

Announcements

- Major Assignment due Friday, December I
- You MUST make your animation using photoshop and supply the photoshop file (.psd)
- Sunday, December 17 at IOam - 2 hour
- Bring:
- Pencil (soft) and eraser
- Student card
- Do NOT bring: calculator, ipod, hat, etc..
- Web Assignment
- Should be marked by Nov 28th

What is Video?

- A sequence of still images (photographs) that create the illusion of movement when played in succession.
- Question:What is each still image called?
- FPS
- Movies on film \rightarrow 24-30 fps
- Computer DisplayedVideo \rightarrow I2-15 fps
- DigitalVideo \rightarrow each frame is a bitmapped graphic, stored as 0s and Is

Today

- Announcements
- Finish up animation \rightarrow Flash
- Intro to video,TVs, resolution
- LOTS OFVIDEOS TONIGHT, sit back and enjoy ©

Announcements

- Some nice ones so far:
- Student I (awesome layout but property titles and file names not done correctly $)^{*}$)
- Student 2 (AWESOME BUTTONS (and banner but look at the file names and property titles $*)$)
- Student 3 (lovely attention to the text and layout!)
- Student 4 (great alignment but forgot headings and property titles)
- Student 5 (Beautiful, great attention to details)
- Student 6 (gorgeous banner!)
- Student 7 (great alignment, super cute banner but can you see the one thing I said NOT to do θ^{2} (and the property titles and references page had 2 issues - length of table and links could have been done slightly $y_{\text {de }}$ bettiter))

Sampling and Quantizing of Motion

- Since each frame is just an image \rightarrow
- Each frame is sampled into a discrete samples and each sample becomes a pixel \rightarrow Sampling process Remember:
More samples means better quality (10 pixels by 10 pixels vs 200 pixels by 200 pixels)
More samples means bigger file sizes (10 pixels by 10 pixels vs 200 pixels by 200 pixels)
- Each pixel gets assigned a colour, maybe just 2 colours(black and white \rightarrow I bit colour) or maybe 16 million colour (24 bit colour) \rightarrow Quantization process
- Question:What else can we "Sample" with MOTION?

Quantizing \rightarrow Colour Compression In The Video

- For still images RGB is commonly used
- For video the model is YUV (YIQ) or YCbCr (for MPEG compression)
- $\mathrm{Y} \rightarrow$ luminance (brightness)
- UV \rightarrow (CbCr) chrominance (color/hue)
- Question: Black and White TV only used the
\qquad signal (fill in the blank with Y, U or V)
- Question: Which one will the human eye detect changes in more easily? How does this help us with compression?

Sampling of a frame \rightarrow need to know a little history

- Digital video often adheres to standards for TV broadcasting
- Regular Analog TV broadcasting began in the United States in 1939 using the NTSC standard.
- NTSC frame rate was originally 30 fps but went down to 29.97 to accommodate for colour information.

More history

- Experiments with High Definition TV began in the late 40s and 50s but it wasn't adopted by a single station till 1996.
- Before 1996 ALLTV was broadcast using interlaced display and fields
- The original ANALOG video choices made about TV display (frames per second, frame size, etc..) affect the standards that were picked for DIGITAL video!

How did the original TV display work?

- Our eyes see phosphor dots on the screen.
- An electron beam (gun) activates the dots. The gun scans through the dots horizontally
- A complete scan is when the gun starts at the top left and scans several times horizontally till it gets to the bottom right

- The scan only draws every OTHER line (1,3, $5, \ldots 479$) then starts back at the top and draws the even lines ($2,4, \ldots 480$).
- Thus two passes
- Each pass is called a field
- The process is called interlaced display
- This way it can cheat the eye, while the phosphor dots are disappearing, it is drawing the line underneath.

NTSC Standards

- Review \rightarrow watch from minute I to 3 and then 6 min to $9: 30$
- The frame size of NTSC standard DV frame is 720 pixels by 480 pixels

Frame Aspect Ratio is 4:3
Pixels are distorted (not square) because 720:480 is actually 3:2 ratio, thus must change the pixel aspect ratio

- High Definition for NTSC:

$$
1440 \times 1080
$$

1280×720
Frame Aspect Ratio is 16:9
1440:1080 \rightarrow ratio is (4:3) I.333 (pixels are not square)
1280:720 \rightarrow ratio is 16:9 (pixel are square \odot)

- http://en.wikipedia.org/wiki/Aspect_ratio_(image)\#Visual_compari
- Ratio Review \rightarrow watch 0:48-3:40 and watch 16:10-17:25

2010's TVs

- Newer TVs are 4K \rightarrow 4K resolution (4096 x $2160 \rightarrow 4 \mathrm{~K}$ refers to WIDTH now???)
https://www.youtube.com/watch?v=RodCjVf5AE
- Best Buy - Search for TVs

- PROBLEMS

- There is not a lot of 4 K content yet (no cable, some Netflix (House of Cards))
Even if you have 4K content, old HDMI cords can't transfer something like Netflix to your TV fast enough
Most camcorders can't create 4 K content and even if they can it will likely only be 15 frames per second (although the iphone6 does allow this now)

2010's TVs

- 4KTVs areVERY expensive

- If you hook it up to your computer (as a monitor), you will need pretty amazing graphic cards when playing games to see a difference.
- Even have ones that are 8K \rightarrow
http://www.whathifi.com/news/4k-tv-japan-aims-8k-broadcasts-2016
- It is sort of like having a Lamborghini and driving it in downtown Toronto at 5 pm ©
- change the quality on this video

$2010 s$ TVs are a bit of OVERKILL!
 - 50-inch screen:

the benefits of $\mathbf{7 2 0}$ p vs. $\mathbf{4 8 0}$ p start to become apparent at viewing distances closer than 14.6 feet and become fully apparent at 9.8 feet.
1080p vs. 720p start to become apparent when closer than 9.8 feet and become fully apparent at 6.5 feet.
6.5 feet is closer than most people will sit to their 50 " plasma TV ... so, most consumers will not be able to see the full benefit of their 1080pTV.

- https://www.youtube.com/watch?v=tq6yduCQTYk

High Retina Display

- Based on the idea of a "skinny triangle"
- If the angle at the top of the triangle is I degree, then you need to be able to have at least 53 pixels on the base of the triangle for the human eye not to detect the pixels:

2010's Small Devices Matter Too!

- On small devices (iPads, etc) Apple claims all that matters is that if something is $10-12$ inches away you need at least 300 ppi (high retina display)
- http://www.makeuseof.com/tag/how-does-the-retina-display-work/ (watch Steve Jobs video)
- http://www.macworld.com/article/2063344/retina-ipad-mini-review-high-density.html (just watch the first minute)

High Retina Display

Display Type	PPI	Example	Resolution
Desktop	100-110	iMac	1280 by 1024
Standard laptop	$100-134$	Standard Macbook	1366×768
Standard Tablet	130	iPad I	1024 by 768
Smartphone	160	HTC Wildfire	320×480
Retina iPad	264	iPad 3	2048×1536
Retina iPhone	326	iPhone 4S	640×960
Windows tablet	216	Surface Pro 3	2160×1440

- For small devices, you need to be able to read (e.g. magazines on your iPad), so you need sharp crisp text, that is why the resolution is so good. Don't need to read off a TV for long periods of time! (just watch till about 2 min)
- COOL SITE \rightarrow http://isthisretina.com Side 22 o f 40

Need to keep your design in mind:

- Imagine an image that is 100 pixels by 100 pixels on your desktop (at 1280 by 1024,20 inch monitor) compared to the same image on your high retina iPad 3(2048 x 1536, 9.7 inches) \rightarrow Question: what will happen to that image?
- Really oldTVs $\rightarrow 480$ Scan Lines
- 2000s TV $\rightarrow 720$ or 1080 lines
- Progressive NOT interlaced!

CRT images are typically slightly out of focus at the screen's edges because the electron gun's beam is at a greater angle. A flat-panel accurate and consistent from corner to corner.

Displaying Digital Video

- Can display video on:
- Computer \rightarrow don't need to worry about NTSC standards
- TV
- DVD
- Not all digital video must conform to NTSC standards. Digital video that will primarily be played on a computer does not have to conform, BUT digital video that will be used in DVD playback needs to conform.

Displaying Digital Video on a Computer

- Even though it doesn't have to be, digital video that is displayed on a computer is still very tied to analog TV standards.
- Question:What are the typical sizes of video that you embed into your webpages?

Digital Video Camcorders

- Most Digital Video Camcorders (DV Camcorders), do a little bit of compression right inside the camera. DV25 is the most common DV compression used by today's camcorders.
DV25 Format Specs:
Pixel Dimension is 720×480 (note this is $3: 2$ ratio)
Frame Aspect Ratio either 4:3 or 16:9
Data Rate: 25 mega bits per second (that's why it is DV25)
Frame Rate: 29.97 fps
Colour Sampling: YUV 4:I:I
- Now there are 4 K Camcorders with better specs BUT be carefully, they are very resource intensive!

Format Comparison

Format	Lines of Resolution
VHS,VHS-C (Beta) \rightarrow Analog Camcorders	240
8mm	240
Hi 8mm	400
Most olderTVs (before 1995)	480
Digital Video Recorders - Mini DV	480
High Definition TV and High Definition Digital Video Camcorders	720 or I080
4K Camcorders now!	http://epfilms.tv/top-l0-

[^0]
Watching old movies in HD?

- How can we see Blu Ray movies that were made in the 60s? Everything made back then was blurry, so how can we now see it in HD?

Slide 30 of 40

Watching old movies in HD?

- It's not a conspiracy, nor aliens $)$
- Movies back then were filmed on actual film strips (35mm, 65mm, etc.)
- Film was analog, not digital, so it didn't have "pixels" or a "resolution"
- Analog film captured a great amount of detail, more than was shown on the TV versions Now when they want to make a Blu Ray, they can use the original film
- HD Versions of Old Movies

What to capture

- Some tips for the pre-production stage:
- Plan out what you are going to shot
- Gather resources you will need (props...)
- Think about sound/music
- Make a storyboard of your ideas \rightarrow
- Think about composition

Using Video Editing Software

- Sample of Video Editing Software
- Step \| \rightarrow Import captured video, images and sound into the project
- Step $2 \rightarrow$ Arrange the material on the timeline
- Trim clips as need
- Might remove/trim some sound and add music, etc...
- Step $3 \rightarrow$ Apply transitions, special effects. Some common ones:
- Straight Cut \rightarrow butt up two clips right against each other with no transition
- Dissolve \rightarrow fade from one clip to the next.

Adding titles, credits, captions

- Step $4 \rightarrow$ Question:What is step 4 ?

Let's Review

- What was the Frame Rate fc
- What is the Frame Ratio for
- What is the Frame Ratio for
-What does 1080p mean?
- What was the last major m released in VHS format?
- Laura has not seen it ©
- It was released in 2005
- It was partly filmed in Millbrook, Untario
- It starred Viggo Mortensen

When do you think DVDs will disappear : ?

- Before 2020?
- After 2020?

[^0]: http://www.youtube.com/watch?v=GIXM2DF0dEM

