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Abstract 0 binary, I-binary: The binary GCD algorithm 
([lS]) and its improvement for multidigit integers 
(Gosper, see [12]). We compare the executron times of several algo- 

ixtliiiis for computing the G‘C‘U of arbitrary precasion 
iirlegers. These algorithms are the known ones (Eucli- 
dean, brnary, plus-mrnus), and the improved variants 
of these for  multidigit compzltation (Lehmer and simi- 
lar), as well as new algorithms introduced b y  the aut- 
hor: an improved Lehmer algorithm using two digits in  
partial cosequence computation, and a generalization 
of the binary algorithm using a new concept of “m.0- 
dalar conjugates”. The last two algorithms prove to  be 
the fastest of all, giving a speed-,up of 6 to 8 times over 
th.e classical Euclidean scheme, and 2 times over the 
best currently known algorathins. Also, the generalized 
binary algorithm is suitable for systolic parallelization, 
an “least-significant digits first” pipelined manner. 

1 Introduction 

Computation of the Greatest Common Divisor 
(GCD) of long integers is heavily used in computer 
algebra. systems, because it ,  occurs in normalization of 
ra.tiona1 numbers and other important subalgorithms. 
Accordiiig to our experiments [SI, in  typical algebraic 
comput,ations more than half of the time is spent. 
for calculating GCD of long integers. For instance, 
in  Grobner Bases computation [4], calculating GCD 
takes 53% of the total time if the length of the input 
coefficients is 5 decimal digits and 70% if the length is 
50. 

We report here on the computing time of multipre- 
cis ion G C: D computation by t.h e fol low4 ng algor i t h ins : 

0 Euclid, I-Euclid, I-I-Euclid: The classical Eu- 
clidean scheme, the improvement of it for multidi- 
git. integers ([13]), and a further improvement, by 
the author using two digits in partial cosequence 
computation ([SI). 

0 PlusMinus, I-PlusMinus: The plus-minus 
scheme introduced in [2] and its improvement for 
multidigit computation. 

G-binary, I-G-binary: A new algorithm for 
multiprecision GCD, which generalizes the binary 
and plus-minus GCD algorithms and its improve- 
ment by using two digits in computation of cofac- 
tors [IO]. 

We did not consider the GCD algorithms based 
on FFT multiplication scheme ([15], [14]), which are 
asymptotically faster, but are not expected to give a 
practical speed-up for the range of integers we are in- 
terested in (up to 100 words of 32 bits). 

The results of the experiment show the following 
speed-up over the raw Euclidean scheme, for random 
pairs of integers with 100 words of 32 bits: 

0 2 times for binary and PlusMinus; 

0 3.5 times for I-Euclid and I-PlusMinus; 

5 times for I-binary and G-binary; 

0 6.5 times for I-I-Euclid; 

0 8 times for I-G-binary. 

The investigation presented here is part of a more 
general research aimed at speeding-up algebraic com- 
putations by systolic parallelization of arbitrary pre- 
cision rational arithmetic. In this context, it is im- 
portant to note that I-PlusMinus, G-binary and I- 
G-Binary are suitable for this kind of parallelization. 
Also, these three algorithms work “least-significant di- 
gits first,” (LSF), hence they are suitable for pipelined 
aggregation with other LSF systolic algorithms (mul- 
tiplication: [l], exact division: [ll]). 
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2 Description of algorithms 

We present here the outline of the GCD algorithms 
which were measured, and indicate the appropriate li- 
terature for the readers which are interested in more 
details concerning the correctness proofs and comple- 
xity analysis. 

2.1 Euclid 

Starting with two positive integers A0 2 A I ,  one 
computes the remainder sequence { A k } l < k < n + l  defi- 
ned by the relations: 

and then one has: GCD(Ao, .41) = A,L.  

presented in [12]. 
An extensive discussion on Euclidean algorithm is 

2.2 I-Euclid 

The ettended Euclidean algorithm (also in [12]) 
consists in computing the additional sequences 
{ q k } l < k < n ,  { u k ,  V k } O < k < n + l  defined by: 

which have the properties: 

(2)  
U k  * A 0  - V k  * A I ,  if k even, 
-uk * A.  + v1: * A I ,  if k odd, t l k  = 

The sequences { U k , V k }  of cofactors are called cose- 
quences of { A k } .  

If A 0  and A 1  are multiprecision integers, then let a 0  

and a1 be the most significant 32 bits of A 0  and the 
corresponding bits of A l .  Lehmer [13] noticed that 
part of the sequence { Q k }  can be computed by: 

q;+i = l a k / a k + l ] j  a k + 2  = a k  l n o d a k + l ,  (3)  

aiid as long as q i  = q k ,  the sequences { U k ,  U t }  com- 
puted as in (1) are the correct ones. Hence, the algo- 
rithm I-Euclid simulates several steps of the Eucli- 
dean algorithm by using only simple precision arith- 
metic. This process is called digit partial cosequence 
computation (see [SI). When q;+? # Q k + 2 ,  then A k  
and A k + l  are recovered using (2), and the cycle can 
start again. 

The algorithm needs a sufficient condition for 
qi+ l  = q k .  We have used: 

a k + l  2 v k + l  and ( a k  - ak+l)  2 ( v k  -k v k + l ) ,  (4) 

which was developed in [6]. 
Recovering A I ,  A k + 1  involves 4 multiplications of a 

single digit number by a multidigit number, and this is 
the most time consuming part of the whole computa- 
tion. Experimentally, one notices that final cofactors 
are usually shorter than 16 bits. Therefore, if par- 
tial cosequences would be computed for pairs of dou- 
ble digits, then the recovering step would require the 
same computational effort, but will occur (roughly) 
two times less frequently. This idea suggests the next 
improvement of the Euclidean algorithm. 

2.3 I-I-Euclid 

The basic structure of the algorithm is the same as 
above, but we use a new condition for q i  = q k ,  which 
also ensures that cofactors are smaller than one word 
(32 bits). For developing this condition, we use the 
continuant polynomials (see also [12]) defined by: 

QoO = 1, 
Q i ( 2 i )  = 2 1 ,  

Q k + z ( Z i , .  . . , Z k + 2 >  = 
Q k ( Z i  , . . . , Z k )  4- z k + 2  * Q k + i ( Z i , .  . . , Z k + l )  

( 5 )  

& k ( Z i , .  . . , Z k )  = Q k ( Z k , .  . . , z i ) .  (6) 

{ 
which are known to enjoy the symmetry: 

By comparing the recurrence relations (1) and (5 )  
one notes: 

(7) 
u k  = Q k - z ( q 2 , .  . . , q k - l ) ,  

V k  = Q k - i ( Q i , .  . . , Q k - i ) .  

Also, by transforming (3) into: 

a k  = a k + 2  + Q k + l  * a k + l ,  

and using a k  > a k + l ,  one can prove: 

ao 2 a k  * Q k ( Q k , .  . . , Q i ) ,  
ai 2 a k  * Q k - i ( Q k , .  . . , 4 2 ) .  

Hence by (6) and (7) one has: 

(8 )  
v k + l  5 a O / a k ,  

u k + 1  5 a l / a k .  

The previous relations allow us to develop an alter- 
native to (4), which is: 

(9) 



Indeed. one has: 

and: 

vk + v k + l  5 vk + q k + l  * v k + l  = v k + 2  5 
5 ao/at+l < ao/& = 6. 

Also, note that when (9) holds: 

(10) vk < Vk+l 5 aO/ak < 6, 
uk Uk+l 5 al/ak 6. 

For the practical implementation, if ao, a1 are dou- 
ble words (64 bits), then condition (9) is satisfied if 
the higher word of ak+2 is nonzero, and (10) implies 
uk, V k ,  uk+l, V k + l  are at most one word (32 bits) long. 

A more detailed description of the theoretical back- 
ground and of the implementation can be found in [SI. 

2.4 Binary and PlusMinus 

The binary GCD algorithm ([16], [12], [3]) is based 
on the relations: 

G C D ( A ,  B )  = G C D ( A  - B ,  B ) ,  
If A odd, B even, then (11) 

GCD(A,  B )  = GCD(A,  B/2) .  

The algorithm begins by shifting Ao, A1 rightwise as 
many positions as there are zero trailing bits, and 
stores the number of common zero bits for being in- 
corporated into the resulting GCD at end of compu- 
tation. After shifting Ao,Al are odd, hence A2 = 
IAo - All is even. A2 is then shifted rightwise for 
skipping the zero bits and the cycle is repeated with 
A2 and min(A0, A I ) .  Note that it is necessary to know 
at each step which of Ak, Ak+1 is the largest. When 
.4k = 0, then the GCD is Ak-1 shifted leftward with 
the number of common zero bits of Ao, A l .  

The multidigit version I-binary (see [12]) is deve- 
loped from binary in the same way I-Euclid is de- 
veloped from Euclid. For a certain number of steps, 
one can decide which shifts/subtractions are needed 
by only looking a t  the most-significant and least- 
significant digits of Ao, A l .  These shifts and subtrac- 
tions are encoded into cofactors which allow the re- 
covery of & , & + I  when single digit operation is not 
possible anymore. 

The need to compare Ak, Ae+l at each step pre- 
vents efficient parallelization of binary. In order to 

overcome this, the PlusMinus algorithm was develo- 
ped in [2]. This algorithm is based on (11) and sup- 
plementary relations: 

G C D ( A ,  B )  = G C D ( A  + B, B), 
If A ,  B odd, then 41(A + B) or 41(A - B). 

Therefore, each step consists of choosing A',+, = Ak + 
Ak+l or A',+, = A t  -&+I such that 41A;+,., and then 
setting &+2 to A',+, shifted rightward to skip the zero 
bits. Note that in this case it is not important anymore 
to know which of AI:, Ah+l is the largest. The scheme 
works even if one (or both) of the operands become 
negative. 

This makes easier the implementation of I- 
PlusMinus, since there is no need to keep track of 
the most-significant digits of Ao, Al. 

Note also that further improvement of I-binary 
and I-PlusMinus is not possible in the way we did 
it for I-Euclid, because in this case the cofactors are 
not bound by half-word size. 

2.5 G-Binary 

A natural generalization of the plus-minus scheme 
is the following: 

Let m 2 1 be a constant. Given positive long 
integers A ,  B, let a,  b be the least significant 
2m bits. Find z, y with a t  most m bits, such 
that: 

22m I (I * a  + y * b )  or Pm I (x * a  - y * b )  

We shall call x, y the modular conjugates of a,  b .  
Note that for m = 1 the plusminus scheme is ob- 

tained. 
It is interesting that, if a,  b are odd, then such mo- 

dular conjugates always exist. Indeed, since b is odd, 
there exists b-l  mod 22m. Then (12) is equivalent to: 

(12) 

(z * c f y) mod 22m = 0, (13) 

where: 
c = (a  * b- ' )  mod 22m 

If one applies the extended Euclidean algorithm for 
a0 = 22m, a1 = c ,  one obtains GCD(22m, c) = 1 < 
2"', since c is odd. Let us consider that E for which 
ak-1 2 2m and ak < 2m. According to (8), we also 
have: V k  < 6 = 2*. If we set x = V k  and y = a t ,  
then by (2): 

f u k  * 22m 7 * c = y, 



which implies (13), hence these are the conjugates we 
need. 

Now let A, B be two multidigit odd integers. By ap- 
plying the scheme above we get C = ( ~ + A f y * B ) / 2 ~ ~  
which is (roughly) m bits shorter than max(A,B). 
This is efficient when (length(A) - length(B)) is small 
(for m = 64, we experimentally observed that the best 
threshold is 8). Otherwise, it is more efficient to bring 
the lengths closer by another scheme - for instance, by 
division. However, division is not suitable for paralle- 
lization, and it is also a relatively slow operation. We 
applied instead the “exact division” scheme described 
in [9], which works like this: 

Let be d = length(A) - length(B) and u , b  
the trailing d bits of A, B. 
Set c = (U * b - ’ )  mod 2 d .  
Then C = (A - c * B ) / 2 d  is (roughly) d bits 
shorter than A.  

Hence, the generalized binary algorithm consists 
in alternating the “exact division” step with “inter- 
reduction by modular conjugates” step. After each al- 
ternation, the two operands become (roughly) m bits 
shorter (m = 16 for G-binary and m = 32 for I-G- 
binary). Note that two such steps need 3 multiplica- 
tions of a simple precision integer by a multiprecision 
integer (vs. 4 multiplications in I-Euclid), but ne- 
vertheless the same reduction of the two operands is 
obtained. 

The algorithm terminates when a 0 is obtained. If 0 
is obtained after an exact division step, then G’ = B, 
and if 0 is obtained after an inter-reduction step, then 
G’ = (A * GCD(3:, y))/y = ( B  * GCD(2, y))/z, where 
G’ is the approximative GCD of initial A ,  B.  Howe- 
ver, G’ is in general different from G = GCD(A, B ) ,  
because 

GCD(A, B )  I GCD(B, 3: * A f y * B ) ,  

but not the other way around. A “noise” factor may 
be introduced at each inter-reduction step, and the 
combined noise must be eliminated after finding G’ 
by : 

(14) 
GCD(A, B )  = GCD(G’, A, B )  

= GCD(GCD(G’, A mod GI), B mod G’)). 

This “noise” is nevertheless small in the average case 
(see [lo]), and we experimentally noticed that the ope- 
rations (14) take less than 5% of the total GCD com- 
putation time, in average. 

We also note that the operation 3:-’ mod22m, 
which is quite costly when performed via the extended 
Euclidean algorithm, was implemented using a scheme 
developed in [9]: 

Let be z = z1* P + 20. Then: 

z-’ modP2 = (((l-z*a’)*t’)++’) modP2 

where z’ = (zo)-l mod P 

Using this relation, the computation of modular in- 
verse of a [double] word was reduced to the modular 
inverse of a half-word, which was done by look-up in 
a precomputed table. 

More details concerning the theoretical background 
and the implementation of this algorithm can be found 
in [IO]. 

Finally, let us note that this algorithm is suitable 
for systolic implementation in the “least-significant di- 
gits first” manner, because all the decisions on the 
procedure are taken using only the lowest digits of the 
operands. 

3 Experiment settings and results 

We implemented the algorithms using the GNU 
multiprecision arithmetic library [7], under the GNU 
optimizing C compiler. The experiments were done 
using a the Digital DECstation 5000/200 (RISC ar- 
chitecture). For each length, each of the algorithms 
was applied to 1000 pairs of random integers. 

The figures on the next page present the absolute 
timings in milliseconds and the speed-up over the raw 
Euclidean algorithm (Euclid). The absolute timings 
for 100 word operands are 317 milliseconds for the raw 
Euclidean algorithm and 39 milliseconds for improved 
generalized binary (I-G-binary). 
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