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Abstract

The original model of P systems with symbol objects introduced by P˘aun was shown to be compu-
tationally universal, provided that catalysts and priorities of rules are used. By reduction via register
machines Sosík and Freund proved that the priorities may be omitted from the model without loss
of computational power. Freund, Oswald, and Sosík considered several variants of P systems with
catalysts (but without priorities) and investigated the number of catalysts needed for these specific
variants to be computationally universal. It was shown that for the classic model of P systems with
the minimal number of two membranes the number of catalysts can be reduced from six to five; using
the idea of final states the number of catalysts could even be reduced to four. In this paper we are able
to reduce the number of catalysts again: two catalysts are already sufficient. For extended P systems
we even need only one membrane and two catalysts. For the (purely) catalytic systems considered by
Ibarra only three catalysts are already enough.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the original paper introducing membrane systems (P systems) in[14] as a symbol
manipulating model catalysts as well as priority relations on the rules were used to prove
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them to be computationally universal; in[18,19] it was shown that a priority relation on
the rules is not necessary to obtain this universality result. In[8] the number of catalysts
was reduced by one for the variants of P systems with two membranes considered there;
moreover, the number of catalysts could even be reduced by one more when considering
computations reaching some finitely specified final states as in the model of P automata
introduced in[2] instead of halting computations.Wewill now show that even two catalysts
are already sufficient for all these variants.
In extended P systems we specify a terminal alphabet and only consider the terminal

symbols contained in the skin membrane at the end of a successful computation (in effect
this means that we ignore the catalysts, which of course can never be eliminated); again
the skin membrane and two catalysts are sufficient. In[10] (purely) catalytic P systems
were introduced and from results obtained in[8,18] it was observed that seven catalysts are
sufficient if we only allow rules with catalysts; here we show that even three catalysts are
already enough.
In the following section, after some prerequisites from formal language theory, we give

a precise definition of the model of register machines used in the subsequent proofs. Then
we define the specific variants of P systems considered in this paper. In the further parts of
this paper we show how we can reduce the number of catalysts in P systems with specific
stopping conditions by using newproof techniques for simulating registermachines.A short
summary finally concludes the paper.

2. Definitions

For well-known notions and basic results from the theory of formal languages, the reader
is referred to[3,17]. We only give some basic notations first. For an alphabetV, byV ∗ we
denote the free monoid generated byV under the operation of concatenation; theempty
string is denoted by� andV ∗\ {

�
}
is denoted byV +. Any subset ofV ∗ (

V +)
is called a

(�-free) language. Two languagesL,L′ ⊆ V ∗ are considered to be equal ifL\ {
�
} =

L′\ {
�
}
. Moreover, byN0 we denote the set of non-negative integers and byN�

0RE we
denote the family of recursively enumerable sets of�-vectors

(
y1, . . . , y�

)
of non-negative

integers. Two sets of�-vectors are considered to be equal if they only differ at most by the
zero-vector(0, . . . ,0).
Letm�2 and letk, l be two positive integers not greater thanm; then we define

l�mk :=
{
l − k, for l > k,

l − k + m, for l�k.

2.1. Register machines

In this subsectionwebriefly recall theconceptofMinsky’s registermachine (e.g. see[12]).
Such an abstract machine uses a finite numbers of registers for storing arbitrarily large non-
negative integers and runs a program consisting of numbered instructions of various simple
types. Several variants of the machine with different numbers of registers and different



R. Freund et al. / Theoretical Computer Science 330 (2005) 251–266 253

instruction sets were shown to be computationally universal (e.g. see[12] for some original
definitions and proofs as well as[5–7] for the definitions and results we use in this paper).
An n-register machineis a constructM = (n, P, i, h), where

• n is the number of registers,
• P is a set of labelled instructions of the formj : (op (r) , k, l), whereop (r) is an
operation on registerr ofM, j, k, l are labels from the setLab (M) (which numbers the
instructions of the program ofM represented byP),

• i is the initial label, and
• h is the final label.
The machine is capable of the following instructions:
(A (r) , k, l): Add one to the contents of registerr and proceed to instructionk or to

instructionl; in the deterministic variants usually considered in the literature we demand
k = l.

(S (r) , k, l): If register r is not empty then subtract one from its contents and go to
instructionk, otherwise proceed to instructionl.
Halt: Stop the machine. This additional instruction can only be assigned to the final

labelh.
In theirdeterministic variant, suchn-registermachines can be used to compute any partial

recursive functionf : N�
0 → N�

0; starting with(n1, . . . , n�) ∈ N�
0 in registers 1 to�, M

has computedf (n1, . . . , n�) = (
r1, . . . , r�

)
if it halts in the final labelh with registers

1 to � containingr1 to r�. If the final label cannot be reached,f (n1, . . . , n�) remains
undefined.
Adeterministicn-registermachine canalso accept an input(n1, . . . , n�) ∈ N�

0 in registers
1 to�, which is recognized if the register machine finally stops by the halt instruction with
all its registers being empty. If the machine does not halt, the analysis is not successful.
In theirnon-deterministic variant n-register machines can compute any recursively enu-

merable set of non-negative integers (or of vectors of non-negative integers). Starting with
all registers being empty, we consider a computation of then-register machine to be suc-
cessful, if it halts with the result being contained in the first

(
�
)
register(s) and with all other

registers being empty.
The results proved in[5] (based on the results established in[12]) as well as in[6,7] im-

mediately lead us to the following resultswhich differ from the original resultsmainly by the
fact that the result of a computation is stored in registers that must not be
decremented.

Proposition 1. For any partial recursive functionf : N�
0 → N�

0, there exists a determin-
istic

(
� + 2+ �

)
-register machine M computing f in such a way that when starting with

(n1, . . . , n�) ∈ N�
0 in registers1 to �, M has computedf (n1, . . . , n�) = (

r1, . . . , r�
)
if

it halts in the final label h with registers� + 3 to � + 2+ � containingr1 to r�, and all
other registers being empty; if the final label cannot be reached, f (n1, . . . , n�) remains
undefined. The registers� + 3 to � + 2+ � are never decremented.

The following two corollaries are immediate consequences of the preceding proposition
(by taking� = 0 and� = 0, respectively).
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Corollary 2. For any recursively enumerable setL ⊆ N�
0 of vectors of non-negative in-

tegers there exists a non-deterministic
(
� + 2

)
-register machine M generating L in such a

way that, when starting with all registers1 to � + 2 being empty,M non-deterministically
computes and halts withni in registersi + 2, 1� i��, and registers1 and2 being empty
if and only if

(
n1, . . . , n�

) ∈ L. The registers3 to � + 2 are never decremented.

Corollary 3. For any recursively enumerable setL ⊆ N�
0 of vectors of non-negative inte-

gers there exists a deterministic(� + 2)-register machine M accepting L in such a way that
M halts with all registers being empty if and only if M starts with some(n1, . . . , n�) ∈ L in
registers1 to � and the registers� + 1 to � + 2 being empty.

2.2. The standard model of P systems and variants

The standard type of membrane systems (P systems) has been studied in many papers
and several monographs; we refer to[1,4, 13–15]for details, motivation, and examples. In
the definition of the P system below we omit some ingredients (like priority relations on
the rules) not needed in the following:
A P system(of degreed, d�1) is a construct

� = (V , C,�, w1, . . . , wd, R1, . . . , Rd, io) ,

where
(i) V is an alphabet; its elements are calledobjects;
(ii) C ⊆ V is a set ofcatalysts;
(iii) � is amembrane structureconsisting ofd membranes (usually labelled withi and

represented by corresponding brackets[i and]i , 1� i�d);
(iv) wi , 1� i�d, are strings overV associated with the regions 1,2, . . . , d of �; they

representmultisets of objects present in the regions of� (themultiplicity of a symbol in
a region isgivenby thenumberof occurrencesof this symbol in thestringcorresponding
to that region);

(v) Ri , 1� i�d, are finite sets ofevolution rulesover V associated with the regions
1,2, . . . , d of �; these evolution rules are of the formsa → v or ca → cv, wherec is
a catalyst,a is an object fromV \C, andv is a string from((V \C) × {here, out, in})∗;

(vi) io is a number between 1 andd and it specifies theoutputmembrane of�.
The membrane structure and the multisets represented bywi , 1� i�d, in� constitute

theinitial configurationof the system.A transition between configurations is governedby an
application of the evolution rules which is done in parallel: all objects, from all membranes,
whichcan bethe subject of local evolution ruleshave toevolve simultaneously.
The application of a ruleu → v in a region containing a multisetM results in subtracting

from M the multiset identified byu, and then in adding the multiset identified byv. The
objects can eventually be transported through membranes due to the targetsin andout (we
usually omit the targethere). We refer to [1] and[15] for further details and examples.
According to[10], the P system� is calledcatalytic, if every evolution rule involves a
catalyst.
The system continues parallel steps until there remain no applicable rules in any region

of �; then the system halts. We consider the number of objects fromV contained in the
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output membraneio at the moment when the system halts as theresult of the underlying
computation of�.The set of results of all computations possible in� is denoted byN (�) .

The class of all sets of�-vectors
(
y1, . . . , y�

)
of non-negative integers computable by P

systems (as the numbers of� different symbols to be found in the output membranei0 at the
end of halting computations) of the above type withdmembranes and the set of catalysts

containing at mostmelements is denoted byN�
0OPgen (d, catm,halt) .

Wemay relax the condition that the output membrane has to be an elementary membrane
where all the elements found there at the end of a halting computation count for the result
of this computation; instead, we may specify a set of terminal objects� and only count the
number of the� different symbols of� ⊆ V to be found in any specified output membrane
at the end of halting computations; in this way, we obtainextendedPsystemsof the form

� = (V ,�, C,�, w1, . . . , wd, R1, . . . , Rd, i0)

and the classN�
0EPgen (d, catm,halt) .

In addition to these generating membrane systems we may also consider accepting P
systems where the multiset to be analyzed is put into regioni0 together withwi0 and
accepted by a halting computation. The classes of all sets of�-vectors(y1, . . . , y�) of non-
negative integers accepted in that way by halting computations in P systems of these types
with dmembranes and the set of catalysts containing at mostm elements are denoted by
N�
0WPacc (d, catm,halt) , W ∈ {O,E}.
In [2] accepting P systems were introduced as P automata using final states as accepting

conditions, i.e., instead of the halting condition an input is accepted if the P system reaches
a configuration where the contents of (specified) membranes coincides with the multisets
given by a final state. In more detail, for a P system as defined above a final state overV
is of the form(f1, . . . , fd) where eachfi, 1� i�d is either a final multiset overV or (a
special symbol denoted by)�; then the P system accepts its input (given ini0) by this final
state if during the computation a configuration is reached such that the contents of every
membranei with fi �= � coincides withfi. The special symbol� indicates that we do not
care about the contents of membranei if fi = �. Hence, a P system with final states is a
construct of the form

� = (V , C,�, w1, . . . , wd, R1, . . . , Rd, io, F ) ,

whereV,C,�, w1, . . . , wd, R1, . . . , Rd, io are defined as above andF is a finite set of final
statesoverV.Theclassof all setsof�-vectors(y1, . . . , y�)of non-negative integersaccepted
in P systems withdmembranes and the set of catalysts containing at mostmelements by
computations reaching a final state is denoted byN�

0OPacc (d, catm, final state) .
Yet the idea of final states can also be carried over to generating P systems, i.e., a P system

with final states as above can be used as a generative device, too; instead of considering the
contents of the output membranei0 in halting computations, we consider the contents of the
output membranei0 in computations having reached a final state(f1, . . . , fd) (obviously,
in general we must havefi0 = �). Then the class of all sets of�-vectors

(
y1, . . . , y�

)
of

non-negative integers generated in P systems withd membranes and the set of catalysts
containing at mostmelements by computations having reached a final state is denoted by

N�
0OPgen (d, catm, final state) .
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Consideringextended P systems with final statesof the form

� = (V ,�, C,�, w1, . . . , wd, R1, . . . , Rd, i0, F ) ,

where again we only take into account the terminal symbols in the specified membranei0,
we obtain the corresponding classesN�

0EPX (d, catm, final state),X ∈ {gen, acc}.
If in the variants of P systems defined above only catalytic rules are used, we add

the superscriptcat thus obtaining the classesN�
0WPcatX (d, catm, Y ) , W ∈ {O,E} ,

X ∈ {gen, acc} , Y ∈ {halt, final state} .

3. Universality results

In order to prove the main results of this paper we elaborate a more general result using

Proposition1 that any partial recursive functionf : N�
0 → N�

0 can be computed by a P
system (halting or with final states) with only twomembranes andwith only�+2 catalysts.

3.1. P systems for partial recursive functions

Consider a registermachineMwithmregisters,m�1,and letPbe theprogram forMwith
n instructionsi1, i2,…, in computingf such that the last� registers are never decremented.
We now construct a P system withm = m′ − � catalysts simulatingM. Informally, each
registera is represented by objectsoa playing the rôles of counter elements. The value of
registera at each moment corresponds to the number of symbolsoa in the system. There
are also special objectspj , 1�j �n, which play the rôle of program labels; their marked
variants guide the simulation of the instruction labelled bypj within the P system.

The presence of the marked variantsp
〈h,1〉
j , 1�h�m of the objectpj—for each catalyst

there has to be such a marked variant to keep it busy—starts the sequence of operations
corresponding to the instructionj. For each of them registers not representing an output
value (where according to the result stated in Proposition1 conditional decrementing may
be necessary), in contrast to the proofs given in[18] and then in[8] we now need only
one catalyst because we use the concept of “paired catalysts”: together with the catalystca
associated with registerawe also associate (“pair”) another catalyst (we shall takeca�m1)
which together withca will do the correct simulation of an instructionj : (S (a) , k, l) ∈ P

in four steps; the remaining catalystsca�mh with 2�h < m are occupied by the marked

variants ofpj , p
〈h,i〉
j , 1� i�4, during these four steps, and thep〈h,4〉

j are eliminated in the

fourth step, before in the next step the new multisetp
〈1,1〉
k · · ·p〈m,1〉

k or p〈1,1〉
l · · ·p〈m,1〉

l of
(marked) program labels appears. The simulation of an instructionj : (A (a) , k, k) ∈ P

needs only one step. Finally, if the multisetp
〈1,1〉
n · · ·p〈m,1〉

n representing the final labeln
appears, these objects are also eliminated in one step, whereafter the computation halts
if and only if it has been successful, i.e., no trap symbol # is present (after having been
generated during the simulation of some subtract-instruction).
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Theorem 4. For each partial recursive functionf : N�
0 → N�

0, there is a P system
� = (

V,C, [1[2]2]1, w, �, R,∅,2) with � + 2 catalysts and with the objectsoa ∈ V

satisfying the following conditions: For any arbitrary(x1, . . . , x�) ∈ N�
0, denote

�(x1,...,x�) = (
V,C, [1[2]2]1, wo

x1
1 · · · ox�

� , �, R,∅,2) .
The system�(x1,...,x�) can halt if and only iff (x1, . . . , x�) is defined and if it halts, then in
the skin membrane only the catalysts remain and in the output membrane2 only terminal
symbolso�+3 to o�+2+� appear in such a way thatN

(
�(x1,...,x�)

) = {f (x1, . . . , x�)} .

Proof.Consider a (deterministic) register machineM as defined abovewithm′ registers, the
last� registers being special output registers which are never decremented. (From the result
stated in Proposition1we know thatm′ = �+2+� is sufficient.) Now letm = m′ −� and
let P be a program which computes the functionf such that the initial instruction has the
label 1 and the halting instruction has the labeln. The input valuesx1, . . . , x� are expected
to be in the first� registers and the output values fromf (x1, . . . , x�) are expected to be in
registersm + 1 tom′. Moreover, at the beginning of a computation all the registers except
possibly the registers 1 to� contain zero.
We construct the P system

� =
(
V, {ci |1� i�m} , [1[2]2]1, c1 . . . cmp

〈1,1〉
1 · · ·p〈m,1〉

1 , �, R,∅,2
)

with

V = {#} ∪ {
ci, c

′
i , c

′′
i |1� i�m

} ∪ {
ok | 1�k�m′} ∪

{
p

〈h,1〉
n | 1�h�m

}
∪

{
p

〈h,1〉
j | 1�h�m, j : (A (a) , k, k) ∈ P

}
∪

{
p

〈h,1〉
j | 1�h�m, j : (S (a) , k, l) ∈ P

}
∪

{
p

〈h,l〉
j | 2�h < m, 1� l�4, j : (S (a) , k, l) ∈ P

}
∪

{
p′
j , p

′′
j , p̄j , p̄

′
j , p̄

′′
j , p̂j , p̂

′
j , p̂

′′
j | j : (S (a) , k, l) ∈ P

}

and

R = {
x → # | x ∈ V \ (

C ∪ {
ok | 1�k�m′}

∪
{
p̄′
j , p̂

′
j | j : (S (a) , k, l) ∈ P

})}

∪
{
cm�mhp

〈h,1〉
n → cm�mh |1�h�m

}

∪
{
cm�mhp

〈h,1〉
j → cm�mh | 1�h < m, 1�a�m′,
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j : (A (a) , k, k) ∈ P }

∪
{
cmp

〈m,1〉
j → cmp

〈1,1〉
k · · ·p〈m,1〉

k oa | 1�a�m, j : (A (a) , k, k) ∈ P
}

∪
{
cmp

〈m,1〉
j → cmp

〈1,1〉
k · · ·p〈m,1〉

k (oa, in) | m < a�m′,

j : (A (a) , k, k) ∈ P }

∪
{
ca�mhp

〈h,l〉
j → ca�mhp

〈h,l+1〉
j | 2�h < m, 1�a�m,

1� l�3, j : (S (a) , k, l) ∈ P }

∪
{
ca�mhp

〈h,4〉
j → ca�mh | 2�h < m, 1�a�m, j : (S (a) , k, l) ∈ P

}

∪
{
cap

〈m,1〉
j → cap̂j p̂

′
j , cap

〈m,1〉
j → cap̄j p̄

′
j p̄

′′
j ,

caoa → cac
′
a, cac

′
a → cac

′′
a,

cap̄j → ca, ca�m1c
′′
a → ca�m1, cap̂

′
j → ca#, ca�m1p̂

′
j → ca�m1p̂

′′
j ,

ca�m1p̄
′′
j → ca�m1p

′′
j , ca�m1p

′′
j → ca�m1p

′
j ,

cap̂
′′
j → cap

〈1,1〉
k · · ·p〈m,1〉

k

cap
′
j → cap

〈1,1〉
l · · ·p〈m,1〉

l | 1�a�m, j : (S (a) , k, l) ∈ P
}

∪
{
ca�m1y → ca�m1 | y ∈

{
p

〈1,1〉
j , p̂j , p̄

′
j

}
,

1�a�m, j : (S (a) , k, l) ∈ P } . �

Then for anarbitrary(x1, . . . , x�) ∈ N�
0 the axiomof the corresponding system�(x1,...,x�)

is c1 . . . cmp
〈1,1〉
1 · · ·p〈m,1〉

1 o
x1
1 . . . o

x�
� . The contents of registera, 1�a�m is represented

by the sum of the number of symbolsoa and conditional decrementing actions on this
register are guarded by the pair of catalystsca andca�m1. The set of rulesR depends on
the instructions ofP; the halting instruction as well as each add-instruction is simulated in
one step, whereas each subtract-instruction is simulated in four steps; in more detail, the
simulation works as follows:
(1) Every simulation of a rule starts with the program labelsp

〈1,1〉
1 , . . . , p

〈m,1〉
1 . The halting

instruction eliminates the final labelsp〈1,1〉
n , . . . , p

〈m,1〉
n byusing the rulescm�mhp

〈h,1〉
n

→ cm�mh, 1�h�m; if the computation has been successful, then only the catalysts
remain in the skin membrane, whereas the result of the computation, i.e., the number
of symbolsom+1 to om+�, can be found in the output membrane 2.

(2) Each add-instructionj : (A (a) , k, k) ∈ P, 1�a�m (m < a�m′, respectively) is
simulated in one step by using the catalytic rulescm�mhp

〈h,1〉
j → cm�mh, 1�h < m as

well ascmp
〈m,1〉
j → cmp

〈1,1〉
k · · ·p〈m,1〉

k oa (andcmp
〈m,1〉
j → cmp

〈1,1〉
k · · ·p〈m,1〉

k (oa, in) ,
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respectively, i.e., ifa is the index of a register representing a component of the result
vector of the computation, then the symboloa is immediately moved to the output
membrane 2). Observe that by definitiona�mm = a for all awith 1�a�m.

(3) Each subtract-instructionj : (S (a) , k, l) ∈ P is simulated in four steps. We have to
distinguish between two cases depending on the contents of registera; in both cases the
catalystsca�mh, 2�h < m, are busywith the objectsp〈h,i〉

j , 1� i�4; the objectsp〈h,4〉
j

finally are eliminated in the fourth step. Themain part of the simulation is accomplished
by the catalystca and its “paired companion”ca�m1:
(a) We non-deterministically assume that the contents of registera is not empty; we

start with the rulescap
〈m,1〉
j → cap̂j p̂

′
j andca�m1p

〈1,1〉
j → ca�m1. In the second

step, the number of symbolsoa is decremented by using the rulecaoa → cac
′
a; if in

contrast to our choice, no such symboloa is present (i.e., the contents of the register
represented by the number of symbolsoa is empty), then by the enforced application
of the rulecap̂′

j → ca# the trap symbol # is introduced, which causes a non-halting
computation due to the rule #→ #. If p̂′

j could wait until being used in the third
step by the ruleca�m1p̂

′
j → ca�m1p̂

′′
j , then the simulation will be successful: In

the second step,ca�m1 is used in the ruleca�m1p̂j → ca�m1, and in the third
stepca is used in the rulecac′

a → cac
′′
a .We finish with the application of the rules

cap̂
′′
j → cap

〈1,1〉
k · · ·p〈m,1〉

k andca�m1c
′′
a → ca�m1.

(b) For the other case, we non-deterministically assume that the contents of registera
is empty; we start with the two rulescap

〈m,1〉
j → cap̄j p̄

′
j p̄

′′
j andca�m1p

〈1,1〉
j →

ca�m1. In the second step, we are forced to use the two rulescap̄j → ca and
ca�m1p̄

′′
j → ca�m1p

′′
j in order not to introduce the trap symbol #. In the third

step, we only useca�m1p
′′
j → ca�m1p

′
j and finish with applying the two rules

cap
′
j → cap

〈1,1〉
l · · ·p〈m,1〉

l andca�m1p̄
′
j → ca�m1 in the fourth step. In the third

step the catalystca is not used if our non-deterministic choice has been correct, i.e., if
there is no symboloa present in the skinmembrane; otherwise, the rulecaoa → cac

′
a

has to be applied in the third step, but in this case bothc′
a andp

′
j would need the

catalystca in the fourth step of the simulation in order not to be sent to the trap
symbol #.

Any other behavior of the system as the one described above for the correct simulation
of the instructions ofP by the rules inR leads to the appearance of the trap object # within
the system, hence, the system never halts.
It follows from the description given above that after each simulation of an instruction

the number of objectsoa equals the contents of registera, 1�a�m′. Hence, after having
simulated the instructionHalt and halting the system, the number of symbolsom+1 toom+�
in the output membrane 2 equals the output of the programP. The only other objects
remaining within the system are them catalysts in the skin membrane; according to the
result about register machines stated in Proposition1, m = � + 2 and therefore� + 2
catalysts are enough.�

For P systems with final states, we can immediately take over the construction given in
the preceding proof:
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Corollary 5. For each partial recursive functionf : N�
0 → N�

0 there is a P system with
final states�F = (

V,C, [1[2]2]1, w, �, R,∅,2, F )
with�+2catalysts andwith the objects

oa ∈ V satisfying the following conditions: For any arbitrary(x1, . . . , x�) ∈ N�
0, denote

�F
(x1,...,x�)

= (
V,C, [1[2]2]1, wo

x1
1 · · · ox�

� , �, R,∅,2, F )
.

The system�F
(x1,...,x�)

reaches a final state if and only iff (x1, . . . , x�) is defined, and in
the final state the output membrane2 contains only terminal symbolsom+1 to om+� in such

a way thatN
(
�F

(x1,...,x�)

)
= {f (x1, . . . , x�)} .

Proof. The only difference to the P system constructed in Theorem4 is that we have
to define the final state for successful computations, which simply is the contents of
the skin membrane at the end of a halting computation, i.e.,c1 . . . cm. Hence, taking
F = {(c1 . . . cm,�)} we obtain the P system with final states�′ is (�, {(c1 . . . cm,�)}),
where� is the P system constructed in the proof of Theorem4. �

In catalytic systems we only need one more catalyst for the rules handling the trap
symbol #:

Corollary 6. For each partial recursive functionf : N�
0 → N�

0 there is
(1) a halting catalytic P system

�cH = (
V ∪ {c0} , C ∪ {c0} , [1[2]2]1, w, �, RC,∅,2

)
,

(2) a catalytic P system with final states

�cF = (
V ∪ {c0} , C ∪ {c0} , [1[2]2]1, w, �, RC,∅,2, F

)
,

respectively, with � + 3 catalysts and with the objectsoa ∈ V satisfying the following
conditions: For any arbitrary(x1, . . . , x�) ∈ N�

0, denote
(1) �cH

(x1,...,x�)
= (

V ∪ {c0} , C ∪ {c0} , [1[2]2]1, wo
x1
1 · · · ox�

� , �, RC,∅,2
)

and
(2) �cF

(x1,...,x�)
= (

V ∪ {c0} , C ∪ {c0} , [1[2]2]1, wo
x1
1 · · · ox�

� , �, RC,∅,2, F
)
,

respectively. The system
(1) �cH

(x1,...,x�)
halts,

(2) �cF
(x1,...,x�)

reaches a final state,
respectively, if and only iff (x1, . . . , x�) is defined and
(1) in the halting computation or
(2) in the final state,
respectively, in the skin membrane only the catalysts remain and the output membrane2
contains only terminal symbolsom+1 to om+� in such a way that

N
(
�cH

(x1,...,x�)

)
= N

(
�cF

(x1,...,x�)

)
= {f (x1, . . . , x�)} .
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Proof.The rules inRC are obtained from the rules inRconstructed in the proof ofTheorem4
by just replacing the rules in

{
x → # | x ∈ V \

(
C ∪

{
p̄′
j , p̂

′
j | j : (S (a) , k, l) ∈ P

}
∪ {

ok | 1�k�m′})}

with the rules in{
c0x → c0# | x ∈ V \

(
C ∪

{
p̄′
j , p̂

′
j | j : (S (a) , k, l) ∈ P

}

∪ {
ok | 1�k�m′})}

using the additional catalystc0. �

In extendedP systemswedo not need the additional outputmembrane, i.e.,�+2 catalysts
(� + 3 catalysts in catalytic systems) in the skin membrane are sufficient.

Corollary 7. For each partial recursive functionf : N�
0 → N�

0 there is
(1) an extended(halting) P system with� + 2 catalysts

�E = (V ,�, C, [1]1, w,RE) ,

(2) an extended P system with final states with� + 2 catalysts

�EF = (V ,�, C, [1]1, w,RE, {c1 . . . cm}) ,
(3) a catalytic extended(halting) P system with� + 3 catalysts

�cE = (V ∪ {c0} ,�, C ∪ {c0} , [1]1, w,RE) ,

(4) a catalytic extended P system with final states with� + 3 catalysts

�cEF = (V ∪ {c0} ,�, C ∪ {c0} , [1]1, w,RE, {c0c1 . . . cm}) ,
respectively, with � = {

ok | m + 1�k�m + �
}
and the objectsoa ∈ V satisfying the

following conditions: for any arbitrary (x1, . . . , x�) ∈ N�
0, denote the corresponding P

system by
(1) �E

(x1,...,x�)
= (

V,�, C, [1]1, wo
x1
1 · · · ox�

� , RE

)
,

(2) �EF
(x1,...,x�)

= (
V,�, C, [1]1, wo

x1
1 · · · ox�

� , RE, {c1 . . . cm}) ,
(3) �cE

(x1,...,x�)
= (

V ∪ {c0} ,�, C ∪ {c0} , [1]1, wo
x1
1 · · · ox�

� , RE

)
,

(4) �cEF
(x1,...,x�)

= (
V ∪ {c0} ,�, C ∪ {c0} , [1]1, wo

x1
1 · · · ox�

� , RE, {c0c1 . . . cm}) ,
respectively.
(1) �E

(x1,...,x�)
halts,

(2) �cE
(x1,...,x�)

halts,
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(3) �EF
(x1,...,x�)

reaches the final statec1 . . . cm,

(4) �cEF
(x1,...,x�)

reaches the final statec0c1 . . . cm,

respectively, if and only iff (x1, . . . , x�) is defined, and after halting the computation or
after having reached the final state, respectively, in the skin membrane only the catalysts
and the terminal symbolsom+1 to om+� remain in such a way that

N
(
�G

(x1,...,x�)

)
= {f (x1, . . . , x�)} for G ∈ {E,EF, cE, cEF} .

Proof.The rules inRE are obtained from the rules inRconstructed in the proof ofTheorem4
(and Corollary5) as well as from the rules inRC constructed in the proof of Corollary6 by
just replacing each occurrence of(oa, in) by oa (which in fact means(oa, here)). �

3.2. Generating P systems

The following corollaries are immediate consequences of Theorem4 as well as Corol-
laries5–7 by taking� = 0 and simulating non-deterministic register machines:

Corollary 8. N�
0OPgen (d, cat2,halt) = N�

0RE for everyd�2.

Proof.We only prove the inclusionN�
0RE ⊆ N�

0OPgen (2, cat2,halt) . In the same way
as in the proof of Theorem4 the P system� was constructed in order to simulate the
(deterministic) register machine from Proposition1, we now construct a P system�′ which
simulates the non-deterministic register machine from Corollary2 and in that way non-
deterministically generates a representation of any vector from the given languageL in

N�
0REby the corresponding numbers of symbolso3 to o2+�. Hence, we define

�′ = (
V,C, [1[2]2]1, w, �, R′,∅,2) ,

whereR′ is constructed in a similar way asR in the proof of Theorem4, except that now
in the non-deterministic case we have add-instructions of the formj : (A (a) , k, l) for
somea, k, l with a ∈ {1,2} and 1�k, l�n; for their simulation we now not only need the
rule cmp

〈m,1〉
j → cmp

〈1,1〉
k · · ·p〈m,1〉

k oa, but alsocmp
〈m,1〉
j → cmp

〈1,1〉
l · · ·p〈m,1〉

l oa in R′.
Obviously,N

(
�′) = L. By the given construction, we only need 2 catalysts.�

As the result is interesting of its own, we completely specify�′; as only two catalysts are
needed, we can use a less complex notation, because these two catalysts form the only pair
used in the simulation of any subtract-instruction, i.e., we do not need the objectsp

〈h,i〉
j ,

2�h < m, 1� i�4, for the subtract-instructionsj : (S (a) , k, l) ∈ P. Usingpj andp̃j

instead ofp〈m,1〉
j andp〈1,1〉

j , we obtain the following P system�′:

�′ = (
V ′, {c1, c2} , [1[2]2]1, c1c2p1p̃1, �, R′,∅,2)
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with

V ′ = {#} ∪ {
c1, c

′
1, c

′′
1, c2, c

′
2, c

′′
2

} ∪ {
ok | 1�k�m′}

∪
{
pj , p̃j , p

′
j , p

′′
j , p̄j , p̄

′
j , p̄

′′
j , p̂j , p̂

′
j , p̂

′′
j | j : (S (a) , k, l) ∈ P

}

∪ {
pj , p̃j | j : (A (a) , k, l) ∈ P

}
and

R′ =
{
x → # | x ∈

{
pj , p̃j , p

′
j , p

′′
j , p̄j , p̄

′′
j , p̂j , p̂

′′
j | j : (S (a) , k, l) ∈ P

}}

∪ {
x → # | x ∈ {

c′
1, c

′′
1, c

′
2, c

′′
2

}} ∪ {#→ #} ∪ {c1pn → c1, c2p̃n → c2}
∪ {

c1p̃j → c1 | j : (A (a) , k, l) ∈ P
}

∪ {
c2pj → c2pkp̃koa, c2pj → c2plp̃loa | a ∈ {1,2} ,

j : (A (a) , k, l) ∈ P }
∪ {

c2pj → c2pkp̃k (oa, in) | 2< a�m′, j : (A (a) , k, k) ∈ P
}

∪
{
capj → cap̂j p̂

′
j , capj → cap̄j p̄

′
j p̄

′′
j , caoa → cac

′
a, cac

′
a → cac

′′
a,

c3−ac
′′
a → c3−a, cap̂

′
j → ca#, c3−ap̂

′
j → c3−ap̂

′′
j , cap̂

′′
j → capkp̃k,

cap̄j → ca, c3−ap̄
′′
j → c3−ap

′′
j , c3−ap

′′
j → c3−ap

′
j ,

cap
′
j → caplp̃l | a ∈ {1,2} , j : (S (a) , k, l) ∈ P

}

∪
{
c3−ay → c3−a | y ∈

{
p̃j , p̂j , p̄

′
j

}
, a ∈ {1,2} , j : (S (a) , k, l) ∈ P

}
.

The following table shows how a subtract-instructionj : (S (a) , k, l) ∈ P is simulated
depending on the contents of registera:

Simulation of the subtract-instructionj : (S (a) , k, l) if
the contents of registera is not empty the contents of registera is empty

capj → cap̂j p̂
′
j

c3−ap̃j → c3−a

capj → cap̄j p̄
′
j
p̄′′
j

c3−ap̃j → c3−a

caoa → cac
′
a

c3−ap̂j → c3−a

cap̄j → ca
c3−ap̄

′′
j

→ c3−ap
′′
j

cac
′
a → cac

′′
a

c3−ap̂
′
j

→ c3−ap̂
′′
j

c3−ap
′′
j

→ c3−ap
′
j

cap̂
′′
j

→ capkp̃k

c3−ac
′′
a → c3−a

cap
′
j

→ capl p̃l

c3−ap̄
′
j

→ c3−a



264 R. Freund et al. / Theoretical Computer Science 330 (2005) 251–266

We should like to mention that at any timeca can be used in the rulecaoa → cac
′
a,

but carried out at the wrong time, the application of this rule will immediately cause the
introduction of the trap symbol # and therefore lead to a non-halting computation.Moreover,
making thewrong choicewhen simulating a subtract-instruction also leads to the (enforced)
introduction of the trap symbol and therefore to a non-halting computation.�

Corollary 9. N�
0OPgen (d, cat2, final state) = N�

0RE for everyd�2.

Proof. In the same way as in the proof of Corollary5 the P system�F was constructed
from the P system� constructed in the proof of Theorem4 we now can construct the P

system with final states generating a setL ∈ N�
0RE from the P system constructed in the

proof of Corollary8. �

Obviously, the resultsobtainedso farareoptimalwith respect to thenumberofmembranes
in the P systems constructed in the proofs of Theorem4 and Corollaries5–9.
For catalytic P systems, in[10] it was proved that with one catalyst we cannot reach

universal computational power; hence, only the case of two catalysts in catalytic P systems
remains for a suitable characterization, because from Corollaries8 and9 we immediately
infer the following results (in the same way as Corollary6 was an obvious consequence of
Theorem4 and Corollary5):

Corollary 10. For everyd�2, we have

N�
0RE= N�

0OP
cat
gen (d, cat3,halt) = N�

0OP
cat
gen (d, cat3, final state) .

The proofs of the following results immediately follow from preceding proofs, too (see
Corollary7):

Corollary 11. For everyd�1, we have

N�
0RE= N�

0EPgen (d, cat2,Y) = N�
0EP

cat
gen (d, cat3,Y)

for everyY ∈ {halt, final state}.

3.3. Accepting P systems/P automata

The following corollaries are immediate consequences of Theorem4 as well as Corol-
laries5–7 by taking� = 0. Although for P automata we now have the minimal number of
only one membrane, the number of catalysts depends on the number� of components of
the vector of non-negative integers to be analyzed.

Corollary 12. For everyd�1, we have

N�
0RE= N�

0XPacc (d, cat�+2,Y) = N�
0XP

cat
acc (d, cat�+3,Y)

for everyX ∈ {O,E} andY ∈ {halt, final state} .
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Proof.We first prove the inclusionN�
0RE ⊆ N�

0OPacc (1, cat�+2,halt). In the same way
as in the proof of Theorem4 the P system there was constructed in order to simulate the
(deterministic) register machine from Proposition1, we now construct a P system which
simulates the (deterministic) register machine from Corollary3. As we have no output,
we simply omit the output membrane; moreover, we have no rules sending an object into
another membrane. The rest of the construction is exactly the same as in Theorem4. For
the remaining variants of accepting P systems and P automata we only refer to the proof
ideas elaborated in the preceding proofs.�

For the simplest case of� = 1, therefore the maximal number of catalysts needed for
accepting languages fromN10REby P systems is 3 and by catalytic P systems is 4.

4. Conclusion

The number of catalysts can be seen as a complexitymeasure for P systemswith catalysts.
Only the characterization of functions computed or sets generated/accepted by the variants
of P systems considered in this paper having one catalyst less remains as an interesting
open question for future research; yet we conjecture that for computationally universal P
systems the results obtained in this paper are already optimal not only with respect to the
number of membranes, but also with respect to the number of catalysts.
Even some more results can be found in[9]; in particular, there we also consider several

variants of P systems with catalysts generating/accepting strings and show that only two
catalysts (three catalysts for the catalytic variants) in only one membrane are already suffi-
cient for obtaining universality. Again we conjecture that these results are already optimal
even with respect to the number of catalysts.
In [11], the bounds for the number of catalysts and/or membranes were improved (with

respect to the optimal results known before this paper) by introducing more powerful types
of catalysts like so-called bi-stable catalysts and mobile catalysts. The authors showed that
a P system can generate all recursively enumerable number sets using (a) five membranes,
two catalysts and one bi-stable catalyst, (b) three membranes and one mobile catalyst, (c)
two membranes and two mobile catalysts. From these results, case (a) has become obsolete
by the results obtained in this paper, whereas case (b) may give a chance for improving
this result for mobile catalysts. Using only one catalyst in several membranes is another
interesting case to be investigated.
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