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ABSTRACT  The classical algonithms require order n’ operations to compute the first 7 terms 1n the reversion of
a power series or the composition of two series, and order n’log n operations 1f the fast Fourier transform 1s used
for power series muluphication In this paper we show that the composition and reversion problems are equivalent
(up to constant factors), and we give algorithms which require only order (n log n)*% operauons In many cases
of practical importance only order n log n operations are required, these include certain special functions of
power series and power series solution of certain differential equations Applications to root-finding methods
which use inverse interpolauon and to queueing theory are described, some results on multivariate power series
are stated, and several open questions are mentioned
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1. Introduction

We are interested 1n the complexity of algorithms for manipulating formal power series.
For example, such algorithms may compute the first » terms in the product, quotient, or
compostition of two given power series. These problems arise in combinatorics and analysis
of algorithms, where the desired power series 1s a generating function, as well as in
numerical analysis. See, for example, Knuth [26], Ferguson, Nielsen, and Cook [14],
Riordan [35], Gilbert [18], Niven [31], Jackson and Reilly [25], Levy and Lessman [30],
Norman [32], and Henric1 [20, 21].

Let & be the integral domain of formal power series P(s) = po + pis + p2s° +  over
some field K “Formal” means that we are not concerned with questions of convergence.
If Fis a set of indeterminates over K, and E is a finite subset of the extension field K(F),
then L(E mod F) denotes the number of operations necessary to compute E, starting from
K U F and working in K(F). Informally, L(E mod F) is the number of operations required
to compute E, given F.

If 4, B € # and C1s the formal product of A and B, we define M(n) = L(cy, ... , ¢» mod
o, ... » An, bo, ..., by) Informally, M(n) 1s the number of operations required to compute the
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first n + 1 coefficients in the product of two power series. The classical algorithm gives
M(n) = O(n®), but if the field K is capable of supporting the fast Fourier transform (FFT),
then M(n) = O(n log n) (see, e.g. Knuth [26] and Borodin and Munro [5]).

Let P, Q € P, po = 0. The composition of Q and P is the formal power series R such
that R(s) = Q(P(s)) is a formal identity. The composition problem is to compute ro, ... , rn
given py, ... , pn and qo, ... , go. We define COMP(n) = L(ro, ... , r» mod p1, ... , Pn,
go, . » grn), 50 COMP(n) is the number of operations required to solve the composition
problem.

The functional mverse or reversion of P is the power series ¥ = P'"" such that P(¥(s))
= s or V(P(s)) = s is a formal identity. The reversion problem 1s to compute vy, ... , v, given
P, ., pn. It is clear that the problem can be viewed as that of computing the derivatives
of the inverse function (see, e.g. Traub [38, App. B]). We define REV(n) = L(vy, ..., v, mod
P15 -e s Pu)-

The classical algorithms for both the composition and reversion problems require order
n® operations (see, e.g. Knuth [26]), or order n’log n operations 1f the FFT is used for
polynomial multiplication as pointed out in Kung and Traub [28, §4]. In fact the classical
algorithms give COMP(n) = O(nM(n)) and REV(n) = O(nM(n)). In Section 2 we show
that COMP(n) = O((n log n)""*M(n)). We also give an O(r/n - max(M(n), N(r/n))) algorithm
where N(j) 1s the number of operations required to multiply two j X j matrices. This
algorithm is faster than both the O((n log n)"*M(n)) algorithm and the classical algorithm
when the polynomtral multiplication algorithm to be used implies that M(n) has order at
least N(~/n)/~/(log n) (e.g. when M(n) ~ cn” for some constant ¢) In Section 3 we show
that the reversion problem can be solved by Newton’s method and composition, so REV(n)
= O((n log n)"*M(n)) also.

In Section 4 we show that COMP(n) = O(REV(n)) and REV(n) = O(COMP(#)), so the
composition and reversion problems are essentially equivalent. Thus, in attempting to
obtain improved upper or lower bounds one can work with either the composition problem
or the reversion problem.

In Section 5 we show that the composition Q(P(s)) may be computed in O(M(n))
operations if Q satisfies a suitable differential equation. For example, Q could be a Bessel
function or a hypergeometric function. We also study the complexity of computing the
formal series solution of certain first-order differential equations. In Section 6 we mention
several other problems for which O(M(n)) algorithms exist, and give an application to the
theory of root-finding methods. Most of this paper is restricted to power series 1 one
variable, but the methods extend to dense power series in several variables. Some of our
results on multivariate cases are stated in Section 7. The considerations for sparse power
series and polynomuals in several variables are rather different; see Heindel [19] and
Horowitz {23, 24].

In this paper we analyze algorithms under the assumption that all coefficient computa-
tions are done 1n a finite field or in finite-precision floating-point arithmetic. An analysis
dealing with variable-precision coefficients 1s yet to be performed.

Some of the results of this paper were announced in Brent and Kung [9].

Some Regularity Conditions. Let Z* be the set of all nonnegative integers and let G: Z*
— Z* be a nondecreasing function. We say that G satisfies Condition A if, for some a, B
€ (0, 1), G([an]) = BG(n) for all sufficiently large n. We say that G satisfies Condition B
if, for some o/, 8’ € (0, 1), G(La'n]) = B'G(n) for all sufficiently large n. For example, if G
is nondecreasing and Cin'log’n < G(n) < Con'logn for positive constants y, Ci, Cs, and any
constant 8, then G satisfies Conditions A and B.

LemmMma 1.1, If G satisfies Condition A and p € (0, 1), then

YG(p'n]) = O(G(n)), (1.1

where the sum is taken over all integers j = 0 such that p’'n = 1.
ProoF. It is easy to show that Y G([p’n])/G(n) is bounded by a convergent geometric
series for all sufficiently large n. See Brent [7, Lemma 3.4] for details. O
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Lemma 1.2, If G satisfies Condition B and y > 1, then

G(Lyn)) = O(G(n)). (1.2)
PrOOF. There exists j such that a”y < 1. Thus, for all sufficiently large 7,
G(lynh = (I/B)G(ovn) = = (1/BYG(). O

We say that G satisfies Condition A, if G satisfies Condition A with 1 > a = 8 > 0.
Clearly Condition A, 1s stronger than Condition A. For example, if G(n) = [n’1H(n) for
some constant § = | and some nondecreasing function H.Z* — Z*, then G satisfies
Condition As.

LemMa 1.3. If G satisfies Condition A, and p € (0, 1), then

S7G([p’nl) = O((log m)G(n)). (13)

where the sum 1s taken over all integers j = 0 such that p’n = 1.
PROOF. Assume n 1s sufficiently large. Since G(fanl) = BG(n) < aG(n),

G(a'n)) = G([a'"'n]) = o"'G(n) = (1/)a’G(n)
for any real ¢ = 0. Let y = log,p. Then for all y = 0,

G(p'n) = Gl nl) < (1/a)a”G(n) = (1/a)p’G(n),
and the result follows immediately. O

We assume throughout the paper that M satisfies Condition A,. Similar conditions are
usually assumed, either explicitly (see, e.g. Aho, Hopcroft, and Ullman [2, p. 280] and
Fischer and Stockmeyer [17]) or imphicitly (see, e.g. Borodin [4]). We shall also assume
that COMP and REYV satisfy Conditions A and B, respectively One should note, however,
that what we really need in this paper are the consequences of these conditions, namely,
the properties (1.1), (1.2), and (1.3)

Notation. s and ¢t denote free variables or indeterminates over K. Formal power series
over K are denoted by upper-case letters, and the coefficients in the power series by
corresponding lower-case letters, e.g. P(s) = po + pis + - + pps™ + . The formal
derivative of Pis P'(s) = p1 + 2pes + - , and the formal ntegral of P is [§ P()dt = pos
+ %pis® + - . For any positive integer k, P(s) mod s* denotes the finite series consisting
of all terms of P(s) of degree less than k. To compute P(s) mod s* means to compute
Po, - - » Pr-1. By the notation Q(s) = P(s) (mod s*), we mean (P(s) — Q(s)) mod s* = 0, re.
power series P(s) and Q(s) agree 1 their terms of degree less than k. Where necessary we
assume that the characteristic of K is zero or sufficiently large.

2. Fast Algorithms for Composition

Let P(s) = pis+  +pa.s"and Q(f) =qo+  + ¢at" be given. In this section we give two
algonthms for computing the first n + 1 coefficients, ro, ... , /n, 1n the series R(s) =
O(P(s))-

2.1 THE FIRST ALGORITHM. The algornithm is based on the following grouping of
terms of Q(¢).

0@ = Qo) + QUt* + Q)"+ + Qe (N,
where k = [\/(n + 1)] and Q.(f) = /=0 qusst’, 1 =10, .. , k — 1 (assume ¢; = 0 for I > n).
A similar idea was used by Paterson and Stockmeyer [33].
ALGORITHM 21
1. Compute P'(s), t=2, ..., k.
2 Let T(s) = P*(s) mod s"*' Compute T'(s), 1=2, ,k—1
3 Compute Q.(P(s)), i=0, .., k — 1, by using the results of step 1
4 Compute Q(P(s))T'(s), :=1, ,k— 1, by using the results of steps 2 and 3
5 Compute TE4 0,(P(s))T'(s) by using the result of step 4
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Note that during the computation we always truncate terms of degree higher than n. It
is easy to see that steps 1, 2, 4, and 5 each can be done in O(kM(n)) = O(r/nM(n))
operations. In the following we examine step 3. Let

(P(s)y = ,ZOPY 's'mod s, ;=0, ..,k

(Note that all p{” are available after step 1.) Then

k-1 n

Q(P(s)) = ¥ quwy 3, pi's’ (mod s™*%)
J=0 =0
n k=1
= Z (Z q‘kﬁp;ﬂ) Sl (mod sn+l)'
=0 \ y=0

Step 3 amounts to computing 3558 quwpy” forI =0, ...,n, 1=0, ...,k — 1, given the g,
and pj”. The computation may be viewed as the following matrix multiplication between
an (n + 1) X k and a k X k matrix:

Péo)p(()n A pékq)

PP [qo g qa-xnj
5 ; : .
; qr-1 - Gre-y
pi.“’ pi,"‘”

This can clearly be done by performing [(n + 1)/k] matrix multiplications between k X k
matrices. Define

N(j) = number of operations needed to multiply two y X y matrices.

Then step 3 takes O((n/k)N(k)) or O(\/nN(»/n)) operations. Therefore Algorithm 2.1
establishes the following:

THEOREM 2.1 COMP(n) = O(n/r-max(M(n), N(»/n))).

2.2 THE SECOND ALGORITHM. The second algorithm is based on a formal Taylor
expansion of Q. Write P(s) = Pu(s) + P.(s), where Pn(s) = p1s + -+ + pns™ and P, (s)=
Prais™ + Ppraas™? + - for some m < n. (The value of m will be determined later.) It can
be shown by induction that the following Taylor expansion holds formally:

Q(P) = Q(Pn + P)) = Q(Pm) + Q' (Pn)Pr + % Q"(Pu)(P)* + - .

Let I = [n/m]. Since the degree of any term in (P,)"*

Q(P(S)) = Q(Pm(s)) + Q' (Pm(s)) Pr(s) + - + (1/INQ/(Pu(s)) P(s) (mod s™*7).
This equality gives us the following algorithm for computing the first n + 1 coefficients in
the series R(s) = Q(P(s)):

ALGORITHM 22

1. Compute Q(Pn(s)) mod s™*.

2. Compute Q'(Puf(s)), Q" (Pm(3)), ... , QV(Pm(s)) mod 5™
3. Compute P,(s), P¥(s), , Pi(s)mod s™*'

4. Compute (1/!DQ(Pu(s)) Pi(s) mod s™ fori=1, 1
5. Sum the result obtained from step 4.

is at least n + 1 for any i > 0,

LEMMA 2.1, IfP(S)=pis+ -+ pms™, Q) = qo + - + gt/ withm, j < n and if R(5)
= QP(s)) =ro+ ris + -, then
L(ro, ... , rnmod ps, ... , Pms Gos ... » §) = O((ym/ n)(log M)M(n)).

PrROOF. We may assume that j is a power of 2. Write Q(P) = Qu(P) + P'/>- Qu(P),
where Q1 and Q; are polynomials of degree j/2. This relation gives us a recursive procedure
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for computing Q(P). During the computation we always truncate terms of degree higher
than n. Note that deg P’ < jm and deg Q(P(s)) < jm when deg Q = j. Assume that T(;)
operations are needed to compute both P”?mod s™*' and Q(P) mod s™*' with deg Q@ = ;.
Then by the recursive procedure, we have

T(j) = 21(j/2) + O(M(min(jm, n))).
Let r be the largest integer k such that jm/2* = n. We can assume r = 0. We have

T(j) = O(M(n) + 2M(n) + -+ + 2’M(n)) + 2" T(j /2™
= O((jm/mM(n)) + (ym/myT(j/2™*").

Since ym/2™" < n,

T(j/2*Y) = O(M(jm/27*) + 2M(jm/2*%) + )
= O(M(n) + 2M([n/2]) + 4M([n/4)) + )
= O((log n)M(n))

by Lemma 1.3. Hence T(j) = O((jm/n)(log myM(n)). O
LEMMA 2.2. Let U(s) = P(s)/ Q(s) with qo % 0. Then

L(uo, ... , tn mod py, ... , pn, go, ... , gr) = O(M(n)).

ProoF. Use a Newton-like method as in Kung [27]. (See also Sieveking [36].) [

LEMMA 23. Let P()=pis+ps+ -, 00 =qo+qit+ - ,andlet Q'() = ¢ +
2qst + -, the formal derivative of Q(t) with respect to t. If R(s) = Q(P(s)) and D(s) =
Q'(P(s)), then

L(d, ... , dumod 11, ..., Fasy, Pu, ..., Prer) = O(M(n)).

PrOOF. By the chain rule, R'(s) = Q'(P(s))  P'(s). Hence D(s) = R'(s)/P'(s), and the
result follows from Lemma 2.2. O

By Lemma 2.1, step 1 of Algorithm 2.2 can be done in T; = O(m(log n)M(n)) operations.
By Lemma 2.3, step 2 of Algorithm 2.2 can be done in 7> = O(IM(n)) = O((n/m)M(n))
operations, since Q”(Pu(s)), i = 1, ..., I, can be computed successively and each of
them takes O(M(n)) operations. It is easy to check that steps 3, 4, and 5 can all be done in
O(T») operations. Hence the total number of operations needed by Algorithm 2.2 is
O(T, + T). Choose m ~ (n/log n)"’>. Then O(T1 + T») = O((n log n)"?M(n)). We have
shown the following:

THEOREM 2.2. COMP(n) = O((n log n)'/*M(n)).

2.3 REMARKS. As stated in Theorems 2.1 and 2.2, the number of operations required
by Algorithms 2.1 and 2.2 depends upon M(n) and N(j). There are many algorithms for
polynomial multiplication. For example, the classical algorithm gives M(n) = O(x), binary
splitting multiplication gives M(n) = O(n' %5), and FFT multiplication gives M(n) =
O(n log n) (see, e.g. Fateman [13]). Likewise there are various algorithms for matrix
multiplication. For example, the classical algorithm gives N(j) = O(j°) and Strassen’s
algorithm gives N(j) = O(j**") (Strassen [37]). Either Algorithm 1.2 or Algorithm 2.2 can
take fewer operations asymptotically, depending upon which polynomial or matrix multi-
plication algorithms are used. The following results are easy consequences of Theorems
2.1 and 2.2.

(i) Suppose that N(j) = O(j*) for some a = 2. Then Algorithm 2.2 takes

fewer operations than Algorithm 2.1 asymptotically if M(n) = o(n*/+/(log n)).

(ii) Suppose that the classical polynomial and matrix multiplication algorithms are
used, 1.e. M(n) = O(n®) and N(j) = O(;j*). Then Algorithm 2.1 gives COMP(n) =
O(n*’%), while the classical algorithm for composition takes O(n®) operations.

(iii) Suppose that the FFT multiplication is used, so M(n) = O(n log n). Then Algorithm
2.2 gives COMP(n) = O((n log n)*’*), which 1s the best asymptotic bound known
for the composition problem.
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3. Fast Algorithms for Reversion
Let

P =ps+ps+ -, pi#0, @3.D

be given. The functional inverse or reversion of P is the power series ¥ = P such that
P(V(s)) = s or V(P(s)) = s is a formal identity. The facts that V exists and that vy, ... , v,
depend only upon pi, ... , p. are well known. The reversion problem is to compute
Vi, ..., Vn giVEND Py, ..., Pn. In this section we show that the reversion problem can be solved
efficiently by using the fast algorithms for composition presented n Section 2.

Define a function f:# — 2 by f(x) = P(x) — s. Since P(V(s)) = s, V is the zero of f.
Hence the reversion problem can be viewed as a zero-finding problem. We shall use a
Newton-like method to find the zero of f; other iterations can also be used successfully.
(See Kung [27] for a similar technique for computing the reciprocals of power series, and
also Brent [8, Sec. 13].) The iteration function given by the method is

o(x) = x — f(x)/f (x) = x — (P(x) — 5)/ P'(x).

Since p: # 0, one can easily check that ¢ maps #* into #*, where #* is the set of power
series with po = 0 and p; # 0. Using the Taylor expansions of P and P’, we have

o(x) = V()

=x=V(s) - P(V(s) + PP(V()(x— V(s + )~

P'(V(s)) + P/(V()(x — V() + -

_PAs) P W) 1 (PN T, o o
=Py & V) + [3P’(V(s)) 2 (P’(V(s))) ] x = V)" +

Since p; # 0, the expansions of P”(V(s))/P'(V(s)), P (V(s))/P'(V(s)), etc., have no negative
powers in s. Thus,

p(x) = V(s) = A@s)x — V(5)) (3.2

where 4 € #. Suppose that the first k coefficients, vi, .., v, of V(s) have already been

computed. Substituting Vi(s) = vis + + wis® for x 1 (3.2), we have @(Vi(s)) = W(s)

(mod s**%). Hence by computing the first 2k + 1 coefficients of (¥x(s)), we obtain the

first 2k + 1 coefficients of the reversion V(s). This leads to the following algorithm for

computing the first n coefficients, v, .., v, of ¥{(s). Note that the first coefficient of V(s)

s 1/ps.

ALGORITHM 31 (Newton’s Method)

1 Setviel/prand k « 1.

2 Compute vi+1, , vers1 such that vy, ., vaesy are the first 2k + 1 coefficients of Vi(s) — (P(Vi(s)) — 5)/
P'(Vils)), where Vi(s) = Y&, vs*

3 If2k + 1 = n, the algonthm terminates

4. Set k « 2k + 1, and return to step 2

The essential work of the algorithm is performed at step 2. Note that in the compositions
P(Vi(s)) and P'(Vi(s)) only the first 2k + 1 terms are needed. By Lemmas 2.2 and 2.3, the
algorithm establishes the following theorem.

THEOREM 3.1. REV(2k + 1) < REV(k) + COMP(2k + 1) + O(M(2k + 1)).

Using the results stated in Section 2.3 for the composition problem, we give some
consequences of Theorem 3.1:

(i) Suppose that the classical polynormal multiphcation routine 1s used, i.e. M(n) =

O(n*). Then COMP(n) = O(n**) Algorithm 3.1 gives REV(n) = O(n*?), while in
this case all classical algorithms for reversion require O(n®) operations (see, e.g.
Hennc (21, pp. 45-65], Traub [38, App. B], and Knuth [26, pp. 444-451])).
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(i) Suppose that the FFT 1s used for polynomial multiplication, ie. M(n) =
O(n log n). Then COMP(n) = O((n log n)*%). Algorithm 31 gives REV(n) =
O((n log n)*%), which 1s the best asymptotic bound known for the reversion problem

It 1s possible to define the reversion of a power series of the form

t=P@s)=5(1+pis+ps® + ), 3.3)

where ¢ € K and ¢ # 0. Indeed, the reversion 1s of the form

s=VO) =170 +ni"" + v+ ).

(See, e g Chrystal [12, p. 378].) Since by (3.3), 1" = s(1 + pis + pos® + )", we can
compute v;, vs, ., V, 1n the following way:

(1) Compute p{"’”, 1 =1, ..., n, such that

n n 1/0
Z pfl/a)st = 2 pzSL mod sn+1,
=0 v=0
where py = 1.
(2) Find the reversion of the series s(1 + pi/”s + p&/%s” + ).

It wall be shown in Lemma 6.2 that step | can be done in O(M(n)) operations. Hence the
reversion of a power series of the form (3.3) can be done in REV(n) + O(M(n)) operations.
In Section 4 we shall show that M(n) = O(REV(n)) This implies that the number of
operations required to find the reversion of the series (3.1) is the same order of magmtude
as that required to find the reversion of the series (3.3).

A Numerical Example. The algorithms for composition and reversion have been
implemented 1n Fortran, and several numerical tests performed. For example, we computed
the reversion ¥(s) = —In(l — s) of P(s) = 1 — exp(—s) mod s™*' for vanious n =< 64. The
correct result 1s v, = 1/; for j = | With n = 64, the computed values ¥, satisfied ¥, — v,|
<7 % 107" for all ; = 64. Computations were performed on a Univac 1108 computer with
a 60-bit floating-point fraction.

Thus for this example, our reversion algorithm 1s stable A general investigation of the
stability of our algorithms has not been carried out.

4. Equivalence of Composition and Reversion

In this section we show that the composition problem 1s linearly equivalent to the reversion
problem in the sense of Borodin [4] and Hopcroft [22], i.e.

REV(n) = O(COMP(r)) and COMP(n) = O(REV(n)).

It is necessary to make some mild regularity assumptions. We assume that COMP satisfies
Condition A, and that REV satisfies Condition B. It follows from Theorem 4.1 that both
COMP and REY satisfy Conditions A and B.

LEMMA 4.1. If U(s) = P*(s) and S(n) = L(uo, ... , un mod po, .. , pn), then M(n) =
o(S(n)).

PROOF. Since 4PQ = (P + Q) — (P — Q)% we have M(n) < 28(n) + O(n)
=0(S(ny. O

LEMMA 4.2. M(n) = O(COMP(n)).

PrOOF. If Q(s) = 5% and P(s) = po + P(s) then P* = Q(P) + 2poP — p§, so S(n) <
COMP(n) + O(n), and the result follows from Lemina 4.1. O

LEMMA 43. M(n) = O(REV(n)).

PrOOF. Let A(s) = a0+ ais + - , B(s) = s + s"24(s), and C = B"". Then it is not
difficult to show that

C(s) = s = s"*A(s) + s> [sA(5)4'(s) + (n + 2)4°(5)] (mod 5.
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Thus, in REV(3n + 3) + O(n) operations we can compute s4(s)4'(s) + (n + 2)4*(s) mod
s"*1. Similarly, by defining B(s) = s + s"**4(s), one can show that
C(s) = 5 = s"P3A(5) + sPsA(HA'(5) + (n + 3)A%(H] (mod 5***5),

so in REV(3n + 5) + O(n) operations we can compute sA(s)4'(s) + (n + 3)4%(s) mod s™**.
By subtraction, we get 4*(s) mod s™*'. Hence S(n) = REV(3n + 3) + REV(3n + 5) +
O(n). The result follows from Lemmas 1.2 and 4.1 and the fact that REV satisfies Condition
B. O

THEOREM 4.1. REV(n) = O(COMP(n)) and COMP(n) = O(REV(n)).

PrROOF. From Theorem 3.1,

REV(2k + 1) = REV(k) + COMPQ2k + 1) + O(M(2k + 1)).
Similarly, if only 2k coefficients are wanted, we have
REV(2k) < REV(k) + COMP(2k) + O(M(2k)).

Hence for any positive integer n, we have
REV(1) < REV ([gJ) + COMP(n) + O(M(n)).

This implies that
REV(n) = O(F COMP([27n])) + O(F M(27n)),

where the sums are taken over all integers j = 0, ..., [log n]. Since COMP and M satisfy
Condition A, by Lemma 1.1,

REV(n) = O(COMP(n)) + O(M(n)).
The first half of the theorem follows from Lemma 4.2.

To prove the second half, let P(s) = pis + pos® + - and Q(f) = qo + qut + ---. We show
how to obtain R(s) = Q(P(s)) using reversions.

If py =pa= - = p, =0, then go = R(s) mod s”*". Hence, we may suppose that there
exists k < n such that px # 0 and that if kK > 1 then p, = - = ppy = 0. Let P(s) =
(P(s5)/px)"* and Q(t) = Q(pxt*) — qo, s0 R(s) = Q(P(s)) + qo and s = P(s) mod s> By
Lemma 6.2 we can compute P(s) mod s™*' in O(M(n)) operations. By Lemma 4.3, M(n)

18 O(REV(n)). Thus, there is no loss of generality in assuming below that p, = 1 and qo =
0. Define

V(t) — P(—l)(t) mod t2n+2,
I-/(t) = (V(H) — "' QO V'()) mod e
P(s) = V(s) mod s***2.

We claim that
R(s)P"*'(s) = P(s) — P(s) (mod s***?). 4.1
To prove this, note that
P(7(t)) = P(V(1)) — P'(VO)""'Q(OV'(1) (mod £2**%).
But P(V(1)) = ¢ (mod £"*2), so P/(V(®))V'(®) = 1 (mod ¢**") and thus

P(V(t)) =t — t™'Q(f) (mod 1***?), 4.2)
Now substituting P(s) for ¢ in (4.2), we obtain
P(s) = P(s) — P Y(5)Q(P(s)) (mod 5™, 4.3)

Note that P(s) = P(s) (mod s™*%) and deg P"*! = n + 1. Thus, (4.3) implies that
P(s) = P(s) — P ()Q(P(s)) (mod s™**?).
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We have proved (4.1). Hence
5" 'R(s) = (s/P(5))"'(P(s) — P(s)) (mod s**?). 4.4

We can compute R(s)mod s™*' by the following algorithm:

1 Compute V() and ¥(f) mod £****

2. Compute P(s) mod s****

3. Compute (s/P(s))**' mod s**** by the method of Lemma 6 2
4 Compute R(s) mod 5™, using (4 4)

Therefore, we have COMP(n) = 2 REV(2n + 1) + O(M(2n + 1)). Since REV satisfies
Condition B, the second half of the theorem follows from Lemmas 1.2 and 4.3. O

5. Special Functions of Power Series

Let P, Q € P, po =0, and R(s) = Q(P(s)). In this section we show that L(r,, ... , 7, mod
D1y oo s Prs G, oo 5 §2) = O(M(n)) if Q satisfies a suitable ordinary differential equation. It
is an open problem whether a similar result holds when P rather than Q satisfies a
differential equation.

The results given in this section suffice for most practical applications. We do not
attempt to state the most general results possible, because this would involve us too deeply
in the theory of differential equations.

For completeness, we sketch the result of Brent [8] that log and exp of power series may
be computed with O(M(n)) operations.

Evaluation of log(1 + P(s)). If R(s) = log(1l + P(s5)) then R'(s) = P'(s)/(1 + P(s)). Thus
we can evaluate the first n terms of R'(s) in O(M(n)) operations, and it is easy to deduce
the first n + 1 terms of R(s).

Evaluation of exp(P(s)). If R(s) = exp(P(s)) then log(R(s)) — P(s) = 0, and this equation
may be solved by Newton’s method. If

Ry(s) =1 and Ru(s) = Ri(s) — R(s)og(R.(s)) — P(s)),

then R.(s) = R(s) mod s*. Thus, the number of operations required to find the first n + 1
terms of R(s) is O(M(n) + M([n/21) + M([n/4]) + -) and, by Lemma 1.1, this is
O(M(n)).

Reduction to Differential Equation in R. Suppose the differential equation satisfied by
Q@) is o(t, (1), Q'(®), ... , Q")) = 0. We may substitute ¢ = P(s) and use the chain rule
to obtain a differential equation in R(s) = Q(P(s)). The number of operations required to
make this substitution depends on m and the form of ¢, but in many cases of practical
interest it is only O(M(n)). Some examples are given below. Since m is fixed, any method
gives ri, ... , rm-1 in O(1) operations. Thus, we can assume that R(s) satisfies a given
differential equation ®(s, R(s), R'(s), ... , R™(s)) = 0, with imtial conditions R(0) =
7o, - » R™V(0)/(m — 1)! = rn_y, and the problem is to compute rm, ... , x.

5.1 FIRST-ORDER LINEAR EQUATIONS. It is easy to deal with first-order linear equa-
tions of the form R'(s) + A(s)R(s) = B(s), R(0) = ro, where 4 and B are given power series.
The well-known method of integrating factors gives

s

R(s) = (1/J(S))(ro + J’

[

B(u)J(u)du) R

where J(s) = exp(f; A(u)du). Since we can compute exponentials of power series and
perform formal integrations, R(s) mod s™*' can be computed in O(M(n)) operations.
We also need to consider the equation

R'(s) + (a/s + A(S))R(s) = B/s + B(s),

where a # 0 and R(0) = ro = 8/a. Using the method of integrating factors again, we obtain
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8

R(s) = (l/J(S)){S_“ f

0

W' [B)J() + B(J(w) — D/w)ldu + B/ a}-

If a is a negative integer, we assume that the coefficient of »~* in the integrand is zero, for
otherwise no power series solution exists. Since

S o -]
sl WY gwdu= Y (¢/(+a+ ),
0 J=0 J=0
Jr—(a+1)

provided ¢, = 0if j + a + 1 = 0, there is no difficulty in performing the formal integration,
even if & is not an integer.

5.2 FIRST-ORDER NONLINEAR EQUATIONS. It is well known that nonlinear differen-
tial equations can be solved by Newton’s method if the corresponding linearized equation
can be solved. See, for example, Rall [34]. We shall not attempt full generality here, but
shall illustrate the idea using the Riccati equation

ZLR(s) = R'(s) + A(S)R(s) — (R(s))* — B(s) = 0,

where A(s) and B(s) are given power series, and R(0) = ro.
Since (using Rall’s notation) #'(R) = d/ds + (4 — 2R)I, the Newton iteration is

Ry+i(s) = Ry(s) — (1/J,(s)) f (R (), (wydu,

where J,(s) = exp (f5 (A(w) — 2R, (u))du). To study the convergence property of Newton’s
method a norm is often used. For our purpose, we use a valuation on &. Then the
quadratic convergence of an iteration on & means that the number of correct terms doubles
at each iteration. (See Kung and Traub [29] for details.) Using a Newton-Kantorovich
type theorem (see, ¢.g. Bachman [3, pp. 52-55] and Rall [34, pp. 135-138]), one can easily
show that if the initial approximation Ro(s) = ro + -+ ris’ 1s taken to be an initial segment
of the solution series with / sufficiently large, then Newton’s method converges quadrati-
cally. The terms in Ro(s) may be obtained, for example, by equating coefficients. Since / is
fixed, any method gives Ro(s) in O(1) operations. Thus to compute R(s) mod s”, we
compute R,(s) mod s¥*' and only [logz(n — /)] iterations are required. Since
O(M(2’ + 1)) operations are needed at the jth iteration, the number of operations is O(1)
+ OM(n) + M([n/2]) + - ) = O(M(n)).

The generahzation to the Riccati equation in which A(s) is replaced by a/s + A(s) and
B(s) by /s + B(s) is straightforward. In fact, the following theorem can be shown by the
above argument.

THEOREM 5.1.  If a formal power series solution exists for the differential equation

R'(s) = F(s, R(s)), R(0) = ro,

where F is a bivanate rational expression, then the first n terms of the solution series can be
computed in O(M(n)) operations.

The generalization of Theorem 5.1 to the case where Fitself 1s a bivariate infinite power
series or to the case of vector differential equations is straightforward. For example,
consider the following differential equation:

R'(s) = F(R(s)), R(0)=0, (5.1

where F is a univariate power series. To compute the first #» terms in R we need only the
first n terms in F. When we solve (5.1) by Newton’s method, the main cost of each iteration
is due to composition. Hence the first n terms in R can be obtammed in O(COMP(n))
operations. It is mnstructive to note that if ¥ is the reversion of the P defined by (3.1) then
by the chain rule P’(V(s)) V’(s) = 1. Thus V is the power series solution of (5.1) with
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F = 1/P’. This gives another proof that REV(n) = O(COMP(n)). By the result of Section
4, we have therefore shown that the problem of solving differential equation (5.1), the
composition problem, and the reversion problem are all equivalent.

5.3 SECOND-ORDER LINEAR EQUATIONS. Suppose R”(s) + A(s)R'(s) + B(s)R(s) =
C(s), where A(s), B(s), and C(s) are given power series, and R(0) = ro, R'(0) = r1. The
well-known method of factorization (Burkill [6]) reduces this second-order problem to
three first-order problems, one of which is nonlinear. If & is the differentiation operator,
we want power series S(s) and 7(s) such that (2 + SY(2 + T)R= 9°R + AZR + BR i..
S+ T=Aand T' + ST = B, which gives T’ + AT — T? — B = 0. This is just the Riccati
equation discussed above. The initial condition T(0) = f, may be chosen arbitrarily. Once
Tand S = A — T are known, we may solve the first-order linear equations U’ +
SU=C, U@O)=r + toroand R' + TR = U, R(0) = ro to obtain U = (Z + T)R and then
R. Hence R(s) mod s™*' can be computed in O(M(n)) operations.

The generalization in which A(s) is replaced by a/s + A(s), etc,, is similar, except that
to = B/a 15 chosen so that T'(s) is a power series.

By repeated application of linearization (i.e. Newton’s method) and factorization, the
solution of a differential equation of arbitrary order can be reduced to the solution of first-
order linear equations. In practice second-order equations are the most common, and we
give two examples below.

Hypergeometric Functions of Power Series. As our first example we consider the
computation of R(s) = F(a, b; c; P(s)), where F is the hypergeometric function

F(a, b; ¢; 2) = Eo (@) ®),/(©))- 2/ .

(Here (a), = T'(a + j)/T'(a), etc.) By suitable choice of a4, b, and ¢, many elementary
functions can be written in this form; see Abramowitz and Stegun [1]. Now w = F(a, b; ¢;
z) satisfies the hypergeometric differential equation

21 — 2)d’w/dz* + {c — (@ + b + 1)z]dw/dz — abw = 0,
so substituting z = P(s), w = R(s) and using the chain rule gives
R” + {{c — (a + b + D)PIP'/[P(1 - P)] — P"/P'}R’ — (ab(P")*/(P(1 — P))R = 0,

with initial conditions R(0) = 1 and R’(0) = abP’(0)/c. Thus, we have a second-order
linear equation whose power series solution may be obtained as described above, and to
compute R(s) mod s"*' requires only O(M(n)) operations. Generalized hypergeometric
functions of power series may also be computed in O(M(n)) operations, using the
generalized hypergeometric equation (Henrici [21]) and an obvious generalization of our
method.

The algorithm for hypergeometric functions over the real field has been implemented in
Fortran. Numerical tests indicate that the effect of rounding errors is usually no worse,
and often better, than for the obvious O(n°) algorithm. However, a rigorous analysis of the
numerical properties of our algorithms has not yet been attempted. Special cases which
have been tested numerically include F(1, 1; 2; 1 — €°) = s/(e’ — 1), F(—a, a; %;
sin’(\/s)) = cos(2a+/s), and F(¥%, %; %; s%) = arcsin(s)/s.

Bessel Functions of Power Series. Our second example is the computation of R(s) =
JAP(s)), where the Bessel function w = J,(2) = (z/2)’ T5-0 (% 22)*/(k\(v + k)") satisfies
the differential equation

d®w/dz® + (1/2)dw/dz + (1 — v¥/ZH)w = 0.

We may substitute w = R(s) and z = P(s) to obtain a second-order equation for R, and
proceed as above. A slight generalization 1s necessary to deal with the »*/z* term, but this
can be avoided by making the change of variables w = z"W, which gives a differential
equation
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d*W/dz® + (Qv + 1)/2)dW/dz+ W=0
of the form discussed above.

6. Evaluation of Truncated Reversion at a Point

Let PE€ P, po = 0, and ¥ = PV, In this section we show that L(v, mod p, ... , pa) =
O(M(n)) and L(Vn(a) mod a, p1, ..., pn) = O(M(n)), where Vn(¥) is the “truncated reversion”
of P(s), i.e. Va(f) = it + vat> + - + vat™

We need some definitions. The quotient field of & is isomorphic to the field 2 of formal
Laurent series over K, i.e. series Y- @’ where ¢, € K and only finitely many 4, are
nonzero for negative j. If A € 2 we define the “residue” of A4 to be res{A(f)] = a-..

LeMMa 6.1. res{A()] = —res{tA'(D)].

LEMMA 6.2 (Brent [8]). Let P(s) = pis® + pre1s™*'+ - - with pr # 0 for some k = 0 be
given. Let R(s) = P°(s) for some number o # 0. If p% is given, then the first n terms in R(s)
can be computed in O(M(n)) operations.

PrOOF. Define P(s) by P(s) = pis"[1 + P(s)]. Then

R(s) = pas”™{1 + B(s)]° = pis” exp{o-log[1 + P(s)]}.

The lemma follows from the preliminary results of Section 5. O

LEMMA 6.3. v, = (1/n) res{ P"(5)] = res{sP'(s)/ P**'(s)].

ProoF. The first equation follows from the Lagrange-Burmann Theorem (see, e.g.
Henrici [21] and Knuth [26]) and the second equation follows from Lemma 6.1. O

THEOREM 6.1. L(v. mod p1, ..., pp) = O(M(n)).

PrROOF. Note that res,[P™"(s)] is the coefficient of s”* in [s/P(s)]". Thus, the result
follows from Lemmas 6.2 and 6.3.

LEMMA 6.4.

Vi(a) = res{(a™'sP'(s))/(P"*!(s)(a — P(5)))).
Proor. From Lemma 6.3 and the definition of V, we have

V(@) = ]i ress[sP'(s)/ P’ (s)]a’ = ress[si (S) Ji (a/ P(s))’ ]

T [sP/(s)a(a” = PX(s)
= reSsI: P™Y(s)(a — P(s)) ] .

Since ress[sP’'(s)a/(P(s)(a — P(s)))] = 0O, the result follows. O

THEOREM 6.2. L(Vui(@mod a, py, ..., pn) = O(M(n)).

ProOOF. Ifa=0then V,(a) = 0.If a # O then, from Lemma 6.4, V,(a) is the coefficient
of s in @' P'(s)/((P(5)/5)* (@ — P(s))). Thus, the result follows from Lemma 6.2. O

Application to Root Finding. Suppose K 1s the real or complex field, D C K— Kisa
sufficiently smooth function with a simple zero £ in the interior of D, and xo is a sufficiently
good approximation to £. The direct and inverse polynomial interpolation methods (Traub
[38]) may be used to obtain a better approximation x; = £ + O(|xo — £|"*'). Both methods
depend on the evaluation of f(xo), f'(xo), .. , f ™ (xo). For the direct method, x; is chosen
to be a sufficiently good approximation to the appropriate zero of the Taylor polynomial
S0 (x = x0)’fV(x0)/j!. If this zero is found by Newton’s method with xo as the starting
approximation, then [logax(n + 1)] iterations are required so the combinatory cost (Kung
and Traub [28]) or “overhead” is O(n log n). Tarjan has shown that this can be reduced to
O(n).

If P(s) = f(xo0 + 5) — f(x0) = Tym1 s°f P (x0)/j!, and ¥ = P is the reversion of P, then
P(§ — x0) = —f(x0), 50 § = x0 + V(—f(x0)). The inverse polynomal interpolation method
avoids the need to find the zero of a polynomial by approximating ¥ rather than P. In fact,
the inverse method takes x; = xo + V.(—f(x0)), where V, is the truncated reversion of P
(or, equivalently, of P.(s) = 71 s7f (x0)/j!). From Theorem 6.2, the combinatory cost is
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O(M(n)) = O(n log n). Thus, the combinatory cost of both the direct and inverse methods
is O(n log n). This result is mainly of theoretical mnterest, for in practice » is usually small.

Application to Queueing Theory. By a result of Brockwell [11] and Finch [15, 16] it can
be shown that for a GI/M/1 queue which 1s imitially empty, the probability that the nth
arrival finds more than j customers in the queue is the coefficient of s~ ~" in the generating
function P’(s)/((P(s)/5)"*'(1 — P(s))) for some given power series P(s). Hence the method
used in the proof of Theorem 6.2 can be applied with small changes for computing the
probabilities. The details of this result will be given in a separate paper.

Evaluation of One Coefficient in Composition. Let P, Q € #,p, = 0, and R(s) =
Q(P "1 (5)). The following theorem is similar to Theorem 6.1.

THEOREM 6.3. L(r, mod p1, ..., pn, qo, .. , gn) = O(M(n)).

PrROOF. Since ro = ¢o, we may suppose n > 0. From the Lagrange-Biirmann theorem,

rn = 1es,[ Q'(s)/ P"(5)]/n = coefficient of s™* in Q' (s)(s/ P(s))"/n,

so the result follows from Lemma 6.2. O

It is an open problem whether Theorem 6.3 holds if R(s) = Q(P(s)) instead of
O(P7V(s)).

A Numerical Example. Taking P(s) = 1 — exp(—s), we evaluated the truncated reversion
V. at a for various n and a by the algorithm establishing Theorem 6.2, using a Univac
1108 computer with a 60-bit floating-point fraction. The effect of rounding errors increased
as n increased, but was not excessive for small values of a. (In the root-finding application
a should be small.) It seems that the growth in rounding error is due to the ill-conditioning
of the problem. Some typical results are given in Table I, where V,.(a) are the computed
values.

TABLE 1
n a | Val@) — Va(a)] n a | Va(a) = Va(a)]
16 01 3x 1078 32 02 8 x 1071
16 02 1 x 107 32 04 5% 107"
16 04 1 x 107" 32 08 8x 1072
16 0.8 5x 107 64 01 4% 107"
16 16 6 x 1077 64 02 5 107
32 01 9 x 107" 64 04 2x 1078

7. Multivariate Cases

We have so far dealt with power series in one variable. The results of previous sections in
principle can be apphed and generalized to power series in several variables, provided that
appropriate care is taken to handle various singularity problems associated with multivari-
ate power series. In this section we state some of our results on the composition problem
for bivariate power series. For more complete treatment of the multivariate case, the reader
is referred to Brent and Kung [10}].

We first extend our mod s™*' notation to bivariate power series. Let Q(s, #) =
Y=o q.,,5't) be a bivariate power series. We define the degree of the term ¢, ,5°t’ to be
i+ j. Q(s, 1) mod (s + #)**' denotes the finite series consisting of all terms of Q(s, ¢) of
degree less than n + 1. To compute Q(s, f) mod (s + 1)**! means to compute the g, , for all
;,ysuch thati+j=<n.

THEOREM 7.1.  Given a bivariate power series Q and two univariate series P1, P; with no
constant terms, R(s) = Q(Pi(s), Px(s)) mod s™*' can be computed in O(n’log n) operations.

THEOREM 7.2. Given a univariate power series () and a bivariate series P with no constant
term, R(s, {) = Q(P(s, D)) mod (s + £)**" can be computed in O(n® 5Iog n) operations.

THEOREM 7.3. Given three bivariate power series Py, P2, and Q, where P, and P, have
no constant terms, R(s, £) = Q(Pu(s, 1), Px(s, 1)) mod (s + t)"*! can be computed in O(n”*log" °n)
operations.
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Note that the classical bounds for the composition problems considered in Theorems
7.1, 7.2, and 7.3 are O(n*), O(r°), and O(n%), respectively (or O(nlog n), O(n’log n), and
O(n*log n), respectively, if the FFT polynomial multiplication is used).
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