
Comparing Several GCD Algorithms

T. Jebelean

RISC-Linz, A-4040 Austria
tjebeleaQrisc.uni-1inz.ac.at

Abstract 0 binary, I-binary: The binary GCD algorithm
([lS]) and its improvement for multidigit integers
(Gosper, see [12]). We compare the executron times of several algo-

ixtliiiis for computing the G‘C‘U of arbitrary precasion
iirlegers. These algorithms are the known ones (Eucli-
dean, brnary, plus-mrnus), and the improved variants
of these for multidigit compzltation (Lehmer and simi-
lar), as well as new algorithms introduced b y the aut-
hor: an improved Lehmer algorithm using two digits in
partial cosequence computation, and a generalization
of the binary algorithm using a new concept of “m.0-
dalar conjugates”. The last two algorithms prove to be
the fastest of all, giving a speed-,up of 6 to 8 times over
th.e classical Euclidean scheme, and 2 times over the
best currently known algorathins. Also, the generalized
binary algorithm is suitable for systolic parallelization,
an “least-significant digits first” pipelined manner.

1 Introduction

Computation of the Greatest Common Divisor
(GCD) of long integers is heavily used in computer
algebra. systems, because it , occurs in normalization of
ra.tiona1 numbers and other important subalgorithms.
Accordiiig to our experiments [SI, in typical algebraic
comput,ations more than half of the time is spent.
for calculating GCD of long integers. For instance,
in Grobner Bases computation [4], calculating GCD
takes 53% of the total time if the length of the input
coefficients is 5 decimal digits and 70% if the length is
50.

We report here on the computing time of multipre-
cis ion G C: D computation by t.h e fol low4 ng algor i t h ins :

0 Euclid, I-Euclid, I-I-Euclid: The classical Eu-
clidean scheme, the improvement of it for multidi-
git. integers ([13]), and a further improvement, by
the author using two digits in partial cosequence
computation ([SI).

0 PlusMinus, I-PlusMinus: The plus-minus
scheme introduced in [2] and its improvement for
multidigit computation.

G-binary, I-G-binary: A new algorithm for
multiprecision GCD, which generalizes the binary
and plus-minus GCD algorithms and its improve-
ment by using two digits in computation of cofac-
tors [IO].

We did not consider the GCD algorithms based
on FFT multiplication scheme ([15], [14]), which are
asymptotically faster, but are not expected to give a
practical speed-up for the range of integers we are in-
terested in (up to 100 words of 32 bits).

The results of the experiment show the following
speed-up over the raw Euclidean scheme, for random
pairs of integers with 100 words of 32 bits:

0 2 times for binary and PlusMinus;

0 3.5 times for I-Euclid and I-PlusMinus;

5 times for I-binary and G-binary;

0 6.5 times for I-I-Euclid;

0 8 times for I-G-binary.

The investigation presented here is part of a more
general research aimed at speeding-up algebraic com-
putations by systolic parallelization of arbitrary pre-
cision rational arithmetic. In this context, it is im-
portant to note that I-PlusMinus, G-binary and I-
G-Binary are suitable for this kind of parallelization.
Also, these three algorithms work “least-significant di-
gits first,” (LSF), hence they are suitable for pipelined
aggregation with other LSF systolic algorithms (mul-
tiplication: [l], exact division: [ll]).

180

1063-6889/93 $03.00 0 1993 IEEE

2 Description of algorithms

We present here the outline of the GCD algorithms
which were measured, and indicate the appropriate li-
terature for the readers which are interested in more
details concerning the correctness proofs and comple-
xity analysis.

2.1 Euclid

Starting with two positive integers A0 2 A I , one
computes the remainder sequence { A k } l < k < n + l defi-
ned by the relations:

and then one has: GCD(Ao, .41) = A,L.

presented in [12].
An extensive discussion on Euclidean algorithm is

2.2 I-Euclid

The ettended Euclidean algorithm (also in [12])
consists in computing the additional sequences
{ q k } l < k < n , { u k , V k } O < k < n + l defined by:

which have the properties:

(2)
U k * A 0 - V k * A I , if k even,
-uk * A. + v1: * A I , if k odd, t l k =

The sequences { U k , V k } of cofactors are called cose-
quences of { A k } .

If A 0 and A 1 are multiprecision integers, then let a 0

and a1 be the most significant 32 bits of A 0 and the
corresponding bits of A l . Lehmer [13] noticed that
part of the sequence { Q k } can be computed by:

q;+i = l a k / a k + l] j a k + 2 = a k l n o d a k + l , (3)

aiid as long as q i = q k , the sequences { U k , U t } com-
puted as in (1) are the correct ones. Hence, the algo-
rithm I-Euclid simulates several steps of the Eucli-
dean algorithm by using only simple precision arith-
metic. This process is called digit partial cosequence
computation (see [SI). When q;+? # Q k + 2 , then A k
and A k + l are recovered using (2), and the cycle can
start again.

The algorithm needs a sufficient condition for
qi+ l = q k . We have used:

a k + l 2 v k + l and (a k - ak+l) 2 (v k -k v k + l) , (4)

which was developed in [6].
Recovering A I , A k + 1 involves 4 multiplications of a

single digit number by a multidigit number, and this is
the most time consuming part of the whole computa-
tion. Experimentally, one notices that final cofactors
are usually shorter than 16 bits. Therefore, if par-
tial cosequences would be computed for pairs of dou-
ble digits, then the recovering step would require the
same computational effort, but will occur (roughly)
two times less frequently. This idea suggests the next
improvement of the Euclidean algorithm.

2.3 I-I-Euclid

The basic structure of the algorithm is the same as
above, but we use a new condition for q i = q k , which
also ensures that cofactors are smaller than one word
(32 bits). For developing this condition, we use the
continuant polynomials (see also [12]) defined by:

QoO = 1,
Q i (2 i) = 2 1 ,

Q k + z (Z i , . . . , Z k + 2 > =
Q k (Z i , . . . , Z k) 4- z k + 2 * Q k + i (Z i , . . . , Z k + l)

(5)

& k (Z i , . . . , Z k) = Q k (Z k , . . . , z i) . (6)

{
which are known to enjoy the symmetry:

By comparing the recurrence relations (1) and (5)
one notes:

(7)
u k = Q k - z (q 2 , . . . , q k - l) ,

V k = Q k - i (Q i , . . . , Q k - i) .

Also, by transforming (3) into:

a k = a k + 2 + Q k + l * a k + l ,

and using a k > a k + l , one can prove:

ao 2 a k * Q k (Q k , . . . , Q i) ,
ai 2 a k * Q k - i (Q k , . . . , 4 2) .

Hence by (6) and (7) one has:

(8)
v k + l 5 a O / a k ,

u k + 1 5 a l / a k .

The previous relations allow us to develop an alter-
native to (4), which is:

(9)

Indeed. one has:

and:

vk + v k + l 5 vk + q k + l * v k + l = v k + 2 5
5 ao/at+l < ao/& = 6.

Also, note that when (9) holds:

(10) vk < Vk+l 5 aO/ak < 6,
uk Uk+l 5 al/ak 6.

For the practical implementation, if ao, a1 are dou-
ble words (64 bits), then condition (9) is satisfied if
the higher word of ak+2 is nonzero, and (10) implies
uk, V k , uk+l, V k + l are at most one word (32 bits) long.

A more detailed description of the theoretical back-
ground and of the implementation can be found in [SI.

2.4 Binary and PlusMinus

The binary GCD algorithm ([16], [12], [3]) is based
on the relations:

G C D (A , B) = G C D (A - B , B) ,
If A odd, B even, then (11)

GCD(A, B) = GCD(A, B/2) .

The algorithm begins by shifting Ao, A1 rightwise as
many positions as there are zero trailing bits, and
stores the number of common zero bits for being in-
corporated into the resulting GCD at end of compu-
tation. After shifting Ao,Al are odd, hence A2 =
IAo - All is even. A2 is then shifted rightwise for
skipping the zero bits and the cycle is repeated with
A2 and min(A0, A I) . Note that it is necessary to know
at each step which of Ak, Ak+1 is the largest. When
.4k = 0, then the GCD is Ak-1 shifted leftward with
the number of common zero bits of Ao, A l .

The multidigit version I-binary (see [12]) is deve-
loped from binary in the same way I-Euclid is de-
veloped from Euclid. For a certain number of steps,
one can decide which shifts/subtractions are needed
by only looking a t the most-significant and least-
significant digits of Ao, A l . These shifts and subtrac-
tions are encoded into cofactors which allow the re-
covery of & , & + I when single digit operation is not
possible anymore.

The need to compare Ak, Ae+l at each step pre-
vents efficient parallelization of binary. In order to

overcome this, the PlusMinus algorithm was develo-
ped in [2]. This algorithm is based on (11) and sup-
plementary relations:

G C D (A , B) = G C D (A + B, B),
If A , B odd, then 41(A + B) or 41(A - B).

Therefore, each step consists of choosing A',+, = Ak +
Ak+l or A',+, = A t -&+I such that 41A;+,., and then
setting &+2 to A',+, shifted rightward to skip the zero
bits. Note that in this case it is not important anymore
to know which of AI:, Ah+l is the largest. The scheme
works even if one (or both) of the operands become
negative.

This makes easier the implementation of I-
PlusMinus, since there is no need to keep track of
the most-significant digits of Ao, Al.

Note also that further improvement of I-binary
and I-PlusMinus is not possible in the way we did
it for I-Euclid, because in this case the cofactors are
not bound by half-word size.

2.5 G-Binary

A natural generalization of the plus-minus scheme
is the following:

Let m 2 1 be a constant. Given positive long
integers A , B, let a, b be the least significant
2m bits. Find z, y with a t most m bits, such
that:

22m I (I * a + y * b) or Pm I (x * a - y * b)

We shall call x, y the modular conjugates of a, b .
Note that for m = 1 the plusminus scheme is ob-

tained.
It is interesting that, if a, b are odd, then such mo-

dular conjugates always exist. Indeed, since b is odd,
there exists b-l mod 22m. Then (12) is equivalent to:

(12)

(z * c f y) mod 22m = 0, (13)

where:
c = (a * b- ') mod 22m

If one applies the extended Euclidean algorithm for
a0 = 22m, a1 = c , one obtains GCD(22m, c) = 1 <
2"', since c is odd. Let us consider that E for which
ak-1 2 2m and ak < 2m. According to (8), we also
have: V k < 6 = 2*. If we set x = V k and y = a t ,
then by (2):

f u k * 22m 7 * c = y,

which implies (13), hence these are the conjugates we
need.

Now let A, B be two multidigit odd integers. By ap-
plying the scheme above we get C = (~ + A f y * B) / 2 ~ ~
which is (roughly) m bits shorter than max(A,B).
This is efficient when (length(A) - length(B)) is small
(for m = 64, we experimentally observed that the best
threshold is 8). Otherwise, it is more efficient to bring
the lengths closer by another scheme - for instance, by
division. However, division is not suitable for paralle-
lization, and it is also a relatively slow operation. We
applied instead the “exact division” scheme described
in [9], which works like this:

Let be d = length(A) - length(B) and u , b
the trailing d bits of A, B.
Set c = (U * b - ’) mod 2 d .
Then C = (A - c * B) / 2 d is (roughly) d bits
shorter than A.

Hence, the generalized binary algorithm consists
in alternating the “exact division” step with “inter-
reduction by modular conjugates” step. After each al-
ternation, the two operands become (roughly) m bits
shorter (m = 16 for G-binary and m = 32 for I-G-
binary). Note that two such steps need 3 multiplica-
tions of a simple precision integer by a multiprecision
integer (vs. 4 multiplications in I-Euclid), but ne-
vertheless the same reduction of the two operands is
obtained.

The algorithm terminates when a 0 is obtained. If 0
is obtained after an exact division step, then G’ = B,
and if 0 is obtained after an inter-reduction step, then
G’ = (A * GCD(3:, y))/y = (B * GCD(2, y))/z, where
G’ is the approximative GCD of initial A , B. Howe-
ver, G’ is in general different from G = GCD(A, B) ,
because

GCD(A, B) I GCD(B, 3: * A f y * B) ,

but not the other way around. A “noise” factor may
be introduced at each inter-reduction step, and the
combined noise must be eliminated after finding G’
by :

(14)
GCD(A, B) = GCD(G’, A, B)

= GCD(GCD(G’, A mod GI), B mod G’)).

This “noise” is nevertheless small in the average case
(see [lo]), and we experimentally noticed that the ope-
rations (14) take less than 5% of the total GCD com-
putation time, in average.

We also note that the operation 3:-’ mod22m,
which is quite costly when performed via the extended
Euclidean algorithm, was implemented using a scheme
developed in [9]:

Let be z = z1* P + 20. Then:

z-’ modP2 = (((l-z*a’)*t’)++’) modP2

where z’ = (zo)-l mod P

Using this relation, the computation of modular in-
verse of a [double] word was reduced to the modular
inverse of a half-word, which was done by look-up in
a precomputed table.

More details concerning the theoretical background
and the implementation of this algorithm can be found
in [IO].

Finally, let us note that this algorithm is suitable
for systolic implementation in the “least-significant di-
gits first” manner, because all the decisions on the
procedure are taken using only the lowest digits of the
operands.

3 Experiment settings and results

We implemented the algorithms using the GNU
multiprecision arithmetic library [7], under the GNU
optimizing C compiler. The experiments were done
using a the Digital DECstation 5000/200 (RISC ar-
chitecture). For each length, each of the algorithms
was applied to 1000 pairs of random integers.

The figures on the next page present the absolute
timings in milliseconds and the speed-up over the raw
Euclidean algorithm (Euclid). The absolute timings
for 100 word operands are 317 milliseconds for the raw
Euclidean algorithm and 39 milliseconds for improved
generalized binary (I-G-binary).

Acknowledgements

Austrian Forschungsforderungsfonds, project
S5302-PHY (Parallel Symbolic Computation).

Austrian Ministry for Science and Research, p r e
ject 613.523/3-27a/89 (Grobner Bases) and doctoral
scholarship.

POSSO project(Polynomial Systems Solving - ES-
PRIT I11 BRA 6846).

References

[l] A. J . Atrubin, “A one-dimensional iterative mul-
tiplier”, IEEE Trans. Computers, Vol C-14, pp.
394-399,1965.

183

I I I I I

0 0 0
I

0
0 5: c) 2 2

8
0 ea

0
U) ea

0
(D e 9

184

[2] R. P. Brent, H. T. Kung, “Systolic VLSI arrays for
linear-time GCD computation”, in V. Anceau, E.
J . Aas (eds.), VLSI’83, Elsevier (North-Holland),
pp. 145 - 154, 1983.

[3] R. P. Brent, “ Analysis of the binary Euclidean al-
gorithm”, in J . F. Traub (ed.), New directions and
recent results in algorithms and complexity, Aca-
demic Press, pp. 321 - 355, 1976.

[4] B. Buchberger, “Grobner Bases: An Algorithmic
Method in Polynomial Ideal Theory”, in N. K.
Bose (ed.), Multidimensional Systems Theory, D.
Reidel Publishing Co., 1985.

[5] B. Buchberger, T . Jebelean, “Parallel Rational
Arithmetic for Computer Algebra systems: Mo-
tivating Experiments”, RISC-Linz Report 92-29,
May 1992.

[6] G. E. Collins, “Lecture notes on arithmetic algo-

[7] T. Granlund, “GNU MP: The GNU multiple pre-
cision arithmetic library”, Free Software Founda-
tion, 1991.

rithms”, Univ. of Wiscousin, 1980.

[8] T. Jebelean, “Improving the niultiprecision Eucli-
dean algorithm”, RISC-Linz Report 92-69.

[9] T. Jebelean, “An algorithm for exact division”, J .
Symbolic Computation, Vol. 15, February 1993.

[lo] T . Jebelean, “A generalization of the binary GCD
algorithm”, ISSAC’93 (Kiew, July 1993).

[ll] T. Jebelean, “Systolic algorithms for exact divi-
sion”, PARS Workshop (Dresden, April 1993).

[12] D. E. Knuth, The art of computer programming,
Vol. 2, 2nd edition, Addison-Wesley 1981.

[13] D. H. Lehmer, “Euclid’s algorithmfor large num-
bers”, Am. Math. Mon., Vol. 45, pp. 227-233,
1938.

(141 R. T. Moenck, “Fast computation of GCDs” , Pro-
ceedings ACM V t h Symp. Theory of Computing,
pp. 142-151, 1973.

[15] A. Schonhage, “Schnelle Berechung von Ketten-
bruchentwicklugen”, Acta Informatica, Vol. 1, pp.
139-144, 1971.

[16] J . Stein, “Computational problems associated
with Racah algebra”, J. Comp. Phys., Vol. 1, pp.
397-405, 1967.

185

