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Abstract

The <hort product of two power series is the meaningful part of the product of these objects,
i€ iy j<naibj x!T1. Mulders (AAECC 11 (2000) 69) gives an algorithm to compute a short
product faster than the full product in the case ofdaunba’s multiplicationKaratsuba and Ofman,
Dokl. Akad. Nauk SSSR 1451962) 293). This algorithm works by selecting a cutoff pdirand
performing a fullk x k product and twan — k) x (n — k) short products recursively. Mulders also
gives a heuristically optimal cutoff poirftn. In this pager, we determine the optimal cutoff point in
Mulders’ algorithm. We also give a slightly more general description of Mulders’ method.
© 2003 Elsevier Ltd. All rights reserved.
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CYRANO
Ah! non! ¢’ est un peu court, jeune homme!
On pouvait dire... Oh! Dieu! ... Bien des chosesen somme. ..

E. RostandCyrano de Bergerac

1. Introduction

Let A=Y _nax +0x"andB =Y o._,bix + O(x") be two power series.
Their product is naturally defined @sg; ., (3_; 4«i @j br)x' + O(x"). We shallcall this
operation theshort product of A andB, andnote it AB modx".

A trivial way to compute a short product is to compute the full product and discard
the high order terms. It lsalong been an open problem to know whether it is possible
to compute a short product faster than # ue in a subquadratic multiplication model.
Mulders (2000 gives a positive answer, on average, under a multiplication rmrsdeft
withl<a < 2.
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Mulders’ algorithm consists in writingy = B, + xkQi,i =1,2 wheredeg P) < k,
with k > n/2. Then,A1A> = P1P> + xK(Q1P> + P1Q2 modx"~K) modx". Nanely, a
short product of two orden power series can be computed as a full product of two deder
power series, and two short products of order k power series, plus some operations of
lower complexity.

The main question with Mulders’ algorithm is to find the optimal cutoff péinhich
achieves the number of multiplications given 8§n) = minn2<k<n(M (K) 4+ 2S(n — k)),
whereM (n) (resp.S(n)) denotes the complexity of a full product (resp. short product) of
ordern power series.

In his paper, Mulders gives a heuristic analysis based on the approxinvtign~ n*
and searches for a value kfof the form gn. A heuristic optimal cutoff point is then
obtained for the Karatsuba moddfgratsuba and Ofmarl962 (¢« = log, 3), with
B ~ 0.694.

In the present paper we prove that the optimal cutoff point is obtaindd<o2°%"! in
the Karatsba model $ection 2. In Section 3we present aariant of Mulders’ algorithm,
which directly achieves the optimal cutoff under the Karatsuba model. FinalBgation 4
we generalize the analysis to a non-trivial break-even point between quadratic and sub-
guadratic multiplication.

2. The optimal cutoff point
Let M (n) be the number of multiplications of a full product, and

S(n) = min (M(K) + 2S(n — k))
n/2<k<n

the number of multiplications of Mulders’ short product.
Lemma 1. We have S(n + 1) > S(n) for all n, aslong as M (n) is non-decreasing.

Proof. Lets(n) be an optimal cutoff point fon (there may be several).$tn+1) = n+1,
we haveS(n + 1) = M(n + 1) > M(n) > S(n). Otherwse we have

S(n) < M(s(n+1)) +2S(n — s(n + 1))
<M(s(n+1)+2S5n+1—-s(n+1)) —2[S(n+1—-s(n+1))
—S(n—s(n+1)]
<Sn+1—-2[S(n+1-s(n+1) —S(n—s(n+1)],

from which the lemma follows by induction.Od

We assume from now on the &atsuba moddil (n) = K (n) for full products, given
by K (1) = 1, andK (n) = 2K ([531) + K([5])) forn > 2.

Lemma 2. Let S(n) bethe number of operationsin Mulders' algorithmwith optimal cutoff
point. Then we have S(1) = 1, S(n) > S([n/2]) 4+ 2S(|n/2]).

Proof. By induction, the cases= 1 andn = 2 being tivial.
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Assume that the relation above is true ko n. We have, by definition and induction,
S(n) = min (K®) +2S(n — £))
[5]=<t=n

=, (< (2 ) < (L)) o2 ([ 727 Deesl 7))
=2 (<([2]) +os([727))
e (< () #=( 7))

Assume first thah = 2n; + 1 and¢ = 2¢4 + 1 are odd. Then

S(n) > 2 min (K(€1+1)+28((n1 + 1) — (41 +1)))
[ | <tr+1=m+1

NI

+  min (K1) +2S(ny — £1)),

71—‘Selfnl

and the right-hand side is jusSthy + 1) + S(n1) > S([3]) + 2S(| 5]). according to
Lemmal

Assume thah or ¢ is even. Thawe have 541 = [§]-| 5] and| %5* | = [ 5| -[5]:
furthermore[%} < | 3] sincet < n. Herce,

sz (<([5]) s (15]-[2])
i - =(E-1D)

The first term is always larger thar62| 5 |), wheras the second one might be smaller
thanS([5]) only whenn = 4k + 1 orn = 4k + 2, for the choice § | = k. However,

if n = 4k + 1, the only even value fof is 2k, which violates the conditiod > [5];

and if n = 4k + 2, the only choice satisfying > [3] is ¢ = n/2, which gives
S(n) = K(n/2) + 2S(n/2) > 3S(n/2). Herce we can assume that the second term is
larger thanS ([ 5 ]), from which the result follows. O

Lemma 3. Let S*(n) be the number of multiplications obtained with cutoff point s(n) =
2lo%n) Then S*(1) = 1, S*(n) = S*([5]) + 25" (| 3))-

Proof. By induction. This is obvious fon = 1. Assume the result is true far €
[2K, 2K+1[ Then we havé* (2n) = K (2Kt1)+25*(2(n—2%)) = 3(K (2)+2S*(n—2%)) =
3S*(n) by induction, ands*(2n+1) = K (2kt1)4+2S*(2(n—2)+1) = 3K (2K)+2S*(n+

— 2445 (N—2%. 1f n+1 < 21 we get K (2%) +2S (N +1—2%) +4S*(n— 2K) =
S*(n + 1) + 2S*(n). (In the special casa + 1 = 2k+1 the identity holds too since
K2 = s 2 =3k) O
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Remark. Forn = 2K, both cutoffss = 2K ands = 2¢~1 give the same value, thus
Lemma 3remains true if we replacel'9%" py 20%(M-1)]

Theorem 1. For Karatsuba multiplication, an optimal cutoff point in Mulders' algorithm
is obtained for k = 21°%" and S(n) = S([§]) +2S(| 5]).

Proof. By definition, we haveS*(n) > S(n). By an easy induction, usingemmas Zand
3, we haveS*(n) < S(n). The theore follows. O

It is easily seerthat limsu@(n)/K(n) = 1, e.g., forn = 2!, If one takesx, = %
(4"*+1 — 1), easy calculations lead to liB(xn)/K (xn) = 3/5, and from an experimen-

tal viewpoint it seems to be the value of limi&fn)/K (n). The aveage of S(n)/K (n)

for n < 226is 0.705 754. Note that these values are better than expected from Mulders’

heurigic analysis.

3. Avariant of Mulders’ algorithm

We can see Karatsuba'’s algorithm the following way: the mod¢x] of truncated
Taylor series of ordem (i.e., degree less than) can be written ask|n,2j[X] @
X2 K /21[x]. Then to anyP € Kp[x] we can associat® e K[x,t] = Qi +
Qat; following the well-known interpretation of Karatsuba’s algorithm as an evaluation-
interpolation algorithm we can s&@ as the value at 0 an@; as the value ato. Knowing
the value at ahird point (usually 1, i.e.Q1 + Q2) allows then one to @construct the
product.

We can use a slightly different decomposition in that case:Kuiix] = Orn/21[X] &
XOyn,2)[x], whereOk[x] = {P(x?), P € Kg[x]}. Then, as in the preceding case,Ro
we can associat® = Q1 + Qat. Assume thaf) and Q" are series of ordan. Then, to
compute the short produ@Q’, we reed the lowen terms ofQQ" = Q1 Q] +t(Q1Q5 +
Q2Q) +t2Q2Q.

This means that we need

o the lowern terms ofQ1Qj, which can be obtained by a short product@f by Q}
of size[§] (recall thatQ; and Q] are even series of orda};

e the lowermn — 1 terms of(Q1 + Q2)(Q] + Q) — Q1 Q] — Q2Q5; if the lowern —1
terms ofQ1Q} and Q2 Q5 are known, this amounts to a short product@f + Q2)

by (Q} + Q) of order[>17;
o the lowern — 2 terms otZQzQ’; however for he above middle term we need the
lower n — 1 terms, which can be obtained by a short produdQefby Q’, of order

[zt
From these remarks we can edt the following algorithm:
Algorithm ShortProduct
Input: f, g € R[x], napositiveinteger.
Output: fg modx".
if n = 1then
return (fg modx)



G. Hanrot, P. Zimmermann / Journal of Symbolic Computation 37 (2004) 391-401 395

fi;

No := [n/2], N1 := [n/2]

decompose into fever(X?) + Xfogd(X?), g iNt0 Gever(X%) + XJodd(X?)
| := ShortProduct feven Qeven N1)

h := ShortProduct foqd, Jodd, No)

m := ShortProduc{ feven+ fodd. even+ Godd, No) — 1 — h
return (I (x%) + xm(x?) + x2h(x?))

Theorem 2. Algorithm ShortProduct is correct, and performs the same number of ring
multiplications as Mulders' algorithm for the Karatsuba model, with the optimal cutoff
value s = 2110%n]

Proof. We prove both the correctness and the optimality by inductiomoRorn =1,
the statement of the feorem holds. Now let us assume it holds upnte- 1 for
n > 2. Asng,n1 < n, we have by inductionl(x?) = fever(X?)Gever(x%) mod
x2", x?h(x?) = fodd(X?)Godd(x?) modx?0+2 andxm(x?) = X(fevern(X?)Jodd(X?) +
fodd(X2) Gever(X2)) modx20t1 which implies| (x2) + xm(x?) + x2h(x?) = fg modx"
since min2n1,2ng+1) =n. O

Remark. Practical comparisons of Mulders’ method and ours are giv&eation 5n the
case of short products of polynomialska[ X].

4. Mulders’ algorithm with quadratic multiplication for small sizes

Even though Karatsuba’s algorithm has a better asymptotic complexity than naive
multiplication, in practice for small sizes the latter performs much better. As a
consequence, any reasonable multiprecision multiplication code uses the naive, quadratic
algorithm for small values, and switches to Karatsuba’'s method for larger values.

As such, Mulders’ practical optimal cutoff point should be very different from what was
found in the first section of this paper.

There are two approaches to this, if one assumes that naive multiplication is used for
n < np.

e Multiplication is performed blockwise, i.e., the numbers are first cut into pieces of
sizeng, and multiplications at the block level are done by quadratic algorithms.

e Multiplication is performed wordwise, i.e., Karatsuba’s method is used for numbers
larger thamg words, and ajuadratic method below.

In the first case, the number of multiplications for two numberslabcks only changes
the valie of S(1) = 1/2 wheaeasK (1) = 1. One can prove that ¢optimal strategy is
then exactly the same as in the previous situation, except thatif2< one should take
n = 2¢~1 as a splitting point (cf. the remark followilgemma 3.

In the second case, things are more coogtéd. A first way to deal with the problem is
to modify the initialization by usingd< (n) = n2, S(n) = n(n + 1)/2 forn < ng. We have
not been able in that case to find the optimal splitting point in full generality, but we can
report on experiments.
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Fig. 1. Optimal cutoff points fong = 8, 16, 24, 32.

Fig. 1gives diagrams of the optimal cutoff points whe= 8, ng = 16,ng = 24 and
no = 32 in logarithmic scales for both coordinates, fioup to 217,

The main remark that can be made is that ¢heémgrams aralmost autosimilar, i.e.,
that the splitting point for @ seems to be close to twice the splitting pointrior

A natural strategy is derived from this remark: choose some multiplef ng and
tabulate the optimal cutof(k) value forny/2 < n < ni. For a givenN, we sarch for
t suchthatny/2 < N/2! < ng, and choose as a cutoff the valuks@N/2!). The results
obtained with tlts strategy are given ifiable 1 where the olumns show up to what value
the optimal cutoff has been tabulated, and we show the maximal difference between the
optimal strategy and the present strategy] batween Mulders’ strategy and the optimal
strategy. LetS,, (n) be the value obtained by this strateggble 1shows the loss in terms
of number of multiplications, with respect to the optimal choice.

In this context, the variant dBection 3has much more interest, as shows the following.

Theorem 3. Assume that a quadratic algorithm is used for n < ng, so let S(n) be the
number of ring multiplications performed by the variant of Section3 and Spi(n) the
number of multiplications performed by Mulders' algorithm with optimal cutoff. Then
S(n) < Sopt(n) for all n > ng assoonasng > 4.

To prove thattheorem, we firsprove two lemmas.



G. Hanrot, P. Zimmermann / Journal of Symbolic Computation 37 (2004) 391-401 397

Table 1
Loss with respct to the optimal choice
no Song (%) Stng (%) Seng (%) Seng (%) Mulders’ strategy(%)
8 28 n 4 4 13
16 29 6 4 4 20
24 29 8 4 4 23
32 29 9 4 3 24

Lemma 4. Sypi(n) > S(n) for ng < n < 2nq.

Proof. For 2 < n < ng, K(n) = n?, andSpi(n) = S(n) = n(n + 1)/2. Assume now
Np < n < 2ng: K(n) = 2|'%-|2+ 3] = 2n% Sn) = 3k? + 3k for n = 2k, and
Sin) = 3k? + 3k +1forn = 2k + 1. SpN) = Minnj2<i<n K1) + 2Spn — 1) >
Minn2<i<n 312+ (N —=DH(N—1+1) > ¥k?+ 8k — 3 forn = 2k, and>1k? + LBk + 3
for n = 2k 4 1. It follows thatSpe(n) > S(n) for k > 4 in casen = 2k (i.e.,n > 8), and

k> 2in casen = 2k + 1 (i.e.,n > 5). The only uncovered cases are= 6 forno = 4 or
5, in which case we hav&ypi(n) = 21 andS(n) = 18. O

Lemma 5. Spt(N) > Sopt([5]) + 2Sopt (| 5 ])-

Proof. We first prove by induction tha&pi(n — 1) < Spe(n) < K(n) forn > 2: forn <
No, K (N)—Spt(n) = n(n—1)/2 > 0, andSype(n) = n(n+1)/2 > n(n—1)/2 = Spr(n—1).

Forn > no, K(m = 2K ([3]) + K ([2]) > K([3]) + Sop([2]) + Sope ([ 2]) =
K ([5]) +2%pt(|5]) = Sopt(n). To prove Spi(n — 1) < Sype(n), we dstinguish the case
n = no + 1. In that case&xppi(n — 1) = No(np + 1)/2, andSpi(n) = min% 12+ (n—

(n — | + 1). The mhimum for integet is attained at = [ 5], with valuen(n + 1)/2.
Thus forn =ng + 1, Spe(n) = n(n+1)/2 > n(n — 1)/2 = Spe(n — 1). Forn > ng + 1,
the cases(n) = n cannot happen becauSg:(n) < K(n), and the seand part of the proof
of Lemma lapplies, thusSop(n — 1) < Spe(n).

ThenLemma 2still holds for S := Spt, Sinceits proof just uses the fact th&is non-
decreasing, the inequalitg (n) > 2K ([5]) + K (| 3 |)—whichholds forn > 2 whatever
the valie ofng > 2—and the fact thak (n) > Sp(n). O

<l<n

Proof of Theorem 3 LetT(n) = Sopt(n)—é(n). We haveT (n) = 0forn <ng, T(n) >0
forno < n < 2ng (Lemma4 andT(n) > T ([5]) + 2T (| 3]) forn > 2no (Lemma 5

together withS(n) = S([5]) +25(| 3]))- In the latter case, sindej | > no, it follows
by induction thafT (n) > 0 forn > ng. O

We can estimate rather precisely the quotigr) /K (n).

Theorem 4. If ng < 6, or ng = 8, then for n > ng,

- 1 1
S(n)/K(n) < > + m
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Otherwise, if § = K(ng)/K(ng + 1) — 1, for all j we have
S(n)/K (n) < exp((2/3)1155/4) max S(n)/K (n).

ne[2ing,2i+ng—1]

We firstneed a lemma.

Lemma 6. The function K is increasing on [1, ng[, and on [2%(ng + 1), 2kt 1ng]. K is
increasing iff ng < 6 or ng = 8; otherwise K isdecreasing on [2KT1ng, 2K*1(ng + 1)].

Proof. PutD(n) = K(n+ 1) — K(n). Then forn > ng, D(n) = 2D(|[n/2)) if nis odd,
andD(n) = D(|n/2)) if nis even.

ThenD(n) = 2' D(m) for somem € [ng, 2ng[ and some integdr herce the variations
of K on [2Kng, 2kt 1ng[ are the same as the variationskofon [ng, 2ng[. To conclude, it
suffices to note thaK increases ofng + 1, 2ng], sinceit does or{(np + 1)/2, ng].

Finally, note thatk (ng) = n3, K (no + 1) = 2[(ng + 2)/2)% + [(no + 1)/2|?; herce if
no = 2k, we haveK (ng + 1) — K (ng) = —k2 + 4k + 2 which is non-negative ifk > 4. If
no = 2k + 1, K(no + 1) — K (ng) = —k? + 2k + 2 which is non-negative ifk > 2. O

Proof of Theorem 4 Put

Mk)=  max  S(n)/K(n).

2kng<n<2k+lng

We have

MK+ 1) = maxMk), max  S@n+1)/K(2n+ 1))

2kng<n<2k+lng
=maxMk), max (S(n+1)+2SMn)/2K N+ 1)+ K(n)))
2kng<n<2k+lng

= MK !

: K+ —K ()~
1- MINkng<n<2k+ing T K@n+D)

Forng < 6 orng = 8, we know thaK (n) is non-decreasing. Hendé (k + 1) < M(k);
fork = 0, the maximum is easily seento be obtainedfer ng+1 if ngisodd,n = ng+2
if ng is even, giving the vaIuS(L(no+2)/2J)/K (L(no+2)/2]) = 0.5-(1+1/|(ng+2)/2]).
Note that this is actually the lim sup cS(n)/K(n) (take the numbersk2ng + 1) or
2X(ng +2)).

Assume nw thatng = 7 orng > 9, K is no longer non-decreasing. However, the
maximal value ofK (n) — K (n + 1) for n € [2%ng, 2¥*1ng[ is obtained fom = 2Xng, and
is 2(K (ng) — K (ng + 1)), whereas the minimal value df (2n + 1) is K (2X(ng + 1)) =
3K (ng + 1).

Hence(K (n) — K(n+1))/K (2n+ 1) < 2X(K (ng) — K (no + 1))/(3kK(no +1)).

If we puté = K(ng)/K(ng+1) —1,wegetMk +1) < M(k)l (2/3);(5 hence for all
i, we have

S(ny/K (n) < M(j)

1
[T (1= @2/3%8)
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Sinces < 1/3 (this follows easily from the proadf the lemma)we see that 1 (2/3)ks >
exp(5(2/3)%s/4), from which we get

Sny/K(n) < M(j) exp((2/3)/155/4).

O

For j = 16, we get the following upper boundsfor S(n)/K (n):

no 8 16

24 32

B 0.6 0.559 0.5608 0.5628

5. Implementation results

We report shortly on implementatioresuts in this section. We have implemented the
case of polynomials over a finite field,, chosen so thap? fits into a shgle machine
word. We conpare the redts for 3 algorithms, namely Mulders’ with cutoff a8n| where

B

= 0.70, Mulders’ with theoretical optimal cutoff (we took heré'@2("-D1) our variant.

The results displayed below have been obtained on an Alpha evé 500 MHz. We give
figures for a break-even pointag = 8, 16, 32, and for the situation where only Karatsuba
isused (o = 1).

Note that the figure displays the quotient of the time for a short product by the time for
a full product of the same size.
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We remak the fdlowing:

e Forng > 1, our variant beats almost always the two others algorithms; wben
grows this is more and more true.

e Mulders’ algorithm with theoretical optimal cutoff only gives good results for
no = 1. This is useful when multiplication in the base field is costly, e.g., if the
base fidd is Fp with p large.

Note however that flating-point experiments would probably come down to very
different conclusions, since the carries aggraple matter to deal with in Mulders’ method
but are a eal problem with our variant.

6. Generdizations

A natural question is to know whether the variant shown above extends to the case
where the polynomial is split into more than two parts (Toom—Cook’s algorithm). We give
a few hints on how the previous results generalize in this setting.

We shalllimit ourselves to the case = 3. The best recurrence that we obtained for
Toom-Cook full multiplication is then TGl) = 1, TC(2) = 3, TC(n) = 3TC(|(n +
2)/3]) + TC(L(n + 1)/3]) + TC(|n/3]). With this recurrence relation, it can be proved
(and this seems to remain true for higher values &br the obvious similar choice of
sitting point, though we did not try to prove it) thatéfoptimal splitting point in Mulders’
algorithm for an operand of sizeis the largst number of the fornx3Y < n with x < 3.

This gives the recurrence relation @P = SR (n + 2)/3]) + 2SR|(n + 1)/3]) +
2SR |n/3)) for the short product with Mulders’ algorithm.

Our variant now amounts to split the polynotriiato 3 parts, according to the classes of
the degrees modulo 3; it still works. Howevirthat case it gives results which are worse
than Mulders’ method with optimal cutoff; the corresponding recurrence relation is indeed
S(n) = &(L(n +2)/3]) + 33(L(n + 1)/3)) + S(Ln/3)).

Note however that all these comparisons in terms of number of multiplications should
be validated by practical implementations.

7. Conclusion

We have given an exact analysis of Mulders’ short product in Karatsuba’s case. This
allows to find an optimal splitting point. Ttgain over a full product with this cutoff is of
30%onaverage in Karatsuba’s case, in terms of the number of multiplications.

We have alsajiven a variant of Karatsuba’s method which can be easily modified to
compute directly short products. This variant provesto be valuable when one uses quadratic
multiplication for small sizes of the parameters.
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