(ā) denotes the language described by the expression ā. A
trajectory t is any element of L(ā).

Next we define the word operations �t and  t, called shuffle (or scattered
insertion) and scattered deletion, respectively, on the trajectory t [22, 32].

Definition 2. Let x and w be words and t be a trajectory.

1. The shuffle of w and x on t, denoted by x�t w, is the set

x�t w = {x1w1 · · ·xkwk | x = x1 · · ·xk, w = w1 · · ·wk, t = 0i11j1 · · · 0ik1jk ,

where |xr| = ir and |wr| = jr, for all r with 1 ≤ r ≤ k}.
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2. The deletion of w from x on t, denoted by x t w, is the set

x t w = {x1 · · ·xk | x = x1w1 · · ·xkwk, w = w1 · · ·wk, t = 0i11j1 · · · 0ik1jk ,

where |xr| = ir and |wr| = jr, for all r with 1 ≤ r ≤ k}.

In the above definition, the set x�tw consists of exactly one word if |t|0 = |x|
and |t|1 = |w|, and it is empty otherwise. For example, 1122�00101034 = 113242.
The set x  t w is either of the form {y} such that the word y is of length
|t|0 = |x| − |w| and satisfies {x} = y �t w, or the empty set otherwise. For
example, 113242  001010 34 = 1122. For any languages X,W and trajectory
expression ā, we have that

X �āW =
⋃

x∈X,w∈W,t∈L(ā)

x�t w

X  ā W =
⋃

x∈X,w∈W,t∈L(ā)

x t w.

2.4. Describing Classic Code Properties by Transducers and Trajectories

A (language) property P is any set of languages. A language L satisfies P,
or has P, if L ∈ P. Here by a property P we mean an (n-)independence in the
sense of [4]: there exists n ∈ N+ ∪ {ℵ0} such that a language L satisfies P if
and only if all nonempty subsets L′ ⊆ L of cardinality less than n satisfy P. A
language L satisfying P is maximal (with respect to P) if for every word w ∈ Lc
we have L ∪ w does not satisfy P—note that, for any independence P, every
language in P is a subset of a maximal language in P [4]. To our knowledge
all code related properties in the literature, including DNA code properties, are
independence properties. As we shall see further below the focus of this work
is on 3-independence properties. These can also be viewed as independent with
respect to a binary relation in the sense of [2].

Definition 3 (Existing transducer properties [20]). An input-altering trans-
ducer t describes the property that consists of all languages L such that

t(L) ∩ L = ∅. (2)

An input-preserving transducer t describes the property that consists of all lan-
guages L such that

w /∈ t(L \ w), for all w ∈ L. (3)

A property is called an input-altering (resp. input-preserving) transducer prop-
erty, if it is described by an input-altering (resp. input-preserving) transducer.

Note that every input-altering transducer property is also an input-preserving
transducer property. Input-altering transducers can be used to describe proper-
ties like prefix codes, bifix codes, and hypercodes. Input-preserving transducers
are intended for error-detecting properties, where in fact the transducer plays
the role of the communication channel. Figure 1 shows a couple of examples.
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A language L is a prefix code, if v, vx ∈ L implies x = ε; it is 1-substitution
error-detecting, if v, w ∈ L implies that |v| 6= |w| or v[i] 6= w[i] for some index
i, that is, v cannot be converted to w by substituting a symbol v[i] of v with a
different one.

Convention about Figures: in this and the following transducer figures, an arrow
with label (a, a) represents a set of edges with labels (a, a) for all a ∈ A; and
similarly for an arrow with label (a, ε). An arrow with label (a, b) represents a
set of edges with labels (a, b) for all a, b ∈ A with a 6= b.

0tpr : 1 0t1sd : 1

(a, a)

(a, ε)

(a, ε)

(a, b)

(a, a) (a, a)

Figure 1: The left transducer is input-altering and describes the prefix codes: on input x it
outputs any proper prefix of x. The right transducer is input-preserving and describes the
1-substitution error-detecting languages: on input x it outputs either x or any word differing
from x in exactly one position.

Using FAdo format the transducer tpr can be specified by the following
string, assuming alphabet {a, b}

@Transducer 1 * 0\n0 a a 0\n0 b b 0\n

0 a @epsilon 1\n0 b @epsilon 1\n

1 a @epsilon 1\n1 b @epsilon 1\n

Above, \n is the new-line character, so the string consists of 7 lines. The first
line specifies the FAdo object being described (a transducer), the final states
(1 here), and the initial states after the special character *. Each of the next
6 lines specifies an edge. For example, the second line specifies the edge from
state 0 to state 0 with label (a, a), and the last line specifies the edge from state
1 to state 1 with label (b, ε)—see [21] for more details.

Many input-altering transducer properties can be described in a simpler
manner by trajectory regular expressions [19]. For example, the expression
0∗1∗ describes prefix codes and the expression 1∗0∗1∗ describes infix codes—L
is an infix code if v, xvy ∈ L implies x = y = ε. On the other hand, there
are natural input-altering transducer properties that cannot be described by
trajectory regular expressions [20].

2.5. Describing DNA-related Properties by Trajectories

In [6–17] the authors consider numerous properties of languages inspired
by reliability issues in DNA computing. We state three of these properties
below. In Sect. 8 we present a hierarchy of DNA properties which generalizes
some of the DNA code properties presented in [7–9]. Let θ be an antimorphic
permutation over A∗k. Recall that, in the DNA setting, θ = δ is an involution,
and therefore, we have θ2 = id.
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(A) A language L is θ-nonoverlapping if L ∩ θ(L) = ∅.
(B) L is θ-compliant if ∀w ∈ θ(L), x, y ∈ A∗k : xwy ∈ L =⇒ xy = ε.

(C) L is strictly θ-compliant if it is θ-nonoverlapping and θ-compliant.

Many of the existing DNA code properties can be modelled using the concept
of a bond-free property, first defined in [12] and later rephrased in [22] in terms
of trajectories. We follow the formulation in [22]. Let ē = (ē1, ē2), where ē1

and ē2 are two regular trajectory expressions. First, we define the following
language operators.

Φē(L) = (((L ē1 A
+) ∩A+)�ē2 A

∗) ∪ (((L ē1 A
∗) ∩A+)�ē2 A

+) (4)

Φs
ē(L) = ((L ē1 A

∗) ∩A+)�ē2 A
∗ (5)

Definition 4. ([22]) Let θ be an involution and ē1, ē2 be two regular trajectory
expressions. The bond-free property described by (ē1, ē2) is

Bθ(ē1, ē2) = {L ⊆ A∗ | θ(L) ∩ Φē1,ē2(L) = ∅}. (6)

The strictly bond-free property described by (ē1, ē2) is

Bsθ(ē1, ē2) = {L ⊆ A∗ | θ(L) ∩ Φs
ē1,ē2(L) = ∅}. (7)

A regular θ-trajectory property is a bond-free property described by (ē1, ē2), or
a strictly bond-free property described by (ē1, ē2), for some pair (ē1, ē2).

Example 5. The θ-compliant property is a regular θ-trajectory property in
Bθ(1∗0+1∗, 0+): deleting x and y in any xwy (according to 1∗0+1∗), where
w ∈ L and at least one symbol gets deleted, and then inserting nothing (accord-
ing to 0+) cannot result into a word in θ(L). The θ-nonoverlapping property is a
regular θ-trajectory property in Bsθ(0+, 0+): deleting nothing and then inserting
nothing in any word w ∈ L cannot result into a word in θ(L). The strictly θ-
compliant property is a regular θ-trajectory property in Bsθ(1∗0+1∗, 0+): delet-
ing x and y in any xwy (according to 1∗0+1∗), where w ∈ L, and inserting
nothing (according to 0+) cannot result into a word in θ(L).

2.6. Technical Tools and Related Techniques

Here we describe the technical tools and techniques used to establish the
main results of the paper. As stated in the introduction, we seek new methods
to formally express DNA code properties in a way that one can answer algo-
rithmic questions about these properties. In doing so, we want to make sure
that the new methods are more expressive than existing ones. In particular,
our proposed approach is to use transducers to describe DNA code properties
(Definition 6). While transducers have been used to describe classic code prop-
erties (Definition 3), the existing approach for describing DNA code properties
is based on trajectories (Definition 4). The main tools and related techniques
utilized to obtain our main results are as follows.
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• Trajectories and related word operators. These have been used to define
DNA code properties. Also, together with standard language combinato-
rial tools, they are used to show that a certain natural DNA code property
is not a regular θ-trajectory property (Proposition 17).

• Transducers and related operations and algorithms. Operations (such as
◦,∨, ↑, ↓) combining transducers, possibly with automata, are used to show
that every regular θ-trajectory property is a θ-transducer property (The-
orem 16). These operations as well as algorithms for testing transducer
partial identity and functionality are used to decide the satisfaction and
maximality questions (Remark 20, Theorem 21, Corollary 28, Theorem 26
and related lemmas).

• Rational and recognizable relations tools. It is known that it is undecid-
able, given two transducers, whether the relation realized by the first is
a subset of the relation realized by the second one. One the other hand,
if the second one realizes a recognizable relation, then the question is
decidable (Theorem 26).

• Dependence theory applied to the theory of codes [4]. Dependence the-
ory allows us to give short proofs of basic statements about codes. For
example, the fact that every θ-transducer property is a 3-independence
implies that any language satisfying the property can be embedded into
a maximal one. Thus, it is a legitimate question to ask whether a given
language is maximal. Moreover, if a property is not 3-independence then
it cannot be a θ-transducer property (Proposition 14).

• The method of reduction between decision problems. This is used to es-
tablish undecidability of new problems based on known undecidable ones.
For example, we reduce the well-known Post Correspondence Problem
(PCP), which is undecidable, to a certain maximality problem (Corol-
lary 31) as well as to its θ version, for any fixed antimorphic permutation
θ (Theorem 33).

• The pumping type of argument for showing that a language cannot be
accepted by an automaton is adapted here to show that one cannot de-
scribe desired DNA code properties with any input-preserving transducer
(Proposition 12) and a technical result about the satisfaction of certain
transducer DNA code properties (Lemma 24).

3. New Transducer-based DNA-related Properties

A question that arises from the discussion in Sect. 2.4 and 2.5 is whether
existing transducer-based code properties include DNA code properties. It
turns out that this is not the case: for instance the δ-nonoverlapping property,
which seems to be the simplest DNA code property, cannot be described by any
input-preserving transducer; see Proposition 11. In this section, we define new
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transducer-based properties that are appropriate for DNA-related applications,
we demonstrate Proposition 11, and discuss how existing DNA code properties
can be described with transducers. Then, in Sect. 4 we examine the relationship
between the new transducer properties and the regular θ-trajectory properties
which were proposed in [22].

Let θ be an (anti-)morphic permutation and t be a transducer, which are
both defined over the same alphabet A. The transducer t is called θ-input-
preserving if for all w ∈ A+ in the domain of t we have θ(w) ∈ t(w); t is called
θ-input-altering if for all w ∈ A+ we have θ(w) /∈ t(w). We use the previously
defined terms input-altering and input-preserving t, respectively, when θ = id.
Note that θ(w) ∈ t(w) is equivalent to w ∈ θ−1(t(w)) as well as t−1(θ(w)) 3 w.

Definition 6. A transducer t and an (anti-)morphic permutation θ, defined
over the same alphabet, describe 3-independent properties in two ways:

1.) strict θ-transducer property (S-property): L satisfies the property Sθ,t if

θ(L) ∩ t(L) = ∅ (8)

2.) weak θ-transducer property (W-property): L satisfies the property Wθ,t if

∀w ∈ L : θ(w) /∈ t(L \ w) (9)

Any of the properties Sθ,t or Wθ,t is called a θ-transducer property.

0t :

1

2

3

(a, ε)

(a,
a)

(a, a)

(a, ε)

(a, ε)

(a, a)

(a,
a)

(a, ε)

0ts : 1 2

(a, ε)

(a, a)

(a, a)

(ε, ε)

(a, ε)

Figure 2: Together with θ, the transducer ts describes the strictly θ-compliant property, and
the transducer t describes the θ-compliant property.
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Example 7. Consider the transducer t in Fig. 2. We explain here that t and θ
describe the θ-compliant property. By definition, L satisfies the property if, by
deleting x, y from a word xwy ∈ L with xy 6= ε, we cannot get the nonempty
word w ∈ θ(L). The transducer t, on input xwy, can perform exactly the dele-
tion of x, y such that at least one symbol is deleted and at least one is not deleted
(thus, w 6= ε). Thus, t(L) ∩ θ(L) = ∅ if and only if L is θ-compliant. Recall
from Example 5 that this property is also described by (ē1, ē2) = (1∗0+1∗, 0+)
as a bond-free property. Again the idea is similar: the operator Φē1,ē2 performs
the same action as that of t.

Example 8. Consider the transducer ts in Fig. 2. We explain here that ts
and θ describe the strictly θ-compliant property. By definition, L satisfies the
property if, by deleting x, y from a word xwy ∈ L, we cannot get the nonempty
word w ∈ θ(L). Note that here we allow xy = ε. The transducer ts, on input
xwy, can perform exactly the deletion of x, y such that at least one symbol
is not deleted (thus, w 6= ε). Thus, ts(L) ∩ θ(L) = ∅ if and only if L is
strictly θ-compliant. Recall from Example 5 that this property is also described
by (ē1, ē2) = (1∗0+1∗, 0+) as a strictly bond-free property. Again the idea is
similar: the operator Φs

ē1,ē2 performs the same action as that of ts.

Remark 9. For fixed t, θ, and L, Condition (8) implies that for all w ∈ L we
have θ(w) ∩ t(L \ w) = ∅ which is equivalent to Condition (9). In other words,

if L satisfies Sθ,t, then L satisfies Wθ,t as well.

The difference between S-properties and W-properties is that Sθ,t includes no
language containing a word w such that θ(w) ∈ t(w), while this case is allowed
for some languages L ∈ Wθ,t. If θ = id and t is input-altering, or input-
preserving, then the above defined properties specialize to the existing ones
stated in Definition 3.

Remark 10. Every singleton language L = {w} satisfies all properties Wθ,t, as
well as, all properties Sθ,t for which t is θ-input-altering. On the other hand, if t
is not θ-input-altering then certain words could be excluded from all languages
satisfying Sθ,t. For example, if θ = δ and t realizes the identity function then
δ(AT) = AT ∈ t(AT), which implies that no language satisfying Sθ,t can include
the word AT.

As input-altering transducer properties are a subset of input-preserving
transducer properties, we only consider the case of input-preserving transducer
properties in the next two results, which demonstrate that existing transducer
properties are not suitable for describing even simple DNA code properties.

Proposition 11. The δ-nonoverlapping property is not describable by any input-
preserving transducer.

Proof. Assume that there is an input-preserving transducer t describing the δ-
nonoverlapping property, that is, this property is Wid,t. By Remark 10, any
propertyWid,t includes every singleton language; hence in particular {AT} must
be δ-nonoverlapping. On the other hand, as AT = δ(AT), we have that {AT} is
not δ-nonoverlapping.
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The counter example language {AT} used to prove the previous result might
seem artificial, as in practice code-related languages should have more than one
element. However, the statement remains true even if we focus on languages
containing more than one word. This case is handled in the next proposition.

In the proof of the proposition we assume that the transducer t is in normal
form. It can be shown that every transducer is effectively equivalent to one in
normal form [33]. A transducer t is in normal form, if the label of every edge is
of the form (a, ε) or (ε, a), for some a ∈ ∆.

Proposition 12. There is no input-preserving transducer t that satisfies Equa-
tion (3) for all δ-nonoverlapping languages L having at least two elements.

Proof. Assume the contrary, that is, there is an input-preserving transducer t in
normal form such that for any DNA language L ⊆ ∆∗ with at least two element
we have

δ(L) ∩ L = ∅ iff ∀u ∈ L : t(u) ∩ (L \ u) = ∅.

Assume that t has n states, for some positive integer n, and let m > n. We
have that {AmCm, GmTm} is not δ-nonoverlapping, so without loss of generality
we have that GmTm ∈ t(AmCm). Consider an accepting path π of t whose label
is (AmCm, GmTm) and say π consists of N consecutive edges, for some positive

integer N . Then, these edges are si−1
(xi,yi)−−−−→∗ si, for i = 1, . . . , N , so that the

concatenation of the xi’s is equal to AmCm and the concatenation of the yi’s is
equal to GmTm. As t is in normal form, we have N = 4m, and as m > n, there
is a smallest integer k ≥ 1 such that state sk is equal to a previous one, that
is sk = sj such that j < k. By the choice of k, we have k ≤ n < m. Let x =
x1 · · ·xj , u = xj+1 · · ·xk, x′ = xk+1 · · ·xN , and y = y1 · · · yj , v = yj+1 · · · yk,
y′ = yk+1 · · · yN . As j − k > 0 and t is in normal form we have that

|u| > 0 or |v| > 0. (10)

Using a standard pumping argument for finite state machines, we have that the
path that results if we delete from π the k − j edges between sj and sk is also
an accepting path whose label is (xx′, yy′). As each xi and yi is of length 0 or 1,
we have |xu| ≤ k < m and |yv| < m, and also |u| ≤ k − j and |v| ≤ k − j. This
implies xx′ = Am−|u|Cm and yy′ = Gm−|v|Tm. As xx′ 6= yy′ and yy′ ∈ t(xx′) we
have that {xx′, yy′} is not δ-nonoverlapping, which implies xx′ = δ(yy′), that is,
Am−|u|Cm = AmCm−|v| and, therefore, |u| = |v| = 0 which contradicts (10).

4. Expressiveness of Transducer-based Properties

In this section we examine the descriptive power of the newly defined trans-
ducer DNA code properties, that is, the θ-transducer properties. In Theorem 16
we show that these properties properly include the regular θ-trajectory proper-
ties. On the other hand, in Proposition 14 we show that there is a DNA code
property that is not a θ-transducer property.

Remark 13. We note that every θ-transducer property is a 3-independence.
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Proposition 14. The θ-free property (defined below) [8] is not a θ-transducer
property.

(D) A language L ⊆ A∗ is θ-free if and only if L2 ∩A+θ(L)A+ = ∅.

Proof. By the above remark, it is sufficient to show that, for θ = δ and A = ∆,
the θ-free property is not 3-independent. Assume the contrary and consider the
language

K = {ACGT, CCAC, GTAA}.

This is not δ-free, as ACGT = δ(ACGT) and CCACGTAA ∈ ∆+ACGT∆+. On the other
hand, one verifies that every nonempty subset of K of cardinality less than 3 is
δ-free, so by our assumption also K must be δ-free, which is a contradiction.

The remainder of this section is devoted to Theorem 16. Recall the DNA
alphabet is ∆ = {A, C, G, T}. The following DNA language property is considered
in Theorem 16

H = {L ⊆ ∆∗ | H(u, δ(v)) ≥ 2, for all u, v ∈ L},

where H(·, ·) is the Hamming distance function with the assumption that its
value is ∞ when applied on different length words. Note that H is described by
δ and the transducer shown in Fig. 3. The transducer is designed to realize all
word pairs (x, y) such that H(x, y) ≤ 1. State 0 is final and realizes all pairs of
the form (x, x). State 1 is final and realizes all pairs (x, y) with H(x, y) = 1.

0 1
(a, b)

(a, a) (a, a)

Figure 3: The transducer describing, together with δ, the S-property H.

Example 15. The following DNA languages do not satisfy H:

L0 = {AGG, CCA}, L′0 = {GAG, CCC}.

For instance, H(CCA, δ(AGG)) = 1. The following languages satisfy H:

L1 = {ACG, GAT}, L2 = {CAC, GCT},
L3 = {AAA, CCT}, L4 = {AAA, CTC}, L5 = {AAA, TCC}.

For instance, as δ(AAA) = TTT and all words u ∈ L3 contain at most one T,
it follows that H(u, δ(AAA)) ≥ 2. Now using δ(CCT) = AGG, one verifies that
H(u, δ(CCT)) ≥ 2 for any u ∈ L3. Thus, indeed L3 satisfies H.

We note that the actual definitions of bond-free properties in [22] are given
in terms of a pair (T1, T2) of arbitrary sets of trajectories. However, here we
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only consider sets of trajectories that can be represented by regular expressions.
Despite this restriction, the second statement of the following theorem remains
true if one uses (T1, T2) instead of (ē1, ē2), as the proof makes no use of the fact
that the trajectory sets involved are regular.

Theorem 16. 1. Let θ be an antimorphic involution. Every regular θ-trajectory
property is a θ-transducer property (in particular an S-property). More-
over, if the property is described by a trajectory pair (ē1, ē2), then it is also
described as a strict property by a transducer of size O(|ē1| · |ē2|).

2. Property H is a δ-transducer property, but not a (regular) δ-trajectory one.

Proof. For the first statement, we claim that, given any trajectory regular ex-
pression ā, each of the following operators is a transducer operator such that
|tāi | = O(|ā|):

tā1(X) = X  ā A
∗

tā2(X) = X �ā A
∗

tā3(X) = X  ā A
+

tā4(X) = X �ā A
+

The statement would then follow by combining appropriately the above trans-
ducers. More specifically, for any trajectory pair ē = (ē1, ē2), we have that

Φs
ē(L) =

(
tē22 ◦ (tē11 ↑ a+)

)
(L)

Φē(L) =
((

tē22 ◦ (tē13 ↑ a+)
)
∨
(
tē24 ◦ (tē11 ↑ a+)

))
(L)

where a+ is any automaton accepting A+, hence,

Bsθ(ē1, ē2) = Sθ,tē2
2 ◦(t

ē1
1 ↑a+) and Bθ(ē1, ē2) = S

θ,
(
t
ē2
2 ◦(t

ē1
3 ↑a+)

)
∨
(
t
ē2
4 ◦(t

ē1
1 ↑a+)

)
The claim about tā4 is already shown in [20], where we have that |tā4 | = O(|ā|).
For the claim about tā2 , first note that X�āA

∗ = (X�āA
+) ∪ (X�ā {ε}), so

tā2 is equal to (tā4 ∨ tā,id), where tā,id is a transducer with tā,id(x) = x�ā {ε}
and defined as follows. First note that by definition, y ∈ x�ā {ε} if and only if
y = x and 0|x| ∈ L(ā). Let a = (Q,A,E, I, F ) be an automaton accepting L(ā).
This can be constructed such that |a| = O(|ā|). Then, tā,id = (Q,A,E′, I, F )
such that E′ consists of all ε-edges in E and all edges (p, (b, b), q), for b ∈ A,
where (p, 0, q) is any edge in E. Then, tā,id realizes a pair (x, y) if and only if
x = y and a accepts 0|x|. Moreover, we have that |tā,id| = O(|ā|).

In [32] it is observed that y ∈ (x  t w) if and only if x ∈ (y �t w), for
all words x, y, w and trajectories t, which implies that tā3 and tā1 are simply the
inverses of the transducers tā4 and tā2 , respectively. Hence, also |tā1 | = O(|ā|)
and |tā3 | = O(|ā|).

For the second statement we recall that H is described by δ and the trans-
ducer shown in Fig. 3. We use the following notation: Φ?

ē for either of the
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operators Φē and Φs
ē, and B?

θ(ē) for either of the properties Bθ(ē) and Bsθ(ē).
For the second part of the statement, we argue by contradiction, so we assume
that there is a pair of trajectory regular expressions ē = (ē1, ē2) such that

H = B?
θ(ē1, ē2).

Using the definition of Φ?
ē, one verifies that

Φ?
ē(a) ⊆ aA∗, for all a ∈ A.

Consider the DNA language K = {A, C}. We have that K does not satisfy
H, but on the other hand δ(K) ∩ Φ?

ē(K) = ∅, which means that K satisfies
B?
θ(ē1, ē2), which leads to the required contradiction.

The counter example used to prove the second statement of Theorem 16
might seem a little artificial, as the language K = {A, C} consists of 1-letter
words, which is of no practical value. The next result gives a stronger statement,
as it requires that all words involved are of length at least 2.

Proposition 17. The following property

H2 = {L ⊆ ∆∗ | |u| ≥ 2 and H(u, δ(v)) ≥ 2, for all u, v ∈ L}

is a δ-transducer property but not a δ-trajectory property.

The proof of this result requires a couple of intermediate results, which we
present next.

Lemma 18. Let x, y be any words and s, t be any trajectories. If y ∈ ((x  s

A∗) ∩A+)�t A
∗ then

|t| − |s| = |t|1 − |s|1 = |y| − |x| and |s|1 < |x|.

Proof. The premise of the statement implies that y ∈ z �t w2 and z ∈ ((x  s

w1) ∩A+) for some words z, w1, w2 with |z| > 0. Informally, this means that y
results by deleting |w1| symbols from x, with |w1| < |x|, and then inserting |w2|
symbols. More formally as |t| = |y| and |s| = |x|, we have that |t|−|s| = |y|−|x|.
Also as |z| = |x| − |w1| = |s| − |s|1, we have that |s| > |s|1 and, therefore,
|x| > |s|1, as required. Now, we have

|s|1 = |w1| = |x| − |z| = |x| − (|y| − |w2|) = |x| − |y|+ |t|1

and, therefore, |t|1 − |s|1 = |y| − |x|.

As we shall see further below the premise of the following lemma leads to a
contradiction, but the lemma is helpful so that one can see the consequences of
that premise.

Lemma 19. Let ē = (ē1, ē2) be a pair of trajectory regular expressions and
assume that H = B?

θ(ē).
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1. There is no pair (s, t) of trajectories in L(ē1)×L(ē2) such that |s| = |t| = 3
and |s|1 = |t|1 = 2.

2. If x, y are DNA words of length 3 and (s, t) ∈ L(ē1) × L(ē2) such that
x 6= δ(y) and y ∈ ((x  s ∆∗) ∩ ∆+) �t ∆∗ then |s| = |t| = 3 and
|s|1 = |t|1 = 1.

3. We have that 010 ∈ L(ē1) or 010 ∈ L(ē2).

4. We have that (001, 001) ∈ L(ē1)× L(ē2) or (100, 100) ∈ L(ē1)× L(ē2).

Proof. We shall use some of the seven languages in Example 15.
For the first statement, assume for the sake of contradiction that the two

trajectories have equal length and exactly two 1s each. By applying (AAA  s

∆∗)∩∆+ followed by �t∆
∗, the result is Φ?

ē(AAA) and is equal to A∆∆ or ∆A∆
or ∆∆A, depending on whether t = 011 or t = 101 or t = 110, respectively.
More specifically, if t = 011 then Φ?

ē(AAA) contains δ(CCT), which contradicts
the fact that L3 satisfies H. If t = 101 then Φ?

ē(AAA) contains δ(CTC), which
contradicts the fact that L4 satisfiesH. If t = 110 then Φ?

ē(AAA) contains δ(TCC),
which contradicts the fact that L5 satisfies H.

For the second statement, Lemma 18 implies that |s| = |t| = 3 and |s|1 =
|t|1 ≤ 1, and x 6= δ(y) implies that |s|1 6= 0. Hence, |s|1 = |t|1 = 1, as required.

For the third statement, the fact that L′0 does not satisfy H implies that
there are words u, v ∈ L′0 such that δ(v) ∈ Φ?

ē(u) and, therefore, there are words
w1, w2 and (s, t) ∈ L(ē1)× L(ē2) such that

δ(v) ∈ ((u s w1) ∩∆+)�t w2.

By the previous statement, |s| = |t| = 3 and |s|1 = |t|1 = 1, which implies
|w1| = |w2| = 1. For the sake of contradiction assume s 6= 010 and t 6= 010.
Let u = u1u2u3 with each ui being a symbol. There are four cases about the
values of s and t, all of which lead to contradictions. In particular, if s = 001
and t = 001 then δ(v) = u1u2w2, which implies v = w̄2ū2ū1. If s = 001 and
t = 100 then δ(v) = w2u1u2, which implies v = ū2ū1w̄2. If s = 100 and t = 001
then δ(v) = u2u3w2, which implies v = w̄2ū3ū2. If s = 100 and t = 100 then
δ(v) = w2u2u3, which implies v = ū3ū2w̄2. By inspection, we get that in all
four cases the words u1u2u3, v cannot be both in L′0.

For the fourth statement, the fact that L0 does not satisfy H implies that
there are words u, v ∈ L0 such that δ(v) ∈ Φ?

ē(u) and, therefore, there are words
w1, w2 and (s, t) ∈ L(ē1)× L(ē2) such that

δ(v) ∈ ((u s w1) ∩∆+)�t w2.

By a previous statement, |s| = |t| = 3 and |s|1 = |t|1 = 1, which implies
|w1| = |w2| = 1. Let u = u1u2u3 with each ui being a symbol. The rest of the
proof consists of four parts:

s = 010 leads to a contradiction;
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t = 010 leads to a contradiction;
s = 001 implies t = 001;
s = 100 implies t = 100.

For the first part, if s = 010 then depending on whether t = 001 or t = 010 or
t = 100, we have that δ(v) = u1u3w2 or δ(v) = u1w2u3 or δ(v) = w2u1u3, and
hence, v = w̄2ū3ū1 or v = ū3w̄2ū1 or v = ū3ū1w̄2. By inspection we have that,
in any case, it is impossible to have u, v ∈ L0. For the second part, if t = 010
then depending on whether s = 001 or s = 100, we have that δ(v) = u1w2u2

or δ(v) = u2w2u3, and hence, v = ū2w̄2ū1 or v = ū3w̄2ū2. By inspection we
have that, in any case, it is impossible to have u, v ∈ L0. For the third part, if
s = 001 then, as t cannot be 010, we have that t = 100 or t = 001. The case
t = 100 implies δ(v) = w2u1u2 and then v = ū2ū1w̄2, which contradicts the fact
that u, v ∈ L0. Hence, t = 001. Finally for the last part, if s = 100 then, as
t cannot be 010, we have that t = 100 or t = 001. The case t = 001 implies
δ(v) = u2u3w2 and then v = w̄2ū3ū2, which contradicts the fact that u, v ∈ L0.
Hence, t = 100.

Proof. (Of Proposition 17.) The fact that H2 is a δ-transducer S-property is
established using the transducer in Fig. 4. For the second part of the statement,

0

1 2

3

(a, a) (a, a)

(a, b)

(a
, b

)

(a, a)

(a, a)

Figure 4: The transducer describing, together with δ, the S-property H2.

we argue by contradiction, so we assume that there is a pair of trajectory regular
expressions (ē1, ē2) such that

H2 = B?
δ(ē1, ē2).

By Lemma 19, we have that 001 ∈ L(ē2) or 100 ∈ L(ē2), and that 001 ∈ L(ē1)
or 100 ∈ L(ē1). Moreover, we can distinguish the following four cases, which
all lead to contradictions. We also consider the languages L1 and L2 defined in
Example 15.

Case ‘ 010 ∈ L(ē1) and 001 ∈ L(ē2)’. Then, GCT results into GT, then into GTG

and then into CAC using, respectively, the operations  010, �001 and δ, which
contradicts the fact that L2 satisfies H.

Case ‘ 010 ∈ L(ē1) and 100 ∈ L(ē2)’. Then, GAT results into GT, then into CGT

and then into ACG using, respectively, the operations  010, �100 and δ, which
contradicts the fact that L1 satisfies H.
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Case ‘ 001 ∈ L(ē1) and 010 ∈ L(ē2)’. Then, ACG results into AC, then into ATC

and then into GAT using, respectively, the operations  001, �010 and δ, which
contradicts the fact that L1 satisfies H.

Case ‘ 100 ∈ L(ē1) and 010 ∈ L(ē2)’. Then, CAC results into AC, then into AGC

and then into GCT using, respectively, the operations  100, �010 and δ, which
contradicts the fact that L2 satisfies H.

5. The Satisfaction Problem

For θ = id and for input-altering and -preserving transducers the satisfac-
tion problem is decidable in polynomial time [20]. In particular, for a regular
language L given via an automaton a, Condition (2) can be decided in time
O(|t||a|2), and Condition (3) can be decided in time O(|t|2|a|4). In the next
theorem, we generalize the above to the satisfaction of θ-transcducer properties,
and we improve the decision complexity of Condition (3).

We assume below that θ is a fixed, but arbitrary, involution, and that A is
also a fixed, but arbitrary, alphabet.

Remark 20. The proofs of Theorem 21 and 26 make use of two results of [34].
The first result is that there is a O(|t|2)-time algorithm to decide whether a
given transducer t is functional. The second result is that there is a O(|t|)-time
algorithm to decide whether a given transducer t realizes a partial identity : that
is, whether y ∈ t(x) implies y = x, for all words x, y. We note that the general
method of using transducer functionality to decide code-related properties of
regular languages was already used in [35]. Those properties include whether
the language in question is a UD code (Uniquely Decipherable code) or an
immutable code. The method has also been applied in the case of error-detecting
properties [31], and now in our present context of DNA-related properties.

Theorem 21. Let a be an automaton and let t be a transducer.

1. It is decidable in time O(|t||a|2) whether L(a) satisfies the property Sθ,t.

2. Assume t is a θ-input-preserving transducer. It is decidable in time O(|t|2|a|4)
whether L(a) satisfies the property Wθ,t.

3. Assume θ is morphic. It is decidable in time O(|t|2|a|4) whether L(a)
satisfies the property Wθ,t.

4. Assume θ = id (so θ is morphic). It is decidable in time O(|t||a|2) whether
L(a) satisfies the property Wθ,t.

Proof. Let L = L(a). For the first statement, the algorithm uses a product
construction [30] to compute an automaton b of size O(|t||a|) accepting t(L),
and then modifies the automaton a to an automaton aθ of size O(|a|) accepting
θ(L). If θ is morphic, this can be done be replacing each edge (p, a, q) of a by
the edge (p, θ(a), q). If θ is antimorphic, the above change in the transitions is
applied on the automaton aR which is the reverse of a, that is, the same as a
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except that the roles of start and final states in a are exchanged in aR. Then, the
algorithm computes the product automaton of size O(|t||a|2) accepting θ(L) ∩
t(L) and tests in linear time whether the graph of the product automaton has
any path from an initial to a final state.

For the second statement, assume that t is θ-input-preserving, and let s =
t ↓ aθ ↑ a be the transducer of size O(|t||a|2) realizing the relation

{(x, y) | y ∈ t(x), x ∈ θ(L(a)), y ∈ L(a)}

and obtained by two product constructions: first on the input of t with aθ;
then, on the output of the resulting transducer with a. We show next that
testing whether or not L satisfies the input-preserving transducer propertyWθ,t

is equivalent to testing whether the transducer s is functional—this can be done
in quadratic time (see Remark 20), so the time complexity part of the second
statement follows.

Now assume L satisfiesWθ,t and consider words v, w, x such that v, w ∈ s(x).
We show that v = w. By definition of s, we have x = θ(x1), for some x1 ∈ L,
and v, w ∈ L and x ∈ t(v) ∩ t(w). Hence,

θ(x1) ∈ t(v) ∩ t(w).

Then, as θ(x1) /∈ t(L− x1), we have that x1 = v and x1 = w; hence, v = w, as
required. Conversely, assume that s is functional, but suppose for the sake of
contradiction that L does not satisfyWθ,t, that is, there is w ∈ L and x ∈ L\w
(so x 6= w) such that θ(w) ∈ t(x). This implies that x ∈ t−1(θ(L)) ∩ L and,
therefore, x ∈ s(θ(w)). Moreover, as t is θ-input-preserving, we have that
θ(w) ∈ t(w) and that w ∈ s(θ(w)). As s is functional, we get x = w, which is a
contradiction.

For the third statement, assume θ is morphic. Let t′ be the transducer
resulting from t, if we add a new state f that is both, initial and final, and
the transitions (f, (a, θ(a)), f) for all letters a ∈ A. Then, we have that t′(x) =
t(x)∪ θ(x) and t′ is θ-input-preserving. Moreover, it follows that Wθ,t =Wθ,t′ .
Hence, the statement now follows from the previous one.

For the fourth statement, assume θ = id, so θ is morphic. Then, the con-
dition L ∈ Wid,t is equivalent to whether or not s realizes a partial identity
function, which can be decided in linear time with respect to the size of s—
see Remark 20. Note that the partial identity test does not require that t is
input-preserving if θ = id.

Remark 22. We note that deciding the satisfaction question for any θ-trajectory
property involves testing the emptiness conditions in (6) or (7), which re-
quires time O(|a|2|ē1||ē2|). Such a property can be expressed as θ-transducer
S-property (recall Theorem 16) using a transducer of size O(|ē1||ē2|) and, there-
fore, the satisfaction question can still be solved within the same asymptotic time
complexity. We also note that [17] presents algorithms for testing whether a reg-
ular language (given via an automaton a) is a UD code (Uniquely Decipherable
code), a θ-compliant language, a θ-k-hairpin-free language. Our approach in this
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paper does not include the case of the UD code property. Assuming a fixed-size
alphabet, the satisfaction test for θ-compliance in [17] is of time O(|a|2)—this
agrees with our approach here if we assume as fixed the transducer t describing
that property.

Table 1 summarizes under which conditions the satisfaction and maximality
problems are decidable for regular languages. For the case of non-restricted
transducer W-properties, we show decidability using a different method; see
Sect. 5.1. The undecidability result holds for every fixed permutation θ over
an alphabet with at least two letters, in particular, all results apply to the
DNA-involution δ. All maximality results are discussed in Sect. 6.

Problem
Property Sθ,t Property Wθ,t

no restriction t is θ-i.-alter. no restriction t is θ-i.-preserv.

SAT
decidable in time

O(|t||a|2) Theorem 21
decidable

Theor. 21,26
decidable in time

O(|t|2|a|4) Theor. 21

MAX
undecidable
Corollary 31

decidable, PSPACE-hard
Theorem 27, Corollary 28

Table 1: (Un-)decidability of the satisfaction (SAT) and the maximality (MAX) problems for
a fixed antimorphic permutation θ, a given transducer t, and a regular language L given via
an automaton a.

5.1. The Satisfaction Problem for non-restricted W-properties

Here we establish the decidability of non-restricted transducerW-properties
for regular languages, when θ is antimorphic. We do not concern the complexity
of this algorithm; optimizing the algorithm and analyzing its complexity is part
of future research.

Notation. Let t be a transducer, let θ be an antimorphic permutation, and let
L be a regular language over the alphabet A. Let a and aθ be NFAs accepting
the languages L and θ(L), respectively—note that aθ is constructed in the proof
of Theorem 21. Let

s = (Qs, A,Es, Is, Fs) = t ↓ a ↑ aθ

be the transducer such that y ∈ s(x) if and only if y ∈ t(x), x ∈ L, and y ∈ θ(L).
We consider s to be trim, i. e., every state in Qs lies on a path that leads from
an initial state to a final sate. Furthermore, s is considered to be in normal
form such that every edge is either labeled (a, ε) or (ε, a) for some letter a ∈ A.

Thus, for any path p
(x,y)−−−→∗ q of length ` (the path has ` edges) in s we have

|xy| = `. Note that |s| ∈ O(|t| |a|2).

Lemma 23. The regular language L satisfies Wθ,t if and only if for all words
x, y ∈ A+

y ∈ s(x) =⇒ θ(x) = y.
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Proof. We will prove the contrapositive: L /∈ Wθ,t if and only if there exists
x, y ∈ A+ such that y ∈ s(x) and θ(x) 6= y. Recall that L /∈ Wθ,t if and only if
there exists w ∈ L such that θ(w) ∈ t(L \ w).

Assume that L /∈ Wθ,t and, therefore, w ∈ L exists such that θ(w) ∈ t(L\w).
Let x ∈ L \ w such that θ(w) ∈ t(x) and y = θ(w) ∈ θ(L). Clearly, we have
y ∈ s(x) and y 6= θ(x).

Conversely, assume that x, y ∈ A+ exists such that y ∈ s(x) and y 6= θ(x).
Let w = θ−1(y). As y ∈ θ(L), we have that w ∈ L x ∈ L\w, and θ(w) ∈ t(x) ⊆
t(L \ w). Therefore, L /∈ Wθ,t.

Let Ts =
{

(x1, x2, x3) ∈ (A∗)3
∣∣ |x1x2x3| ≤ |s|

}
be a set of word triples.

Note that the length restrictions for the words ensures that Ts is a finite set.
For each triple t = (x1, x2, x3) ∈ Ts we define a relation

Rt =
{

(x1(x2)kx3, θ(x1(x2)kx3))
∣∣ k ∈ N

}
⊆ A∗ ×A∗.

Note that we allow that any word of x1, x2, x3 is empty; in particular, if x2 =
x3 = ε, then Rt contains only one pair of words (x1, θ(x1)).

Lemma 24. The regular language L satisfies Wθ,t if and only if the relation
R(s) realized by s satisfies

R(s) ⊆
⋃
t∈Ts

Rt. (11)

Proof. Recall that for every (x, y) ∈ Rt with t ∈ Ts we have θ(x) = y. If
s satisfies Equation (11), then for all (x, y) which are realized by s, we have
θ(x) = y; and by Lemma 23 L satisfies Wθ,t.

Conversely, suppose that L satisfies Wθ,t, and let (x, y) be a pair of words
that is realized by s, and note that θ(x) = y by Lemma 23. Note also that
|w| = |θ(w)| = |θ−1(w)|, for all words w.

If |x| ≤ |s|, then (x, θ(x)) = (x, y) ∈ Rt for t = (x, ε, ε) ∈ Ts. Otherwise,
every accepting path in s that is labeled by (x, θ(y)) contains more than |s|
edges, and therefore, must have a repeating state p

s
(x1,y1)−−−−→∗ p (x2,y2)−−−−→∗ p (x3,y3)−−−−→∗ f

such that x = x1x2x3, θ(x) = y1y2y3, s ∈ Is, f ∈ Fs, x2y2 6= ε, |x1x2y1y2| ≤ |s|
(using the pigeonhole principle). By Lemma 23 for all i ∈ N

x1x
i
2x3 = θ−1(y1y

i
2y3) = θ−1(y3)

(
θ−1(y2)

)i
θ−1(y1).

Firstly note that, as |x1x3| = |y3y1| and |x1x2x3| = |y3y2y1|, we have that
|x2| = |y2|. Now, consider i = 2 |x|. Because |x1x2x3| ≥ |s| ≥ |x1x2y1y2|, we
have that θ−1(y2)θ−1(y1) is a suffix of x3. Since i is sufficiently large, the suffix
x2x3 of x1x

i
2x3 cannot overlap with the prefix θ−1(y3) of x1x

i
2x3. Hence, there

exists a suffix u of θ−1(y2) and an integer j ≥ 2 such that

x2x3 = u
(
θ−1(y2)

)j
θ−1(y1).
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Choose v such that θ−1(y2) = vu and note that x2 = uv because |x2| =
|y2|. Let x′3 = uθ−1(y1) and observe that x3 = u(vu)j−1θ−1(y1) = xj−1

2 x′3.
Furthermore, |x1x2x

′
3| ≤ |x1x2y1y2| ≤ |s|. We conclude that (x, θ(x)) =

(x1x
j
2x
′
3, θ(x1x

j
2x
′
3)) ∈ Rt for t = (x1, x2, x

′
3) ∈ Ts.

In order to test whether or not Equation (11) is satisfied, we perform two
separate tests. Firstly, we test whether or not s satisfies the weaker condition

s ⊆
⋃

(x1,x2,x3)∈Ts

(x1x
∗
2x3)× θ(x1x

∗
2x3). (12)

Secondly, we ensure that

∀x, y : y ∈ s(x) =⇒ |x| = |y| . (13)

Lemma 25. Equation (11) is satisfied if and only if Equations (12) and (13)
are satisfied.

Proof. If Equation (11) is satisfied, then Equation (12) is satisfied because
R(x1,x2,x3) ⊆ (x1x

∗
2x3) × θ(x1x

∗
2x3) for (x1, x2, x3) ∈ Ts. Also note that for

all (x, y) ∈ Rt with t ∈ Ts we have |x| = |y|; therefore, Equation (11) implies
Equation (13).

Conversely, assume that Equations (12) and (13) are satisfied. For all (x, y)
that are realized by s we have there exists (x1, x2, x3) ∈ Ts and i, j ∈ N such
that x = x1x

i
2x3 and y = θ(x1x

j
2x3). Since the equation |x| = |y| must also be

satisfied, it is clear that i = j and, hence, (x, y) ∈ R(x1,x2,x3). We conclude that
Equations (12) and (13) imply Equation 11.

Below we assume that θ is a fixed, but arbitrary, antimorphic involution,
and that A is a fixed, but arbitrary, alphabet.

Theorem 26. Let L be a regular language given as automaton a and let t be
a given transducer both defined over the alphabet A. It is decidable whether L
satisfies Wθ,t or not.

Proof. According to Lemmas 24 and 25 we have to decide whether or not the
two Equations (12) and (13) are satisfied for the transducer s = t ↓ a ↑ aθ. It
is known that it is decidable whether or not a given transducer is included in
a recognizable relation (that is a relation

⋃n
i=1Ai × Bi for regular languages

Ai, Bi); see [29]. Therefore, the inclusion in Equation (12) is decidable.
Equation (13) can be decided as follows. Let s0 be the transducer obtained

from s by changing the alphabet to {0} and every edge (p, (x, y), q) of s to
(p, (0|x|, 0|y|), q). Then we have that

R(s0) = {(0|x|, 0|y|) | (x, y) ∈ R(s)}.

Moreover, Eq. (13) is equivalent to

∀i, j ∈ N : 0j ∈ s0(0i) =⇒ i = j,

which is equivalent to whether R(s0) is a partial identity.
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6. The Maximality Problem

For θ = id and for input-altering and -preserving transducers the maximality
problem is decidable, but PSPACE-hard [20]. Here we show how to decide
maximality of a regular language L with respect to a θ-transducer property; see
Theorem 27. This result only holds when we consider W-properties or when we
consider S-properties for θ-input-altering transducers. As in the case of existing
transducer properties, it turns out that the maximality problem is PSPACE-
hard; see Corollary 28. When we consider general S-properties, the maximality
problem becomes undecidable; see Corollary 31.

Theorem 27. For an antimorphic permutation θ, a transducer t, and a regular
language L, all defined over A∗k, such that either

i.) L ∈ Wθ,t or

ii.) L ∈ Sθ,t and t is θ-input altering,

we have that L is maximal with property Wθ,t (resp., Sθ,t) if and only if

L ∪ θ−1(t(L)) ∪ t−1(θ(L)) = A∗k. (14)

Proof. i.) Suppose L∪ θ−1(t(L))∪ t−1(θ(L)) = A∗k. For every word w ∈ Lc we
have θ(w) ∈ t(L) or w ∈ t−1(θ(L)). In the former case, we immediately obtain
that L∪w does not satisfyWθ,t. In the latter case, there exists u ∈ L such that
θ(u) ∈ t(w), and therefore, L ∪ w does not satisfy Wθ,t. We conclude that L is
maximal with respect to Wθ,t

Conversely, suppose there exists a word w such that w /∈ L ∪ θ−1(t(L)) ∪
t−1(θ(L)). Clearly, w ∈ Lc. Furthermore, we must have θ(w) /∈ t(L) and
θ(u) /∈ t(w) for all u ∈ L. Since L ∈ Wθ,t, we also have that θ(u) /∈ t(L \ u)
for all u ∈ L. Thus, we obtain that ∀u ∈ (L ∪ w) : θ(u) /∈ t((L ∪ w) \ u), and
therefore, L is not maximal with respect to Wθ,t.

ii.) Suppose L ∪ θ−1(t(L)) ∪ t−1(θ(L)) = A∗k. For all w ∈ Lc we have
θ(w) ∩ t(L) 6= ∅ or t(w) ∩ θ(L) 6= ∅. Thus, L ∪ w does not satisfy Sθ,t and L is
maximal with respect to Sθ,t

Conversely, suppose there exists a word w such that w /∈ L ∪ θ−1(t(L)) ∪
t−1(θ(L)). Hence, θ(w) ∩ t(L) = ∅ and t(w) ∩ θ(L) = ∅. Furthermore, we have
θ(L) ∩ t(L) = ∅ because L ∈ Wθ,t and θ(w) ∩ t(w) = ∅ because t is θ-input-
altering. We conclude that L∪w satisfiesWθ,t, and therefore, L is not maximal
with respect to Wθ,t.

We note that it is PSPACE-hard to decide whether or not Equation (14)
holds when L is given as NFA because it is PSPACE-hard to decide universality
of a regular language given as NFA (L ⊆ A∗k is universal if L = A∗k) [36].

Corollary 28. For an antimorphic permutation θ, a transducer t, and a regular
language L given as NFA, all defined over A∗k, such that either

i.) L ∈ Wθ,t or
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ii.) L ∈ Sθ,t and t is θ-input altering,
we have that it is PSPACE-hard to decide whether or not L is maximal with
property Wθ,t (resp., Sθ,t).

Proof. According to Theorem 27 deciding maximality of L with property Wθ,t

(resp., Sθ,t) is equivalent to deciding universality of L ∪ θ−1(t(L)) ∪ t−1(θ(L)).
Let t∅ be a transducer without final state which does not realize any pair of
words. Now, L is maximal with property Sθ,t∅ (resp., Wθ,t∅) if and only if L is
universal—a problem which is known to be PSPACE-hard.

In the rest of this section we show that it is undecidable whether or not
a transducer is θ-input-preserving. This question relates directly to the maxi-
mality problem of the empty language ∅ with respect to the property Sθ,t, as
stated in Corollary 31. We will reduce the famous, undecidable Post correspon-
dence problem to the problem of deciding whether or not a given transducer is
θ-input-preserving.

Definition 29. The Post correspondence problem (PCP) is as follows: given an
alphabet Σ, and words α0, α1, . . . , α`−1 ∈ Σ+ and β0, β1, . . . , β`−1 ∈ Σ+, decide
whether or not there exists a non-empty sequence of integers i1, i2, . . . , in ∈
A` = {0, 1, . . . , `− 1} such that

αi1αi2 · · ·αin = βi1βi2 · · ·βin .

It is well-known that PCP is undecidable, even if Σ = A2 is the binary alphabet.

Theorem 30. For every fixed antimorphic permutation θ over A∗k with k ≥ 2
it is undecidable whether or not a given transducer is θ-input-preserving.

Proof. Let α0, α1, . . . , α`−1 ∈ Σ+ and β0, β1, . . . , β`−1 ∈ Σ+ be the PCP in-
stance A. We will define a transducer tA which accepts all pairs (w, θ(w))
unless w is a binary encoding of a word uv where u ∈ Σ+ and v ∈ A+

` such
that v describes an integer sequence i1, i2, . . . , in that is a solution of A and u
is the corresponding solution word. For the ease of notation, we assume that Σ
and A` are two disjoints alphabet and we let Γ = Σ ∪ A` be their union. For
m = dlog2 |Γ|e, we let h : Γ → Am2 be a morphic block code; i. e., an encoding
of Γ into binary words of length m such that h(a) = h(b) implies a = b for
all a, b ∈ Γ. Our goal is to define tA such that θ(w) /∈ tA(w) if and only if
w = h(uv) for u ∈ Σ+, v ∈ A+

` , n = |v|, and

u = αv[n]
αv[n−1]

· · ·αv[1]
= βv[n]

βv[n−1] · · ·βv[1]
.

The transducer tA will consist of 3 effectively constructable components tR,
tα, and tβ . Each component can be seen as a fully functional transducer such
that tA becomes the union of the three transducers; this implies that

y ∈ tA(x) ⇐⇒ y ∈ tR(x) ∪ tα(x) ∪ tβ(x).

Each transducer component “validates” a certain property of a word w, by
accepting all word pairs (w, θ(w)) which do not have that property:
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1.) tR accepts (w, θ(w)) if and only if w /∈ h(Σ+A+
` );

2.) for w ∈ h(uv) with u ∈ Σ+ and v ∈ A+
` , tα accepts (w, θ(w)) if and only if

u 6= αv[n]
αv[n−1]

· · ·αv[1]
; and

3.) for w ∈ h(uv) with u ∈ Σ+ and v ∈ A+
` , tβ accepts (w, θ(w)) if and only if

u 6= βv[n]
βv[n−1]

· · ·βv[1]
.

The first component ensures that every pair (w, θ(w)) that is not accepted by tA
must have the desired form w ∈ h(uv) with u ∈ Σ+ and v ∈ A+

` . Components
tα and tβ ensure that

αv[n]
αv[n−1]

· · ·αv[1]
= u = βv[n]

βv[n−1]
· · ·βv[1]

is the solution word that corresponds the integer sequence v[n], v[n−1], . . . , v[1] if
(w, θ(w)) is not accepted by tA. Therefore, every word pair (w, θ(w)) which is
not accepted by tA yields a solution for A and, vice versa, every solution for
A yields a word pair (w, θ(w)) that cannot be accepted by tA. We conclude
that tA is θ-input-preserving if and only if the PCP instance A has no solution.
This implies that for fixed antimorphic θ over A∗k with k ≥ 2 it is undecidable
whether or not a given transducer is θ-input-preserving because the PCP is
undecidable.

Now, let us describe the transducer component tR and recall that it has to
work over the alphabet Ak. It is well known that for any two regular languages
R1 and R2 there effectively exists a transducer which accepts the relation R1 ×
R2. There is tR such that tR = (A∗k \ h(Σ+A+

` )) × A∗k. It is easy to observe
that we have tR(w) = A∗k if w /∈ h(Σ+A+

` ), and tR(w) = ∅ if w ∈ h(Σ+A+
` ).

Therefore, we have θ(w) /∈ tR(w) if and only if w /∈ h(Σ+A+
` ). Note that this

in particular implies that, if θ(w) /∈ tR(w), then w ∈ h(Γ∗) ⊆ (Am2 )∗. The
other two transducer components tα and tβ will only work over word pairs from
h(Γ∗)× θ(h(Γ∗)).

sz fztz :

∀i ∈ A` : (h(zi), θ(h(i)))

∀i ∈ A`, z′ ∈ Σ≤|zi| \ Pref(zi) :
(h(z′), θ(h(i)))

∀i, j ∈ A` : (h(i), θ(h(j)))
∀a, b ∈ Σ: (h(a), θ(h(b)))

∀a ∈ Γ: (h(a), ε)
∀a ∈ Γ: (ε, θ(h(a)))

Figure 5: For z ∈ {α, β} the two transducers tα and tβ enforce that w encodes a solution of

the PCP instance A if θ(w) /∈ (tα + tβ)(w) and w ∈ h(Σ+A+
` ).

Finally, we define the two transducers tα and tβ which are based on the
words αi and βi, respectively. For z ∈ {α, β} we define tz as shown in Fig. 5.
For a pair of words (x, y) ∈ tz, it is easy to see that x ∈ h(Γ∗) and y ∈ θ(h(Γ∗)).
Furthermore, the edges from the final state fz to itself ensure that if (x, y) ∈ θ,
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then for all words x′ ∈ h(Γ∗) and y′ ∈ θ(h(Γ∗)), we have (xx′, yy′) ∈ tz (we
will not leave the final state anymore once it is reached, unless the word pair is
not defined over h(Γ∗)× θ(h(Γ∗))). There are three possibilities to switch from
state sz to the final state fz:

1.) we read a word from h(A`) in the first component and a words from θ(h(A`))
in the second component;

2.) we read a word from h(Σ) in the first component and a words from θ(h(Σ))
in the second component; or

3.) we read the word θ(h(i)) with i ∈ A` in the second component and in the
first component we read a word h(z′) such that z′ is not a prefix of zi and
zi is not a prefix z′ because of the length restriction on z′.

For x ∈ h(Γ∗) let u denote the longest word in Σ∗ such that h(u) is a pre-
fix of x (thus, either x = h(u) or x = h(uix′) for an integer i ∈ A` and
x′ ∈ Γ∗); and for y ∈ θ(h(Γ∗)) let v denote the longest word in A∗` such
that θ(h(v)) is a prefix of y and let n = |v| (thus, either y = θ(h(v)) or y =
θ(h(y′av)) = θ(h(v))θ(h(a))θ(h(y′)) for a symbol a ∈ Σ and y′ ∈ Γ∗). Because
θ(h(v[n]))θ(h(v[n−1])) · · · θ(h(v[1])) is a prefix of y we obtain that the pair (x, y)
is accepted by tz if u 6= zv[n]

zv[n−1]
· · · zv[1]

. Conversely, if u = zv[n]
zv[n−1]

· · · zv[1]
,

then (h(u), θ(h(v))) labels a path from sz to sz; since there is no edge from sz
which is labeled (h(i), ε), (ε, θ(h(a))), or (h(i), θ(h(a))) for i ∈ A` and a ∈ Σ,
we obtain that (x, y) cannot not be accepted by tz.

Suppose θ(w) /∈ tz(w) and w ∈ h(uv) for words u ∈ Σ+ and v ∈ A+
` .

Following our notion from the previous paragraph, u is the longest word in Σ∗

such that h(u) is a prefix of w, and v is the longest word in A∗` such that θ(h(v))
is a prefix of θ(w). Therefore, we obtain that u = zv[n]

· · · zv[1]
.

This leads to the undecidability of the maximality problem of a regular
language L with respect to a θ-transducer-property Sθ,t.

Corollary 31. For every fixed antimorphic permutation θ over A∗k with k ≥ 2,
it is undecidable whether or not the empty language ∅ is maximal with respect
to the property Sθ,t, for a given transducer t.

Proof. Clearly, the empty language satisfies Sθ,t. For a word w, the language
{w} satisfies Sθ,t if and only if θ(w) /∈ t(w). Therefore, ∅ is maximal with
property Sθ,t if and only if t is θ-input-preserving. Theorem 30 concludes the
proof.

7. Undecidability of the θ-PCP and the θ-input-altering Transducer
Problem

Analogous to the undecidable PCP (see Definition 29), we introduce the θ
version of the PCP and prove that it is undecidable as well; see Theorem 33.
Further, we utilize the θ version of the PCP in order to show that it is undecid-
able whether or not a transducer is θ-input-altering; see Corollary 34.
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Definition 32. For a fixed antimorphic permutation θ over A∗k, we introduce
the θ-Post correspondence problem (θ-PCP): given words α0, α1, . . . , α`−1 ∈ A+

k

and β0, β1, . . . , β`−1 ∈ A+
k , decide whether or not there exists a non-empty

sequence of integers i1, . . . , in ∈ A` = {0, 1, . . . , `− 1} such that

αi1αi2 · · ·αin = θ(βi1βi2 · · ·βin).

Theorem 33. For every fixed antimorphic permutation θ over A∗k with k ≥ 2
the θ-PCP is undecidable.

Proof. In order to prove that θ-PCP is undecidable, we will state an effective
reduction of any PCP instance A over alphabet A2 to a θ-PCP instance T over
alphabet Ak such that A has a solution if and only if T has a solution. Let
α0, α1, . . . , α`−1 ∈ A+

2 and β0, β1, . . . , β`−1 ∈ A+
2 be an instance of the PCP

which we call A.
Note that θ and θ−1 are well-defined over A2 ⊆ Ak. We define two mor-

phisms g, h on A∗2 such that

g(0) = 00, g(1) = 01, h(0) = 10, h(1) = 11.

Note that for each pair of letters z ∈ A2
2 we have either z ∈ h(A2) or z ∈ g(A2).

Moreover, we let

γj = g(αj), δj = θ−1(h(βRj )), for j = 0, . . . , `− 1,

γ` = h(0), δ` = θ−1(g(0)),

γ`+1 = h(1), δ`+1 = θ−1(g(1)).

be the θ-PCP instance T .

γi1 γi2 · · · γin

θ(δi′1
) θ(δi′2

) θ(δi′3
) θ(δi′4

) θ(δi′5
) · · · θ(δi′m)

g(w)

γi′1
γi′2

γi′3
γi′4

γi′5
· · ·γi′m

θ(δi1 )θ(δi2 )· · ·θ(δin )

h(wR)

Figure 6: Transforming the solution i1, i2, . . . , in of the PCP instance A into the solution
i1, i2, . . . , in, i′m, i

′
m−1, . . . , i

′
1 of the θ-PCP instance T ; all variables are defined in the text.

First, let us show that if A has a solution than T has a solution as well. Let
i1, i2, . . . , in ∈ A` with n ≥ 1 be a solution of the PCP instance A and let w be
the word corresponding to this solution; i. e.,

w = αi1αi2 · · ·αin = βi1βi2 · · ·βin .

Figure 6 illustrates the following construction. Let m = |w|. For j = 1, . . . ,m
we let i′j = ` if w[j] = 0 and i′j = `+ 1 if w[j] = 1; these indeces are chosen such
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that

γi′mγi′m−1
· · · γi′1 = h(wR),

δi′mδi′m−1
· · · δi′1 = θ−1(g(w[m]))θ

−1(g(w[m−1])) · · · θ−1(g(w[1])) = θ−1(g(w)).

The integer sequence i1, i2, . . . , in, i′m, i
′
m−1, . . . , i

′
1 is a solution of the θ-PCP

instance f(α) because

θ(δi1 · · · δinδi′m · · · δi′1) = θ(δi′m · · · δi′1) · θ(δin) · · · θ(δi1)

= θ(θ−1(g(w))) · θ(θ−1(h(βRin))) · · · θ(θ−1(h(βRi1)))

= g(w) · h(βRin) · · ·h(βRi1)

= g(αi1) · · · g(αin) · h(wR)

= γi1 · · · γin · γi′m · · · γi′1 .

Vice versa, let i1, i2, . . . , in ∈ A`+2 with n ≥ 1 be a solution of the θ-PCP
instance T and let w be the word corresponding to this solution, that is,

w = γi1γi2 · · · γin = θ(βi1βi2 · · ·βin) = θ(βin) · · · θ(βi2)θ(βi1).

Recall that for every word γij we have that either γij ∈ g(A+
2 ) (in case ij < `)

or γij ∈ h(A2) (in case ij ≥ `). Since g(A2) and h(A2) contain mutually distinct
two-letter words, for every pair of letters p = w[2r−1;2r] with r ∈ N: if p ∈ g(A2),
then p is covered by a factor γij with ij < `; and if p ∈ h(A2), then p equals
to a factor γij with ij ≥ `. Symmetrically, for p = w[2r−1;2r] with r ∈ N: if
p ∈ h(A2), then p is covered by a factor θ(δij ) with ij < `; and if p ∈ g(A2),
then p equals to a factor θ(δij ) with ij > `.

γi1 γi2 · · · γin′

θ(δij)θ(δij+1)θ(δij+1)θ(δij+1)· · ·θ(δin)

∈ g(A+
2 )

γij γij+1 γij+2 γij+3 · · · γin

θ(δi1 )θ(δi2 )· · ·θ(δi′n )

∈ h(A+
2 )

Figure 7: Transforming the solution i1, i2, . . . , in of the θ-PCP instance T into the solution
i1, i2, . . . , in′ of the PCP instance A; all variables are defined in the text.

Consider the case where i1 < `. Figure 7 illustrates the following construc-
tion. In this case, γi1 = g(αi1) is a prefix of w and θ(δi1) = h(βRi1) is a suffix of
w; thus, w[1;2] ∈ g(A2) and w[|w|−1;|w|] ∈ h(A2). Further, we obtain that in ≥ `
because γin has to cover w[|w|−1;|w|] ∈ h(A2). There exists an integer n′ with
1 ≤ n′ < n such that i1, i2, . . . , in′ < ` but in′+1 ≥ `. We will show that the
sequence i1, i2, . . . , in′ is a solution of the PCP instance A by comparing the
longest prefix of w which belongs to g(A+

2 ) with the longest suffix of w which
belongs to h(A+

2 ). Let m be an even integer such that w[1;m] ∈ g(A+
2 ) but

w[m+1;m+2] ∈ h(A2). Because in′+1 has to match with the first letter pair in w
which belongs to h(A2), it is not difficult to see that

w[1;m] = γi1γi2 · · · γin′ = g(αi1αi2 · · ·αin′ ).
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Because w[1;m] ∈ g(A+
2 ) and w[m+1;m+2] ∈ h(A2), there exists an integer j < n

such that ij , ij+1 . . . , in ≥ `, ij−1 < `, and

w[1;m] = θ(δijδij+1
· · · δin) = θ(δin) · · · θ(δij+1

)θ(δij).

Due to the design of the word pairs (γ`, δ`) and (γ`+1, δ`+1) and because

θ(δin) · · · θ(δij+1)θ(δij ) = g(αi1αi2 · · ·αin′ )

is a prefix of w, we have that γijγij+1
· · · γin = h((αi1αi2 · · ·αin′ )

R) is a suffix of
w. Since ij−1 < `, we see that this suffix h((αi1αi2 · · ·αin′ )

R) of w is preceded
by a letter pair from g(A2). This implies that the suffix θ(δin′ ) · · · θ(δi2)θ(δi1)
of w equals h((αi1αi2 · · ·αin′ )

R). Therefore,

h((αi1αi2 · · ·αin′ )
R) = θ(δin′ ) · · · θ(δi2)θ(δi1)

= h(βRin′ ) · · ·h(βRi2)h(βRi1)

= h((βi1βi2 · · ·βin′ )
R).

We conclude that αi1αi2 · · ·αin′ = βi1βi2 · · ·βin′ and, therefore, i1, i2, . . . , in′ is
a solution of the PCP instance A.

The case when i1 ≥ ` can be treated analogously, where we compare the
longest prefix of w which belongs to h(A+

2 ) and the longest suffix of w which
belongs to g(A+

2 ). In this case, there exists n′ ≤ n such that in′ , in′+1, . . . , in is
a solution of the PCP instance A.

We can utilize the θ-PCP in order to prove that it is undecidable whether
or not a transducer is θ-input-altering, even for one-state transducers.

Corollary 34. For every fixed antimorphic permutation θ over A∗k with k ≥ 2 it
is undecidable whether or not a given (one-state) transducer is θ-input-altering.

Proof. Let α0, α1, . . . , α`−1 ∈ A+
k and β0, β1, . . . , β`−1 ∈ A+

k be the θ-PCP in-
stance A. We let tA be the one-state transducer shown in Fig. 8. Clearly, we
have y ∈ tA(x) if and only if there exists an integer sequence i1, i2, . . . , in ∈ A`
such that x = αi1αi2 · · ·αin and y = θ2(βi1)θ2(βi2) · · · θ2(βin) = θ2(βi1βi2 · · ·βin);
note that θ2 is always morphic, even if θ is not.

tA :

∀i ∈ A` : (αi, θ
2(βi))

Figure 8: tA encodes the θ-PCP instance α0, α1, . . . , α`−1, β0, β1, . . . , β`−1.

Recall that it is allowed for θ-input-altering transducers to accept the empty
word pair (ε, ε). We have w ∈ θ−1(tA(w)) for some word w ∈ A+

k if and only if
there exists an integer sequence i1, i2, . . . , in such that

αi1αi2 · · ·αin = w = θ−1
(
θ2(βi1βi2 · · ·βin)

)
= θ(βi1βi2 · · ·βin).
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Therefore, tA is θ-input-altering if and only if the θ-PCP instance A has a
solution. Theorem 33 concludes the proof.

8. A Hierarchy of DNA-related θ-transducer Properties

In [7–9] the authors consider numerous properties of languages inspired by re-
liability issues in DNA computing. As θ = δ is an involution in the DNA setting,
we assume that θ is antimorphic over A∗ and θ2 = id. The relationships be-
tween some of the defined 3-independent DNA-related properties are displayed
in Fig. 9. All properties have in common that they forbid certain “constella-
tions” of words. Consider a language L ⊆ A+ and two words uwv, θ(xwy) ∈ A+

with w 6= ε as shown in the top property in Fig. 9. The same type of notation
can be employed for all properties in the figure, where some properties require
that x, y, u, or v are empty, e. g., for x = y = ε we obtain the θ-compliant
property. In the case of θ-nonoverlapping all of x, y, u, v are empty:

(A) a language L is θ-nonoverlapping if for all w ∈ A+, we have w /∈ L or
θ(w) /∈ L. This is equivalent to requiring that L ∩ θ(L) = ∅.

For all the above properties, except θ-nonoverlapping, the language L has
property P , if uwv ∈ L and θ(xwy) ∈ L implies that uvxy = ε. For lack of
a better term, in this section we refer to such properties P as normal. For
example,

(B) a language L is θ-compliant if for all w ∈ A+ and u, v ∈ A∗, we have
uwv, θ(w) ∈ L =⇒ uv = ε; and

(C) a language L is θ-5′-overhang-free if for all w ∈ A+ and u, y ∈ A∗, we
have uw, θ(wy) ∈ L =⇒ uy = ε.

Previous papers considered strict versions P s for some (but not all) of the
above normal properties P , by adding the θ-nonoverlapping condition to the
condition defining P . Here, we generalize the concept of strict properties P s: if
uwv ∈ L and θ(xwy) ∈ L, then L does not satisfy the strict property P s (even
if uvxy = ε). For example,

(D) a language L is strictly θ-compliant if for all w ∈ A+ and for all u, v ∈ A∗,
we have uwv /∈ L or θ(w) /∈ L; and

(E) a language L is strictly θ-5′-overhang-free if for all w ∈ A+ and u, y ∈ A∗,
we have uw /∈ L or θ(wy) /∈ L.

Note that θ-nonoverlapping is actually a strict property while its “normal
version” would be the property that is trivially satisfied by every language in A+.

Furthermore, we introduce the weak version of a normal property which
generalizes properties like the (weakly) overlap-free property where it is allowed
for a word to overlap with itself, but not with another word: for a language L
which satisfies the weak property Pw, if the words uwv and θ(xwy) belong to
L, then uvxy = ε or uwv = θ(xwy). For example,

(F) a language L is weakly θ-5′-overhang-free if for all w ∈ A+ and u, y ∈ A∗,
we have uw, θ(wy) ∈ L implies uy = ε or uw = θ(wy).
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θ(x) θ(w) θ(y)

u w v

θ-overhang-free

θ-5′-overhang-free θ-sticky-free θ-compliant θ-3′-overhang-free

θ-s-compliant θ-p-compliant

θ-nonoverlapping

Figure 9: Correlation of various 3-independent DNA language properties—enriched version
of Fig. 2 in [9]. For each property the forbidden constellation of words (or single strands) is
depicted. Words are represented as arrows such that the first letter (the 5′-end) is the blunt
end of the arrow and last letter (the 3′-end) is the arrow tip. Vertical lines between arrows
represent bonding between θ-complementary parts of the two words.

Note that for some properties, like θ-compliant, the weak property Pw co-
incides with the (normal) property P .

If a language L satisfies the strict property P s, then it also satisfies the
corresponding (normal) property P ; and if L satisfies the (normal) property
P , then it also satisfies the corresponding weak property Pw. Furthermore,
there is a normal, strict, and weak hierarchy of properties which is shown in
Fig. 9, where θ-nonoverlapping only exists in the strict hierarchy. For all three
hierarchies an arrow Px → Qx (for x ∈ {ε, s,w}) between two properties Px

and Qx means that if a language L satisfies property Px, then it also satisfies
property Qx.

Let us discuss how these properties can be described as θ-transducer prop-
erties. The type of the property (W-property or S-property) and the type
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of the transducer (unrestricted, θ-input-altering, θ-input-preserving) is impor-
tant when it comes to the complexity of the satisfaction problem and the de-
cidability of the maximality problem; see Table 1. Firstly, observe that L is
θ-nonoverlapping if L satisfies the θ-transducer property Sθ,tid

where tid is a
transducer realizing the identity relation. Since any strict property, including θ-
nonoverlapping, is not satisfied by a singleton language {w} that consists of one
θ-palindrome w = θ(w), strict properties cannot be described as S-properties
by a θ-input-altering transducer or as W-properties, according to Remark 10.

Figure 10 shows two families of transducers describing any of the DNA-
related properties that we discussed in this section. Depending on whether or
not u (resp., v, x, y) is empty one has to omit a set of edges in each transducer.
The S-properties Sθ,ts are the strict properties, the S-properties Sθ,tw are the
normal properties, and the W-properties Wθ,tw are the weak properties. If we
omit red and orange edges (i. e., xy = ε), then tw is θ-input-altering because the
input word is strictly longer than the output word. Therefore, Sθ,tw = Wθ,tw ,
i. e., the normal property coincides with the corresponding weak property. The
case when all blue and green edges are omitted is symmetric when input and
output swap roles. We demonstrate this construction in Examples 35 and 36.

Example 35. Let tCs and tCw be the two transducers that are obtained by
omitting all red and orange edges in ts and tw (Fig. 10), respectively. Then Sθ,tCs
is the strict θ-compliant property, whereas Sθ,tCw is the (normal) θ-compliant

property. Since tCw is θ-input-altering, Sθ,tCw is equal toWθ,tCw
and the properties

θ-compliant and weak θ-compliant coincide.

Example 36. Let t5OF
s and t5OF

w be the two transducers that are obtained
by omitting all red and green edges in ts and tw (Fig. 10), respectively. Then
Sθ,t5OF

s
is the strict θ-5′-overhang-free property, Sθ,t5OF

w
is the (normal) θ-5′-

overhang-free property, and Wθ,t5OF
w

is the weak θ-5′-overhang-free property.
For θ = δ, the DNA involution, observe that the word AACG can have a

θ-5′-overhang with itself (as x = AA, w = θ(w) = CG, and y = TT = θ(AA)). As
expected, t5OF

w does realize the word pair (AACG, CGTT) and, therefore, the lan-
guage {AACG} does not satisfy the (normal) θ-5′-overhang-free property Sθ,t5OF

w
,

however, {AACG} does satisfy the weak θ-5′-overhang-free property Wθ,t5OF
w

.

Lastly, note that the (strict, weak) θ-overhang-free property is different from
the other properties in Fig. 9 in so far that it forbids two word constellations: θ-
5′-overhangs and θ-3′-overhangs. This property can be described by a transducer
which contains two components, where one component covers the θ-5′-overhangs
and the other component covers the θ-3′-overhangs.

9. Conclusions

We have defined a transducer-based method for describing DNA code prop-
erties which is strictly more expressive than the trajectory method. In doing so,
the satisfaction question remains efficiently decidable. We have demonstrated
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0ts : 1 2

(a, ε)

[ ]
B: omit if u = ε

(ε, a)
[ ]R: omit if x = ε

(a, a)

(a, a)

(ε, ε)

(a, ε)

[ ]
G: omit if v = ε

(ε, a)
[ ]O: omit if y = ε

0tw :

1

2

3

(a, ε)

[ ]
B: omit if u = ε

(ε, a)
[ ]R: omit if x = ε

(a,
a)

(a, a)

O: (ε, a)G: (a, ε)
R: (ε, a)

B: (a, ε)

(a, a)

(a,
a)

(a, ε)

[ ]
G: omit if v = ε

(ε, a)
[ ]O: omit if y = ε

Figure 10: The family of transducers which describes all properties shown in Fig. 9. Each of the
two transducer families describes 16 different transducers: We can either omit or include each
of the red, orange, blue and green edges. These edges are omitted depending on the property
that is described, for example, omit all red edges if x = ε in Fig. 9. We have included initial
letters of colour names (B, G, O, R) to accommodate readers using a non-coloured copy of
this figure.

with examples that the new method is capable of describing many 3-independent
properties having various subtle differences.

The topic of description methods for code properties requires further at-
tention. One important aim is the implementation of the concepts involved.
Already the software [21] for classic properties can be used for answering the
satisfaction problem for all Sθ,t properties introduced here, assuming one has
prepared automata for both θ(L) and L. A future version of [21] could include
new Wθ,t properties, and a future version of [23] should allow computation of
θ(L) from given θ and automaton for L. Another important aim of this research
program is to increase the expressive power of description methods. The formal
method of [18] is quite expressive, using a certain type of first order formulae
to describe properties. It could perhaps be further worked out in a way that
some of these formulae can be mapped to transducers. We also note that if
the defining method is too expressive then even the satisfaction problem could
become undecidable, as in the method of multiple sets of trajectories in [37].

The maximality problem for some types of properties is decidable, but it
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is undecidable for others. While some versions of the maximality question for
trajectory properties are decidable, the case of any given pair of regular trajec-
tories and any given regular language is not addressed in [22], so we consider
this to be an interesting problem to solve.

The maximality problems are phrased in terms of any fixed antimorphic
permutation. This direction of generalizing decision questions is also applied to
the classic Post Correspondence Problem, where we demonstrate that it remains
undecidable. A consequence of this is that the question of whether a given
transducer is θ-input-altering is also undecidable. It is interesting to note that
if, instead of fixing θ, we fix the transducer t to be the identity, or the transducer
defining the S-property H (see Fig. 3 in Sect. 4), then the question of whether
or not

θ(L) ∩ t(L) = ∅

is decidable (given any regular language L and antimorphic permutation θ).
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