
Warm up Question:

- A. How big will a picture PRINT that was saved at 50DPI and is 200 pixels by 200 pixels?
- B. If we have an image that was scanned in at 300dpi and was 2 inches by 3 inches, how many pixels will it be?
- C. How many lines of text could you fit on a page given the following information?
 - A. The font size in a MS Word Document is set to be 36 points.
 - B. We are using standard 8 $\frac{1}{2}$ by 11 inch paper, portrait, with a 1 inch margin at the top and a $\frac{1}{2}$ inch margin at the bottom.
 - C. The leading is 0 (no space between the lines).

Slide I of 55

Overview of Today's Topics

- Announcements
- Sampling an image
- Black and White, Gray and True Colour
- Indexed Colour
- Review and worksheet
- Bitmaps vs. Vectors
- Image file size
- Why we need compression

Readings

Textbook readings:

- Understanding Computers
 - · Files and Folders
- Graphics
 - Basics of Graphics *
 - Digitized Images *
 - File Size (first portion of Image Formats and Compression Techniques)
- *These two readings were suggested in previous weeks too. You don't have to read them if you did before!

Slide 5 of 55

Announcements This is the last time I can remind you to do the syllabus quiz (due Jan 31) There will be consulting by t.a.s from Feb 2 – Feb 4 in MCI6a (see owl for times) Let's review the poster assignment The poster assignment is posted in Owl. Due Friday, Feb 7th at 3pm. Sample of winning posters from last term

 Sample of winning posters from <u>last term</u> and <u>last year</u>: and <u>year before that</u> and <u>year</u> <u>before that</u>

Slide 6 of 55

Slide 4 of 55

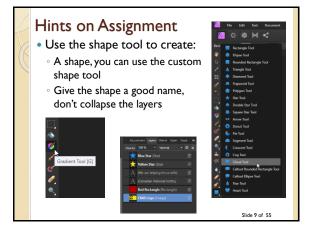
Hints on the marking of assignment

- Follow the instructions carefully, for example:
 - you get 2 marks if you named your files as stated in the instructions!
- If you get a mark for every requirement we ask for.
- DON'T Collapse your layers
- Name your layers with good names
- EdgesImages

Contrast

Check for spelling

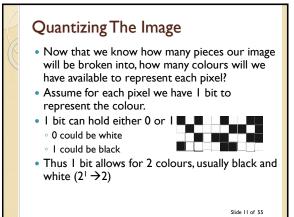
Crisp
 Appropriate

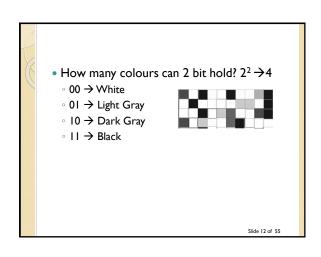

- Colours
- Professional looking – remember CRAP

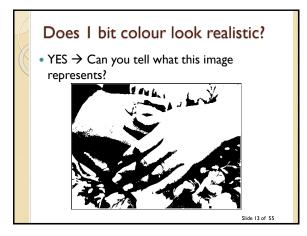
Slide 7 of 55

Poster Assignment Tips

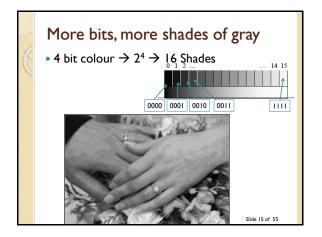
- Follow the instructions carefully. Just by following the instructions, you can get a good mark for this assignment!
- Check that you have all the required criteria such as a shape from the shape tool.
- Check that you named all your files EXACTLY as we indicated.
- Make sure you picked good layer names
- Remember to follow the CRAP rules!
- Other tips
- Colour Choices → <u>https://kuler.adobe.com/</u> and <u>http://design-seeds.com/</u>

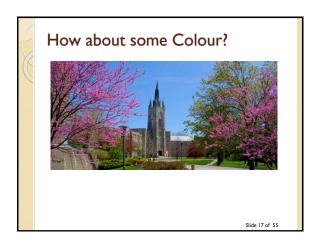

Slide 8 of 55

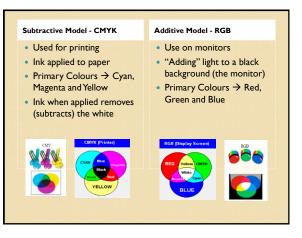


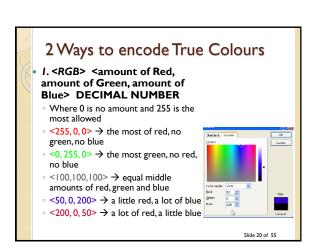

Big Ideas for Today

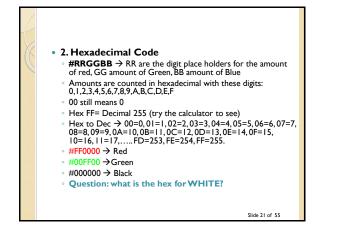

- Big Idea I: Mo bits per pixel ... Mo Colors!
- **Big Idea 2:** Bitmapped vs Vector: Thumbnail Vectors Icons on the size of a bus? IT IS DOABLE!
- **Big Idea 3:** Mo bits, Mo problems! (The more bits you have to transmit, the slower your image will load unless you compress)
- Big Idea 4: Go Smaller or Go Compressing!

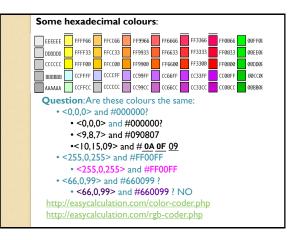

Slide 10 of 55



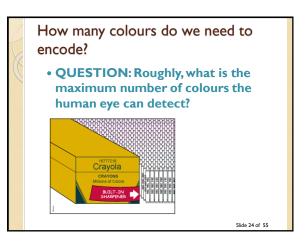


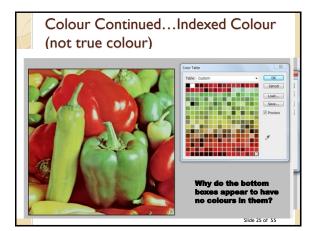




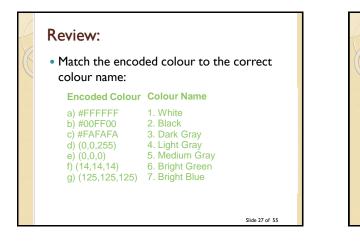

How do we represent the colours

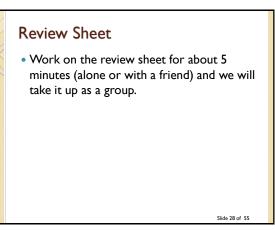
- True Colour
 - $^\circ$ Can represent 2^{24} colours \rightarrow about 16 million different colours
 - $\circ~2^{24}$ = 2⁸ X 2⁸ X 2⁸ = 256 shades of red, X 256 shades of green X 256 shades of blue
 - Need 3 bytes (remember: I byte=8 bits) for True Colour (I byte for red, I byte for green, I byte for blue)


Slide 19 of 55



Can you represent the same number				
of colours using Hex as using RGB • YEShttps://www.rapidtables.com/convert/number/hex-dec-bin-converter.html				
	Red	Green	Blue	How many colours?
Smallest Value (RGB)	0	0	0	
Biggest Value (RGB)	255	255	255	
Total number of shades you can represent	256	256	256	256X256X256→16 million colours
SmallestValue (Hex)	00	00	00	
Biggest Value (Hex)	FF	FF	FF	
Total number of shades you can represent	16×16→ 2⁴×2⁴→2 ⁸	16X16→ 2⁴X2⁴→2 ⁸	16×16→ 2⁴×2⁴→2 ⁸	$2^8 \times 2^8 \times 2^8 \rightarrow 2^{24} \rightarrow 16$ million colours
SmallestValue (Binary)	00000000	00000000	00000000	
Biggest Value (Binary)	1111111	1111111	1111111	
Total number of shades you can represent	2X2X2X2 X2X2X2X 2→2 ⁸	2X2X2X2 X2X2X2X 2→2 ⁸	2X2X2X2 X2X2X2X 2→2 ⁸	$2^8 \times 2^8 \times 2^8 \rightarrow 2^{24} \rightarrow 16$ million colours
Slide 23 of 55				





Indexed Colour

 Indexed Colour can look pretty good even though we will only ever have at most, 8-bit colour (or 256 shades of colour)

BREAK

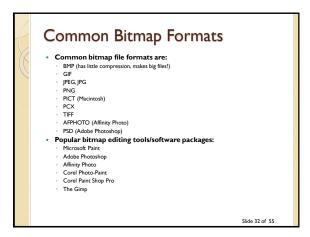
- Link sent to me by one of our students, cool photoshop video:
 - http://www.youtube.com/watch?v=53m0syaPg9A& t=0m39s
- Video created by a high school kid from Stratford Ontario(took him 2 years):
 - <u>http://www.youtube.com/watch?v=qluxiwhUGz4</u>

Slide 29 of 55

Bitmapped Images vs.Vector Graphics

Bitmapped Graphic Image

- Image consists of pixels in a grid
- Icons are an example of a bitmapped image (do you recognize this icon? →
 Icons are usually 32 pixels by 32 pixels
- When bitmapped images are enlarged (resampled), the computer adds new pixels and guesses on the colour to colour the new pixels (called interpolation) based on surrounding pixels
- This icon is now 245 pixels by 245 pixels
- Bitmapped images edges become jagged

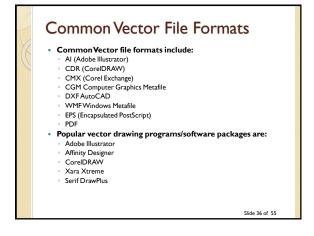

Slide 30 of 55

Bitmapped Images

- Also called raster graphics image
- Bitmapped images are resolution dependent
 - Bitmapped image on a 640 by 480 screen (lower resolution) appear larger than on a 1280 by 1024 screen (higher resolution)
- Bitmapped images that are enlarged:
 - Have larger file size than original
 - Become distorted
- All images from scanners and digital cameras are bitmapped images

Dimensions: 100 x 100 Image Size: 20k

Vector Graphics Vector image is made up of individual, scalable objects. Objects are defined by mathematical equations Objects consist of lines, curves and shapes No distortion as image is enlarged


Vector Graphics

- As image is enlarged, still has crisp clean lines.
- Most browsers don't display vector graphics without a plug in.
- Only can be used with drawings, not photographs
- Usually vector graphic image has a smaller file size than the same image stored as a bitmap.
- Below: enlarging and shrinking an image: left using a vector graphical image, right using a bitmapped image

Vector Images

- Example: HTML 5 allows it now: https://www.w3schools.com/graphics/svg_inh tml.asp
 - Try changing the values
- Great for logos because
 - Can be scaled down for business card
 - $^\circ$ Can be scaled up for a trade show poster
- <u>https://youtu.be/PJFc3KIEdLM?t=61</u> (watch till about minute 4)
- Note: the text in PDF files are Vector based (but not the images in a pdf file)

Activity I

- Open MS Paint (Start>Programs>Accessories>Paint)
- Pick the text tool, set the font to 50pt, type in your name
- Pick the text tool again, set the font to 12pt, type in your name
- Select the small font and resize it to the size of the big font
- Do they look the same?

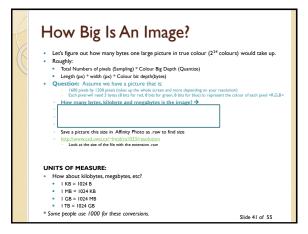
Activity 2

- Draw an oval in MS Paint, then select it and resize it, watch what happens
- Draw an oval in Affinity Photo,
 - Select Layer>Layer Style and give it an outline (Stroke)
 - Select the oval layer and select Edit>Transform Path>Scale and resize it, watch what happens.
- Usually when you see the command
 "Document>Flatten" in Affinity Photo, it is changing your Vector layers into a one flat Bitmapped layer!

Bitmapped Graphics vs. Vector Graphics • Question: Which of these statements do you think is TRUE: A or B?

A:You can convert a vector graphic image into a bitmapped image easily but you cannot easily convert a bitmapped image into a vector graphic image.

B: You can convert a bitmapped image into a vector graphic easily but you cannot easily convert a vector graphic image into a bitmapped image.


Slide 39 of 55

Slide 37 of 55

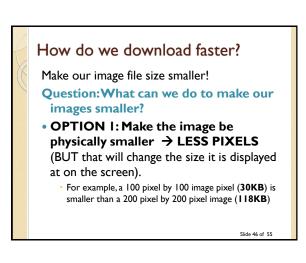
How to lose customers before you ever even had them!

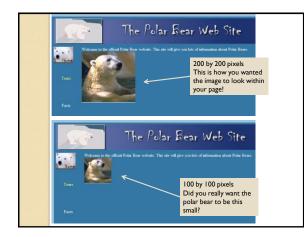
- Have you ever gone to a website and then left within seconds because the graphics were taking too long to download?
- Do you ever return?
- <u>http://www.flamingpear.com/examples-</u> sbp/images/blue-green-sea-large.jpg
- http://www.csd.uwo.ca/~Ireid/cs1033/resolutio n/UncompressedGraphics.html

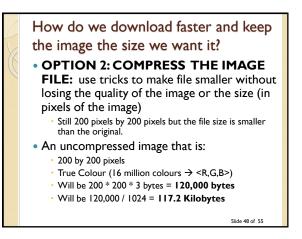
Slide 40 of 55

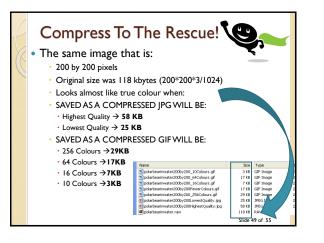
How long will it take that uncompressed sunset image to download if we are using it in a webpage?

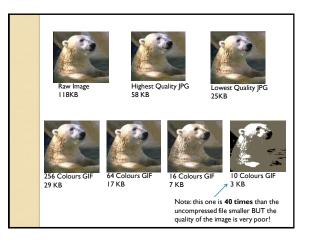
Slide 43 of 55


- If the client is using high speed connect at 1500 kilobits per second?
- If the client is on a modem that is 56 kilobits per second
- On a really old modem that is 28.8 kilobits per second?


We need to make our webpages download as fast as possible


- We want them to be the "appropriate size" for our page, in terms of proportion
- Want the image to look good ("high quality")
- Want image to download quickly
- THUS WE NEED TO MAKE OUR IMAGE FILES SMALLER BUT OUR IMAGE TO STILL LOOK GOOD!


Slide 44 of 55


<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

