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A long note on Mulders’ short product
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Abstract

The short product of two power series is the meaningful part of the product of these objects,
i.e.,

∑
i+ j<n ai b j xi+ j . Mulders (AAECC 11 (2000) 69) gives an algorithm to compute a short

product faster than the full product in the case of Karatsuba’s multiplication (Karatsuba and Ofman,
Dokl. Akad. Nauk SSSR 145 (1962) 293). This algorithm works by selecting a cutoff pointk and
performing a full k × k product and two(n − k) × (n − k) short products recursively. Mulders also
gives a heuristically optimal cutoff pointβn. In this paper, we determine the optimal cutoff point in
Mulders’ algorithm. We also give a slightly more general description of Mulders’ method.
© 2003 Elsevier Ltd. All rights reserved.
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CYRANO

Ah ! non ! c’est un peu court, jeune homme !
On pouvait dire . . . Oh ! Dieu ! . . . Bien des choses en somme . . .

E. Rostand,Cyrano de Bergerac

1. Introduction

Let A = ∑
0≤i<n ai x i + O(xn) andB = ∑

0≤i<n bi x i + O(xn) be two power series.
Their product is naturally defined as

∑
0≤i<n(

∑
j+k=i a j bk)xi + O(xn). We shallcall this

operation theshort product of A andB, andnote it AB modxn.
A trivial way to compute a short product is to compute the full product and discard

the high order terms. It has long been an open problem to know whether it is possible
to compute a short product faster than a full one in a subquadratic multiplication model.
Mulders(2000) gives a positive answer, on average, under a multiplication model≈ nα

with 1 < α < 2.
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Mulders’ algorithm consists in writingAi = Pi + xk Qi , i = 1, 2 wheredeg(Pi) < k,
with k ≥ n/2. Then,A1A2 ≡ P1P2 + xk(Q1P2 + P1Q2 modxn−k) modxn. Namely, a
short product of two ordern power series can be computed as a full product of two orderk
power series, and two short products of ordern − k power series, plus some operations of
lower complexity.

The main question with Mulders’ algorithm is to find the optimal cutoff pointk, which
achieves the number of multiplications given byS(n) = minn/2≤k≤n(M(k) + 2S(n − k)),
whereM(n) (resp.S(n)) denotes the complexity of a full product (resp. short product) of
ordern power series.

In his paper, Mulders gives a heuristic analysis based on the approximationM(n) ≈ nα

and searches for a value ofk of the form βn. A heuristic optimal cutoff point is then
obtained for the Karatsuba model (Karatsuba and Ofman, 1962) (α = log2 3), with
β ≈ 0.694.

In the present paper we prove that the optimal cutoff point is obtained fork = 2�log2n� in
the Karatsuba model (Section 2). In Section 3, we present a variant of Mulders’ algorithm,
which directly achieves the optimal cutoff under the Karatsuba model. Finally, inSection 4,
we generalize the analysis to a non-trivial break-even point between quadratic and sub-
quadratic multiplication.

2. The optimal cutoff point

Let M(n) be the number of multiplications of a full product, and

S(n) = min
n/2≤k≤n

(M(k) + 2S(n − k))

the number of multiplications of Mulders’ short product.

Lemma 1. We have S(n + 1) ≥ S(n) for all n, as long as M(n) is non-decreasing.

Proof. Let s(n) be an optimal cutoff point forn (there may be several). Ifs(n+1) = n+1,
we haveS(n + 1) = M(n + 1) ≥ M(n) ≥ S(n). Otherwise we have

S(n) ≤ M(s(n + 1)) + 2S(n − s(n + 1))

≤ M(s(n + 1)) + 2S(n + 1 − s(n + 1)) − 2[S(n + 1 − s(n + 1))

− S(n − s(n + 1))]
≤ S(n + 1) − 2[S(n + 1 − s(n + 1)) − S(n − s(n + 1))],

from which the lemma follows by induction.�

We assume from now on the Karatsuba modelM(n) = K (n) for full products, given
by K (1) = 1, andK (n) = 2K (� n

2	) + K (� n
2�) for n ≥ 2.

Lemma 2. Let S(n) be the number of operations in Mulders’ algorithm with optimal cutoff
point. Then we have S(1) = 1, S(n) ≥ S(�n/2	) + 2S(�n/2�).
Proof. By induction, the casesn = 1 andn = 2 being trivial.
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Assume that the relation above is true fork < n. We have, by definition and induction,

S(n) = min� n
2	≤�≤n

(K (�) + 2S(n − �))

≥ min� n
2	≤�≤n

(
2K

(⌈
�

2

⌉)
+K

(⌊
�

2

⌋)
+2S

(⌈
n − �

2

⌉)
+4S

(⌊
n − �

2

⌋))
,

≥ 2 min� n
2	≤�≤n

(
K

(⌈
�

2

⌉)
+ 2S

(⌊
n − �

2

⌋))

+ min� n
2	≤�≤n

(
K

(⌊
�

2

⌋)
+ 2S

(⌈
n − �

2

⌉))
.

Assume first thatn = 2n1 + 1 and� = 2�1 + 1 are odd. Then

S(n) ≥ 2 min⌈
n1+1

2

⌉
≤�1+1≤n1+1

(K (�1 + 1) + 2S((n1 + 1) − (�1 + 1)))

+ min⌈
n1
2

⌉
≤�1≤n1

(K (�1) + 2S(n1 − �1)),

and the right-hand side is just 2S(n1 + 1) + S(n1) ≥ S
(⌈ n

2

⌉) + 2S
(⌊ n

2

⌋)
, according to

Lemma 1.
Assume thatn or � is even. Then we have

⌈ n−�
2

⌉ = ⌈ n
2

⌉−⌊
�
2

⌋
and

⌊ n−�
2

⌋ = ⌊ n
2

⌋−⌈
�
2

⌉
;

furthermore
⌈

�
2

⌉ ≤ ⌊ n
2

⌋
since� ≤ n. Hence,

S(n) ≥ 2 min⌈⌈
n
2

⌉
2

⌉
≤

⌈
�
2

⌉
≤� n

2�

(
K

(⌈
�

2

⌉)
+ 2S

(⌊n

2

⌋
−

⌈
�

2

⌉))

+ min⌊⌈
n
2

⌉
2

⌋
≤

⌊
�
2

⌋
≤� n

2�

(
K

(⌊
�

2

⌋)
+ 2S

(⌈n

2

⌉
−

⌊
�

2

⌋))
.

The first term is always larger than 2S
(⌊ n

2

⌋)
, whereas the second one might be smaller

thanS
(⌈ n

2

⌉)
only whenn = 4k + 1 or n = 4k + 2, for the choice

⌊
�
2

⌋ = k. However,
if n = 4k + 1, the only even value for� is 2k, which violates the condition� ≥ ⌈ n

2

⌉
;

and if n = 4k + 2, the only choice satisfying� ≥ ⌈n
2

⌉
is � = n/2, which gives

S(n) = K (n/2) + 2S(n/2) ≥ 3S(n/2). Hence we can assume that the second term is
larger thanS

(⌈n
2

⌉)
, from which the result follows. �

Lemma 3. Let S∗(n) be the number of multiplications obtained with cutoff point s(n) =
2�log2n�. Then S∗(1) = 1, S∗(n) = S∗ (⌈n

2

⌉) + 2S∗ (⌊ n
2

⌋)
.

Proof. By induction. This is obvious forn = 1. Assume the result is true forn ∈
[2k, 2k+1[. Then we haveS∗(2n) = K (2k+1)+2S∗(2(n−2k)) = 3(K (2k)+2S∗(n−2k)) =
3S∗(n) by induction, andS∗(2n+1) = K (2k+1)+2S∗(2(n−2k)+1) = 3K (2k)+2S∗(n+
1−2k)+4S∗(n −2k). If n +1 < 2k+1, we get 3K (2k)+2S∗(n +1−2k)+4S∗(n −2k) =
S∗(n + 1) + 2S∗(n). (In the special casen + 1 = 2k+1, the identity holds too since
K (2k) = S∗(2k) = 3k .) �
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Remark. For n = 2k , both cutoffss = 2k and s = 2k−1 give the same value, thus
Lemma 3remains true if we replace 2�log2n� by 2�log2(n−1)�.
Theorem 1. For Karatsuba multiplication, an optimal cutoff point in Mulders’ algorithm
is obtained for k = 2�log2n�, and S(n) = S

(⌈ n
2

⌉) + 2S
(⌊ n

2

⌋)
.

Proof. By definition, we haveS∗(n) ≥ S(n). By an easy induction, usingLemmas 2and
3, we haveS∗(n) ≤ S(n). The theorem follows. �

It is easily seenthat lim supS(n)/K (n) = 1, e.g., forn = 2t . If one takesxn = 1
3

(4n+1 − 1), easy calculations lead to limS(xn)/K (xn) = 3/5, and from an experimen-
tal viewpoint it seems to be the value of lim infS(n)/K (n). The average ofS(n)/K (n)

for n ≤ 226 is 0.705 754. Note that these values are better than expected from Mulders’
heuristic analysis.

3. A variant of Mulders’ algorithm

We can see Karatsuba’s algorithm the following way: the moduleKn[x] of truncated
Taylor series of ordern (i.e., degree less thann) can be written asK�n/2�[x] ⊕
x�n/2�K�n/2	[x]. Then to anyP ∈ Kn[x] we can associateQ ∈ K [x, t] = Q1 +
Q2t ; following the well-known interpretation of Karatsuba’s algorithm as an evaluation-
interpolation algorithm we can seeQ1 as the value at 0 andQ2 as the value at∞. Knowing
the value at a third point (usually 1, i.e.,Q1 + Q2) allows then one to reconstruct the
product.

We can use a slightly different decomposition in that case: putKn[x] = O�n/2	[x] ⊕
x O�n/2�[x], whereOk[x] = {P(x2), P ∈ Kk[x]}. Then, as in the preceding case, toP
we can associateQ = Q1 + Q2t . Assume thatQ and Q′ are series of ordern. Then, to
compute the short productQQ′, we need the lowern terms ofQQ′ = Q1Q′

1 + t (Q1Q′
2 +

Q2Q′
1) + t2Q2Q′

2.
This means that we need

• the lowern terms ofQ1Q′
1, which can be obtained by a short product ofQ1 by Q′

1
of size

⌈ n
2

⌉
(recall thatQ1 andQ′

1 are even series of ordern);
• the lowern − 1 terms of(Q1 + Q2)(Q′

1 + Q′
2) − Q1Q′

1 − Q2Q′
2; if the lowern − 1

terms ofQ1Q′
1 andQ2Q′

2 are known, this amounts to a short product of(Q1 + Q2)

by (Q′
1 + Q′

2) of order� n−1
2 	;

• the lowern − 2 terms ofQ2Q′
2; however for the above middle term we need the

lower n − 1 terms, which can be obtained by a short product ofQ2 by Q′
2 of order

� n−1
2 	.

From these remarks we can extract the following algorithm:

Algorithm ShortProduct

Input: f, g ∈ R[x], n apositiveinteger.

Output: f g modxn.

if n = 1 then

return ( f g modx)
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fi;
n0 := �n/2�, n1 := �n/2	
decomposef into feven(x2) + x fodd(x2), g into geven(x2) + xgodd(x2)

l := ShortProduct( feven, geven, n1)

h := ShortProduct( fodd, godd, n0)

m := ShortProduct( feven+ fodd, geven+ godd, n0) − l − h

return (l(x2) + xm(x2) + x2h(x2))

Theorem 2. Algorithm ShortProduct is correct, and performs the same number of ring
multiplications as Mulders’ algorithm for the Karatsuba model, with the optimal cutoff
value s = 2�log2n�.

Proof. We prove both the correctness and the optimality by induction onn. For n = 1,
the statement of the Theorem holds. Now let us assume it holds up ton − 1 for
n ≥ 2. As n0, n1 < n, we have by induction l(x2) = feven(x2)geven(x2) mod
x2n1, x2h(x2) = fodd(x2)godd(x2) modx2n0+2, and xm(x2) = x( feven(x2)godd(x2) +
fodd(x2)geven(x2)) modx2n0+1, which implies l(x2) + xm(x2) + x2h(x2) = f g modxn

since min(2n1, 2n0 + 1) = n. �
Remark. Practical comparisons of Mulders’ method and ours are given inSection 5in the
case of short products of polynomials inFp[X].

4. Mulders’ algorithm with quadratic multiplication for small sizes

Even though Karatsuba’s algorithm has a better asymptotic complexity than naive
multiplication, in practice for small sizes the latter performs much better. As a
consequence, any reasonable multiprecision multiplication code uses the naive, quadratic
algorithm for small values, and switches to Karatsuba’s method for larger values.

As such, Mulders’ practical optimal cutoff point should be very different from what was
found in the first section of this paper.

There are two approaches to this, if one assumes that naive multiplication is used for
n ≤ n0.

• Multiplication is performed blockwise, i.e., the numbers are first cut into pieces of
sizen0, and multiplications at the block level are done by quadratic algorithms.

• Multiplication is performed wordwise, i.e., Karatsuba’s method is used for numbers
larger thann0 words, and aquadratic method below.

In the first case, the number of multiplications for two numbers ofn blocks only changes
the value of S(1) = 1/2 whereasK (1) = 1. One can prove that the optimal strategy is
then exactly the same as in the previous situation, except that ifn = 2k one should take
n = 2k−1 as a splitting point (cf. the remark followingLemma 3).

In the second case, things are more complicated. A first way to deal with the problem is
to modify the initialization by usingK (n) = n2, S(n) = n(n + 1)/2 for n ≤ n0. We have
not been able in that case to find the optimal splitting point in full generality, but we can
report on experiments.
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Fig. 1. Optimal cutoff points forn0 = 8, 16, 24, 32.

Fig. 1gives diagrams of the optimal cutoff points whenn0 = 8, n0 = 16,n0 = 24 and
n0 = 32 in logarithmic scales for both coordinates, forn up to 217.

The main remark that can be made is that these diagrams arealmost autosimilar, i.e.,
that the splitting point for 2n seems to be close to twice the splitting point forn.

A natural strategy is derived from this remark: choose some multiplen1 of n0 and
tabulate the optimal cutoffs(k) value forn1/2 < n ≤ n1. For a givenN , we search for
t suchthat n1/2 < N/2t ≤ n1, and choose as a cutoff the value 2t s(N/2t ). The results
obtained with this strategy are given inTable 1, where the columns show up to what value
the optimal cutoff has been tabulated, and we show the maximal difference between the
optimal strategy and the present strategy, and between Mulders’ strategy and the optimal
strategy. LetSn1(n) be the value obtained by this strategy;Table 1shows the loss in terms
of number of multiplications, with respect to the optimal choice.

In this context, the variant ofSection 3has much more interest, as shows the following.

Theorem 3. Assume that a quadratic algorithm is used for n ≤ n0, so let S̃(n) be the
number of ring multiplications performed by the variant of Section 3 and Sopt(n) the
number of multiplications performed by Mulders’ algorithm with optimal cutoff. Then
S̃(n) < Sopt(n) for all n > n0 as soon as n0 ≥ 4.

To prove thattheorem, we firstprove two lemmas.
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Table 1
Loss with respect to the optimal choice

n0 S2n0(%) S4n0(%) S6n0(%) S8n0(%) Mulders’ strategy(%)

8 28 11 4 4 13

16 29 6 4 4 20

24 29 8 4 4 23

32 29 9 4 3 24

Lemma 4. Sopt(n) > S̃(n) for n0 < n ≤ 2n0.

Proof. For 2 ≤ n ≤ n0, K (n) = n2, andSopt(n) = S̃(n) = n(n + 1)/2. Assume now

n0 < n ≤ 2n0: K (n) = 2
⌈n

2

⌉2 + ⌊ n
2

⌋ ≥ 3
4n2; S̃(n) = 3

2k2 + 3
2k for n = 2k, and

S̃(n) = 3
2k2 + 5

2k + 1 for n = 2k + 1. Sopt(n) = minn/2≤l≤n K (l) + 2Sopt(n − l) ≥
minn/2≤l≤n

3
4l2 + (n − l)(n − l + 1) ≥ 12

7 k2 + 6
7k − 1

7 for n = 2k, and≥12
7 k2 + 18

7 k + 5
7

for n = 2k + 1. It follows thatSopt(n) > S̃(n) for k ≥ 4 in casen = 2k (i.e.,n ≥ 8), and
k ≥ 2 in casen = 2k + 1 (i.e.,n ≥ 5). The only uncovered cases aren = 6 for n0 = 4 or
5, in which case we haveSopt(n) = 21 andS̃(n) = 18. �

Lemma 5. Sopt(n) ≥ Sopt
(⌈n

2

⌉) + 2Sopt
(⌊ n

2

⌋)
.

Proof. We first prove by induction thatSopt(n − 1) ≤ Sopt(n) < K (n) for n ≥ 2: for n ≤
n0, K (n)−Sopt(n) = n(n−1)/2 > 0, andSopt(n) = n(n+1)/2 ≥ n(n−1)/2 = Sopt(n−1).

For n > n0, K (n) = 2K
(⌈ n

2

⌉) + K
(⌊ n

2

⌋)
> K

(⌈ n
2

⌉) + Sopt
(⌈ n

2

⌉) + Sopt
(⌊ n

2

⌋) ≥
K

(⌈ n
2

⌉) + 2Sopt
(⌊ n

2

⌋) ≥ Sopt(n). To proveSopt(n − 1) ≤ Sopt(n), we distinguish the case
n = n0 + 1. In that caseSopt(n − 1) = n0(n0 + 1)/2, andSopt(n) = minn

2≤l≤n l2 + (n −
l)(n − l + 1). The minimum for integerl is attained atl = ⌈ n

2

⌉
, with valuen(n + 1)/2.

Thus forn = n0 + 1, Sopt(n) = n(n + 1)/2 ≥ n(n − 1)/2 = Sopt(n − 1). Forn > n0 + 1,
the cases(n) = n cannot happen becauseSopt(n) < K (n), and the second part of the proof
of Lemma 1applies, thusSopt(n − 1) ≤ Sopt(n).

ThenLemma 2still holds for S := Sopt, sinceits proof just uses the fact thatS is non-
decreasing, the inequalityK (n) ≥ 2K

(⌈ n
2

⌉)+ K
(⌊n

2

⌋)
—whichholds forn ≥ 2 whatever

the value ofn0 ≥ 2—and the fact thatK (n) ≥ Sopt(n). �

Proof of Theorem 3. Let T (n) = Sopt(n)−S̃(n). We haveT (n) = 0 forn ≤ n0, T (n) > 0
for n0 < n ≤ 2n0 (Lemma 4) andT (n) ≥ T

(⌈ n
2

⌉) + 2T
(⌊ n

2

⌋)
for n > 2n0 (Lemma 5

together withS̃(n) = S̃
(⌈ n

2

⌉) + 2S̃
(⌊ n

2

⌋)
). In the latter case, since

⌈n
2

⌉
> n0, it follows

by induction thatT (n) > 0 for n > n0. �

We can estimate rather precisely the quotientS̃(n)/K (n).

Theorem 4. If n0 ≤ 6, or n0 = 8, then for n ≥ n0,

S̃(n)/K (n) ≤ 1

2
+ 1

2�n0/2� + 2
.
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Otherwise, if δ = K (n0)/K (n0 + 1) − 1, for all j we have

S̃(n)/K (n) ≤ exp((2/3) j 15δ/4) max
n∈[2 jn0,2 j+1n0−1]

S̃(n)/K (n).

We firstneed a lemma.

Lemma 6. The function K is increasing on [1, n0[, and on [2k(n0 + 1), 2k+1n0]. K is
increasing iff n0 ≤ 6 or n0 = 8; otherwise K is decreasing on [2k+1n0, 2k+1(n0 + 1)].
Proof. Put D(n) = K (n + 1) − K (n). Then for n > n0, D(n) = 2D(�n/2�) if n is odd,
andD(n) = D(�n/2�) if n is even.

ThenD(n) = 2l D(m) for somem ∈ [n0, 2n0[ and some integerl, hence the variations
of K on [2kn0, 2k+1n0[ are the same as the variations ofK on [n0, 2n0[. To conclude, it
suffices to note thatK increases on[n0 + 1, 2n0], sinceit does on[(n0 + 1)/2, n0].

Finally, note thatK (n0) = n2
0, K (n0 + 1) = 2�(n0 + 2)/2�2 + �(n0 + 1)/2�2; hence if

n0 = 2k, we haveK (n0 + 1) − K (n0) = −k2 + 4k + 2 which is non-negative iffk ≥ 4. If
n0 = 2k + 1, K (n0 + 1) − K (n0) = −k2 + 2k + 2 which is non-negative iffk ≥ 2. �

Proof of Theorem 4. Put

M(k) = max
2kn0≤n<2k+1n0

S̃(n)/K (n).

We have

M(k + 1) = max(M(k), max
2kn0≤n<2k+1n0

S̃(2n + 1)/K (2n + 1))

= max(M(k), max
2kn0≤n<2k+1n0

(S̃(n + 1) + 2S(n))/(2K (n + 1) + K (n)))

≤ M(k)
1

1 − min2kn0≤n<2k+1n0

K (n+1)−K (n)
K (2n+1)

.

Forn0 ≤ 6 orn0 = 8, we know thatK (n) is non-decreasing. HenceM(k +1) ≤ M(k);
for k = 0, the maximum is easily seen to be obtained forn = n0+1 if n0 is odd,n = n0+2
if n0 is even, giving the valuẽS(�(n0+2)/2�)/K (�(n0+2)/2�) = 0.5·(1+1/�(n0+2)/2�).
Note that this is actually the lim sup of̃S(n)/K (n) (take the numbers 2k(n0 + 1) or
2k(n0 + 2)).

Assume now that n0 = 7 or n0 ≥ 9, K is no longer non-decreasing. However, the
maximal value ofK (n) − K (n + 1) for n ∈ [2kn0, 2k+1n0[ is obtained forn = 2kn0, and
is 2k(K (n0) − K (n0 + 1)), whereas the minimal value ofK (2n + 1) is K (2k(n0 + 1)) =
3k K (n0 + 1).

Hence(K (n) − K (n + 1))/K (2n + 1) ≤ 2k(K (n0) − K (n0 + 1))/(3k K (n0 + 1)).
If we putδ = K (n0)/K (n0 + 1) − 1, we getM(k + 1) ≤ M(k) 1

1−(2/3)kδ
, hence for all

j , we have

S̃(n)/K (n) ≤ M( j)
1∏

k≥ j (1 − (2/3)kδ)
.



G. Hanrot, P. Zimmermann / Journal of Symbolic Computation 37 (2004) 391–401 399

Sinceδ ≤ 1/3 (this follows easily from the proofof the lemma),we see that 1− (2/3)kδ ≥
exp

(
5(2/3)kδ/4

)
, from which we get

S̃(n)/K (n) ≤ M( j) exp((2/3) j15δ/4). �
For j = 16, we get the following upper boundsB for S̃(n)/K (n):

n0 8 16 24 32

B 0.6 0.559 0.5608 0.5628

5. Implementation results

We report shortly on implementation results in this section. We have implemented the
case of polynomials over a finite fieldFp, chosen so thatp2 fits into a single machine
word. We compare the results for 3 algorithms, namely Mulders’ with cutoff at�βn� where
β = 0.70, Mulders’ with theoretical optimal cutoff (we took here 2�log2(n−1)�), our variant.

The results displayed below have been obtained on an Alpha ev6 500 MHz. We give
figures for a break-even point atn0 = 8, 16, 32, and for the situation where only Karatsuba
is used (n0 = 1).

Note that the figure displays the quotient of the time for a short product by the time for
a full product of the same size.
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We remark the following:

• For n0 > 1, our variant beats almost always the two others algorithms; whenn0
grows this is more and more true.

• Mulders’ algorithm with theoretical optimal cutoff only gives good results for
n0 = 1. This is useful when multiplication in the base field is costly, e.g., if the
base field is Fp with p large.

Note however that floating-point experiments would probably come down to very
different conclusions, since the carries are asimple matter to deal with in Mulders’ method
but are a real problem with our variant.

6. Generalizations

A natural question is to know whether the variant shown above extends to the case
where the polynomial is split into more than two parts (Toom–Cook’s algorithm). We give
a few hints on how the previous results generalize in this setting.

We shalllimit ourselves to the caser = 3. The best recurrence that we obtained for
Toom–Cook full multiplication is then TC(1) = 1, TC(2) = 3, TC(n) = 3TC(�(n +
2)/3�) + TC(�(n + 1)/3�) + TC(�n/3�). With this recurrence relation, it can be proved
(and this seems to remain true for higher values ofr for the obvious similar choice of
splitting point, though we did not try to prove it) that theoptimal splitting point in Mulders’
algorithm for an operand of sizen is the largest number of the formx3y ≤ n with x < 3.
This gives the recurrence relation SP(n) = SP(�(n + 2)/3�) + 2SP(�(n + 1)/3�) +
2SP(�n/3�) for the short product with Mulders’ algorithm.

Our variant now amounts to split the polynomial into 3 parts, according to the classes of
the degrees modulo 3; it still works. However,in that case it gives results which are worse
than Mulders’ method with optimal cutoff; the corresponding recurrence relation is indeed
S̃(n) = S̃(�(n + 2)/3�) + 3S̃(�(n + 1)/3�) + S̃(�n/3�).

Note however that all these comparisons in terms of number of multiplications should
be validated by practical implementations.

7. Conclusion

We have given an exact analysis of Mulders’ short product in Karatsuba’s case. This
allows to find an optimal splitting point. Thegain over a full product with this cutoff is of
30%onaverage in Karatsuba’s case, in terms of the number of multiplications.

We have alsogiven a variant of Karatsuba’s method which can be easily modified to
compute directly short products. This variant proves to be valuable when one uses quadratic
multiplication for small sizes of the parameters.
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