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ABSTRACT 

The "fast" polynomial multiplication algor- 
ithms for dense univariate polynomials are those 
which are asymptotically faster than the classical 
0(N 2) method. These "fast" algorithms suffer from 
a common defect that the size of the problem at 
which they start to be better than the classical 
method is quite large; so large, in fact that it 
is impractical to use them in an algebraic manip- 
ulation system. 

A number of techniques are discussed here for 
improving these fast algorithms. The combination 
of the best of these improvements results in a 
Hybrid Mixed Basis FFT multiplication algorithm 
which has a cross-over point at degree 25 and is 
generally faster than a basic FFT algorithm, while 
retaining the desirable O(N log N) timing function 
of an FFT approach. 

The application of these methods to multi- 
variate polynomials is also discussed. The use is 
advocated of the Kronecker Trick to speed up a 
fast algorithm. This results in a method which 
has a cross-over point at degree 5 for bivariate 
polynomials. Both theoretical and empirical com- 
puting times are presented for all algorithms 
discussed. 

Introduction 

One of the most frequently used algorithms in 
any algebraic manipulation system is multi- 
plication of expressions. For example: 

(eY/2sin(x) - cos(x))*(sin(x) - eY/2cos(x)). 

One way we might compute this product is to view 

it in the polynomial ring Q[eY/2sin(x), cos(x)], 
i.e. the functions are considered indeterminants 
over the ring Q. Then we might form the product 
using a polynomial multiplication algorithm: 

.Z 
[-(eY/~sin(x)cos(x) + (sin2(x)+cos2(x))eY/2- 
sin(x)cos(x)]. 

Finally, we might simplify the resulting product 
to: 

e y/z _ i/2(eY+l)sin(2x). 

This means we can break the general problem of 
expression multiplication into two subproblems: 

a) polynomial multiplication and 
b) simplification of expressions. 

Ignoring the latter completely, it is the former 
problem that this paper considers. Since a lot of 
polynomial multiplication, in one form or another, 
is done in an algebraic manipulation system, we 
would like to use the best possible algorithm. 
The measure of "best" we will use here is the 
number of steps used in the algorithm. 

A second reason for interest in the problem is 
that over the last several years, a class of 
algorithms, for operations on polynomials have 
been developed 9 whose efficiency (the number of 
steps they use) is related to the efficiency of 
polynomial multiplication. In simple terms, if 
polynomial multiplication can be done quickly, 
then these algorithms can be performed quickly. A 
partial list of such algorithms based on an 
O(N log N) multiplication algorithm is given 
below. 

Polynomial Operation Operation Count Reference 

Multiplication 0(N log N) [Pol 71] 

Division with 
Remainder 0(N log N) [Str 73] 

GCD and Resultants 0(N log2N) [Moe 73] 

Multipoint Evaluation 0(N log2N) [Bor 74] 

Interpolation 0(N logaN) [Bor 74] 

Factoring 0(N log~N) [Moe 75] 

A list of some fast algebraic algorithms 

In the case of dense univariate polynomials of 
degree n, the classical polynomial multiplication 
algorithm uses 0(n z) steps to compute a product. 
Workers in the field of algorithmic complexity 
have developed several algorithms for polynomial 
multiplication. These are the so-called "fast" 
algorithms which use 0(f(n)) steps to form a 
product. They have the property that: 

LIm f(n) 
n~ -7-+0 
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i.e. they are asymptotically faster than the 
classical method. In more concrete terms, for 
large degrees they are faster than the classical 
method and this superiority increases as n does. 

The problem with these "fast" methods is that 
they tend to be impractical. The degree at which 
they start being better than the classical 
method (the cross-over point) is fairly high. In 
fact the cross-over points tend to be so high 
that they are larger than most problems en- 
countered in algebraic manipulation systems. 
This paper sets out to answer the questions: 

i) Can a fast algorithm be made practical? 
2) What is the best all-round polynomial 

multiplication algorithm? 

In section i, we review the classical method 
and two fast methods and look at their performenc~ 
The performance of the algorithms is investigated 
both from the theoretical point of view and in 
terms of the run times of Algol-W implementations 
of the algorithms. Section 2 deals with improve- 
ments to one of the fast methods. These lead to 
an algorithm with the same asymptotic properties 
as the best of the fast algorithms, but is more 
practical and in general, faster than such a 
method. In section 3, we examine methods for 
multivariate multiplication, and suggest a new 
approach to this problem. Finally, in section 4 
we summarise the results and see what conclusions 
can he drawn. 

Three Basic Methods 

In the first two sections we will consider 
dense univariate polynomials i.e. polynomials 
a(x)  c R[x] 

n i 
w h e r e  a ( x )  = Z a . x  and  a .  ~ ' 0  f o r  0 ~ i 5 n .  

i=O i I 

The base ring R will usually be a finite field Z . 
For some of the algorithms, the base ring could p 
equally well be the integers Z or rationals Q or 
any other suitable number ring. Coefficients in 
such rings can be mapped into the finite field Z 
and recovered by means of the Chinese Remainder p 
Algorithm (cf. [LipTl ], so there is no loss of 
generality in considering only finite fields. 

1.1) The Classical Method 

The Classical Method for polynomial multi- 
plication is the one which is commonly employed 
in algebraic manipulation systems. If we have 
two polynomials: 

n i m . xj 
a(x) = Z a.x , b(x) = Z b 

i=O i j=O i 

then their product c(x) can be written as: 

i.i)... C(X) = a(x)*b(x) = 
m+n 

Z ( Z ai*bj)xm 
f=o ~=i+j 

Expression (i.i) can be directly translated into 
an algorithm for computing this product. This 
algorithm uses: 

(n+l) (m+l) coefficient multiplications and 

nm coefficient additions. 

For a total of : 2mn + (m+n) + i coefficient 
operations. 

If n = m this is : 2n 2 + 0(n) operations. 

While this function only counts the number of 
arithmetic operations which are used in the algor- 
ithm, all other types of operations (e.g. sub- 
script calculations, store, fetch etc.) will 
increase proportionally. 

1.2) The Fast Fourier Transform Method 

In recent years the study of algorithmic com- 
plexity has produced a number of multiplication 
algorithms having operation counts which grow more 
slowly than 0(n2). The best of these to date is 
the one based on the Fast Fourier Transform (FFT) 
(cf. [Pol 71]). Gentleman and Sande [Gen 66] 
appear to have been the first to propose the use 
of the FFT for polynomial multiplication. 

The FFT provides an efficient method for eval- 
uating a polynomial at M roots of unity {w i} in a 

finite field. Since evaluation of a polynomial 
induces a homomorphism from the polynomial ring to 
the ring of coefficients, the values of the 
product polynomial can be found by multiplying the 
values of the multiplicants pairwise. 

i.e. if c(x) = a(x) * b(x) 

then c(w i) = a(w i) * b(wi). 

Given the values of the product {c(wi)} at the 

points {wi}, the coefficients of the product can 

De recovered by interpolation. This interpolation 
can be performed by means of the inverse FFT. 

The advantage to this method is that the FFT 

can be performed very quickly. If M = 2 r then 
this algorithm uses: 

2 Forward FFTs = 2(M + 3/2 M log M) 
1 Multiplication of values = M 
1 inverse FFT = 2M + 3/2 M log M) 

For a total of : 9/2 log M log M + 5M coefficient 
operations. 

Note: all logarithms used in this paper will be 
base 2 unless otherwise specified. 

We will postpone the details of computing the FFT 
until section 2.1. In applying the FFT method to 
multiply two polynomials of degree m and n the 
usual approach is to choose r = [log (m+n+l)7. 
Then the polynomials are considered to be of 

degree M-i = 2r-i by adding a suitable number of 
zero leading coefficients. This approach does 
handicap the algorithm by making the polynomials 
appear larger than necessary, but does not destroy 
the desired 0(M log M) operation count. 

Applying this method to two polynomials of 
degree n, the number of steps in the algorithm is: 
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9N log N + 19 N 

where N = 2 k, k = [log (n+l)7. 

1.3) Comparison of the Methods 

Table i compares the two methods both in terms 
of their operational counts and in terms of the 
actual run times of an Algol-W implementation of 
the algorithms. It can be seen that the operation 
count predicts that the FFT method will start 
being more efficient than the classical method 
when multiplying polynomials of degree 31. 

The empirical run-times bear out this cross- 
over point. They also illustrate the character- 
istic quadratic behaviour of the classical method 
and the slightly faster than linear behavior of 
the FFT method. This table of performance might 
be used to advocate the use of the FFT method as 
the standard algorithm to be used in an algebraic 
manipulation system. However, several problems 
arise: 

a) For degrees below the cross-over point the FFT 
method is very much worse than the classical 
method. This problem might be resolved by 
combining the two methods and using the FFT 
method for large problems and the classical 
for small. 

Even if this combined approach is taken there are 
problems. 

b) 

c) 

The cross-over point is quite high. Although 
products of degree 31 do appear in algebraic 
manipulation, they do not arise that fre- 
quently. Is it worth the trouble of imple- 
menting a fast algorithm if it will only be 
used occasionally? 

The table does not illustrate the fact that 
the FFT is performed on sequences of length 
2 k. This means that to multiply two poly- 
nomials of degree 32, a sequence of length 
128 must be used. For this case the imple- 
mentation of the FFT method takes 2.3 time 
units and the classical method about i.i 
units. In other words, the FFT method has 
not one, but three cross-over points with 
respect to the classical method (at degrees 
31, 50 and 70). (see Fig. i) 

It was with these problems in mind that an 
attempt was made to improve on the existing 
multiplication algorithms. 

1.4) Karatsuba's Algorithm 

The first attempt involved looking at an 
alternative to the FFT method. It was hoped that 
a different algorithm might be more efficient 
than the classical method, but not much worse 
than the FFT method. The method used is due to 
Karatsuba (see [Kar 62]). Fateman [Fat 72] calls 
this algorithm SPLIT. 

Karatsuba's algorithm applied to two poly- 
nomials of degree n-l: 

a(x) = al(x)x n/2 + a0(x) 

b(x) = bl(x)x n/2 + bO(x) 

where deg(al), deg(aO), deg(bl), deg(b0) N n/2-1. 

Then: c(x) = a(x) * b(x) 

= (x n + x n/2) al*bl + (x n/2 + i) 

a0*b0 - xn/2(al - a0)*(bl-b0) 

The three products of half the degree are 
formed by applying the algorithms recursively. 
With care, the addition of the coefficients of the 
products can be done in 7/2n steps. Therefore, 
the number of steps used by the algorithm to 
multiply two polynomials of degree n-i can be ex- 
pressed in the following recurrence relation: 

r(n) = 3T(n/2) + 7/2n 

= 23/2 n log 3 _ 7n 

= 23/2 n 1.585 _ 7n coefficient 

operations. 

This means that Karatsuba's algorithm is more 
efficient than the classical method, but not as 
efficient as the FFT method, for large inputs. 
However, it was hoped that the simplicity of the 
algorithm (in its recursive form it requires about 
as many line of ALGOL code as the classical method 
might give it a lower cross-over point with 
respect to the classical method. 

Table II compares the empirical run times of 
the classical method with Karasuba's algorithm. 
The second column gives the time for the first 
version of the algorithm, where the recursion was 
carried out down to the level of the coefficients 
(i.e. degree0). It may be seen that at degree 31 
Karatsuba's algorithm takes three times longer 
than the classical method. Also the method 
exhibits the same poor performance for small deg- 
rees as the FFT method. 

On reason for the poor performance of the 
algorithm was that it had to labour very ha;d to 
perform many operations both in the form of pro- 
cedure calls and arithmetic operations close to 
the base of its recursion. Therefore, one way to 
improve the algorithm would be to stop the re- 
cursion at some small degree and perform this 
multiplication classically. The remainder of the 
columns of Table II show the times when the base 
of recursion was polynomials of degree i, 3 or 7. 

It can be seen that KPM-7 achieves a cross- 
over point at degree 15, which is the best of the 
fast methods. However, at about degree 63 the 
FFT method is almost as fast as KPM-7. For larger 
degrees the KPM algorithm will be slower than the 
FFT method. An advantage of the KPM algorithm 
shared by the classical method, is that it can be 
carried out in the original polynomial ring. This 
means that coefficients do not require any mapping 
to a residue representation with its attendant 
overhead in computation. 

The FFT Revisited 

2.1) Two Views of the FFT 

A second attempt involved looking for ways to 
improve the FFT method. In order to discuss thes% 
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it is first necessary to review the algorithm for 
computing the FFT. 

There are in fact many algorithms for comput- 
ing FFTs. Each has its advantages, and the choice 
of which one to use, depends on the nature of the 
problem. There is a considerable literature on 
the FFT, Aho et al [Aho 74] give a brief survey. 
Gentleman and Sande [Gen 66] discuss several such 
algorithms and compare their merits. 

The first view considered here is the 
"evaluation" form. For this the transform of a 
polynomial a(x) of degree N is considered as eval- 
uation of a(x) at the points {w i} where 0 < i < N 
and w is a primitive N-th root of unity of the 

finite field Z , i.e. w N = i, w j # i for 0 < j < 
P 

This can be viewed as: 
N-i 

a(w i) ffi ~ a.w ij 

j=O 3 

N/2-1 N/2-1 
= Z a2jw 2ij + w i Z 2ij 

j=O j=O a2 j+ lW 

2i i aodd(W2i) = aeven(W ) + w 

ForO<i<n. 

Note: a'(w 2(N/2+~)) = a'(wNw 2i) = a'(w 2i) 

where a'(x) is aeven(X ) or aodd(X ). 

Now aeven(X ) and aodd(X) are two polynomial 

forms, each with half the number of terms of a(x), 

which are to be evaluated at a point w 2i which is 

also a root of unity. Thus the same process can 

be applied. The inverse transform of {a(wi)} can 

be computed as: 

N-i N-i N-I 
Z a(wi)w -ij ffi Z w -ij Z aiwi£ 

i=0 i=0 t=0 

N-i N-i 
w i (~-J) )= N aj Z a~( Z 

~=o i=o 

since 
N-i 

ik 
Z w 

i=O 
= ~ if k = 0 mod N 

otherwise. 

{w -1} is also a primitive root of unity and so the 
same algorithm as the forward FFT can be used. 

This leads, naturally to a recursive algor- 
ithm for computing the transform. However, for an 
actual implementation, a recursive algorithm is 
not the most suitable since recursion is usually 
an expensive operation on many computers. It is 
possible to express this algorithm in an iterative 
"bottom-up" form which is much more efficient. 

A second consideration is the storage used by 
the algorithm. It would seem that extra storage 

might be needed to store the aeven(X) and aodd(X) 

results at each level, so that the coefficients of 
a(x) are not overwritten while they are still 
needed. In fact the algorithm can be coded in 
such a fashion that it works "in-space" and the 
values which are overwritten are those which are 
no longer required. 

A peculiarity of the algorithm is the order in 
which it selects coefficients. Selecting even and 
odd parts means that the lowest order bit of the 
index of a coefficient is used as a selector. If 
this is carried through several levels, it is 
apparent that the indices of the coefficients are 
being read as binary numbers from right to left, 
rather than left to right as is conventional. 
This is the digit reverse form discussed by Cooley 
and Tukey [Coo 65]. One problem with this method 
of indexing is that it is necessary to perform 
"random" accessing of coefficients to apply the 
algorithm. This is easy if the coefficients are 
stored in an array, but in the realm of symbolic 
mathematics, polynomials are usually represented 
by linked lists ordered by exponent and this mode 
of accessing is quite unacceptable. 

An alternative algorithm can be obtained by 
viewing the computation as being carried out 

N N 
modulo x - w . 

N-1 
N N 

a(x) = i_Z0= aixi mod x - w Hence: 

aixi.~ ~ N/2-I i 

= /2  i=0  

xN/2 
= ahigh(X) + alow(X) 

Then a(x) E a(x) mod x N/2 - w N/2 

w N/2 a' 
= alow(X) + ahigh(X) = (x) 

and a(x) E a(x) rood x N/2 + w N/2 

= alow(X) - ahigh(X) w ~/2 = a"(x) 

Note that x N/2 + w N/2 N/2 N = x - w and so the 
process can be recursively or iteratively applied 
to a'(x) and a"(x) until the values of 

i 
a(x) mod x-w are reached. It is apparent that 
a'(x) and a"(x) can be generated simultaneously by 
scanning the top and bottom halves of a(x) 
sequentially. This algorithm can also be perform- 
ed "in-space". Perhaps less obvious, is the fact 
that, the powers of w used by the algorithm are 
accessed in digit reverse order and that the 
transformed representation of the polynomial is 
also permuted in this fashion. 

This is less serious than the previous case 
since the powers of w can be generated in this 
order in linear time. Secondly, since the pro- 
ducts of two transformed polynomials are formed 
pairwise, any permutation of the transformed 
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representation is irrelevant, and the inverse 
transform unscrambles the results. As Singleton 
[Sin 67] points out, this permutation must appear 
somewhere in an FFT algorithm. We will call this 
form of the FFT the sequential access method. 

In the case of the second form of the FFT the 
inverse transform may be computed by forming a(x) 
out of a'(x) and a"(x) as follows: 

w-N/2 
a(x) = 1/2 [a'(x) + a"(x)]x N/2 + ~ [a'(x) -a~(x~ 

xN/2 
= ahigh(X) + alow(X) 

For either algorithm it may be seen that each 
level of the FFT may be accomplished in 3/2N step& 
Each level d~vides the problem into two sub- 
problems of half the degree, each of which is to 
be evaluated at half the number of points. There- 
fore, the number of steps used by the algorithms 
exhibits the characteristic recurrence relation: 

T(N) = 2T(N/2) + 3/2N 

= 3/2 N log N + N steps. 

During the inverse transform the factor of 1/2 
is not usually divided out at each stage but 
accumulated and divided out in a final step as 

1/21og N = i/N. Thus the inverse FFT takes: 

3/2N log N + 2N steps. 

2.2) A Hybrid Method 

The basic strategy for the FFT polynomial 
multiplication algorithm applied to two poly- 
nomials a(x) and b(x) of degree n is as follows: 

Basic Radix-2 FFT Multiplication Al~orithm 

i) Choose N > 2n+l such that N=2 [l°g(2n+l)]. 

2) Perform the N point FFT on a(x) and b(x) to 
give the sequences {A i} and {Bi}. 

3) Multiply the sequences pairwise to give a 
sequence {Ci}. 

4) Perform the N point FFT on {C.} to give a 
l 

polynomial c(x). This polynomial is the 
product of a(x) and b(x). 

The problem with this approach is that it 
chooses a gross maximum degree N for the 
prod~Ict. All products in the range 
N/2 < 2n+l < N are essentially treated the 
same way. One consequence of this is that for 
large problems within such a range the time for 
the multiplication is constant. For example, 
it takes no more time for n=240 than it does 
for n=130. 

On the other hand, at the end of such a range 
there is a large jump in time from one interval to 
the next. Clearly it is not a great deal more 
dffficult to multiply polynomials of degree 32 
than it is for degree 31. However, the basic FFT 
strategy does not reflect this fact. 

One way we can improve on this situation is to 
notice that the FFT method is a powerful engine 
for multiplying polynomials. We can use it to best 
effect by giving it the "difficult" problems and 
solving the "easy" ones some other way. In poly- 
nomial multiplication the "easy" problems are the 
leading and trailing coefficients of the product. 
These involve only a few terms and operations and 
are best done using a classical algorithm. The 
"difficult" problems are the intermediate co- 
efficients of the product. These involve most of 
the coefficients of the multiplicands and many 
operations. 

To see how this might be done we can examine 
the inverse transform for the j-th coefficient of 
the product. 

N-i 
1 "" cj =~ z C.w -~j 

i=O i 

N-i C wN/2iw(-N/2-j)i = ! Z 
N i 

i=0 

1 i w- (N/2+j ) i 
= --N Z Ci(-1) 

and 
N-i 

1 Z C.w - (N/2+j)i 
CN/2+J = N i=0 i 

Then consider extracting the even order terms from 
each sum: 

Pj = c .  + c  
3 N/2+j 

2 N/2-1 (N/2+j) 2i 

= ~ i=ZO C2i w- 

Note that the {pj} are just the result of an N/2 

point inverse FFT and that 

c.] = pj - ON/2+ j 

for 0 < j < N/2 

CN/2+ j = pj - cj 

This means we could use an N/2 point FFT to 
compute the {pj} (i.e. the "difficul@' terms) and 

and use a classical method to compute the leading 
and trailing terms. The two sets of terms can be 
combined to find the coefficients of the product. 

This leads to an alternate strategy for a 
Hybrid Method computing a product of degree m. 

l) 

2) 

3) 

The Hybrid Multiplication Algorithm 

Choose N = 2 Llog mJ. 

Apply the FFT method to find the {pj}. 

Form the coefficients C~ classically for 
0 ~ i ~ [m/2/~N/2 and N/2+[m/2J+l ~ i ~ m. 
i.e. the ~eadlng and trailing terms. 
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4~ Find the remaining coefficients of the product 
using the relations: 

c. = pj - CN/2+ j for [m/2]+N/2+l N j ~ N/2+m 
j 

CN/2+ j = pj - cj , for Lm/2J+N/2+l N j s m 

c. = p. , for the rest of the coefficients. 
J 3 

Examining the algorithm, we see that step 2 
takes: 9/2 N log N + 5N operations. Step 3 will 
take the same number of steps as multiplying two 
polynomials of degree m/2 - N/2 i.e. 

i (m-N-l) 2 + (m-N-l) operations. There are (m-N) 
2 

subtractions used in step 4. In summary we can 
state: 

Theorem: The Hybrid multiplication algorithm 
takes: 

2.1)... (9/2 N log N + 5N) + ((m-H) 2 + (m-N)) 
2 

operations, where N = 2 [l°g 
m] 

D 

This can be compared to the Basic FFT method which 
takes: 

2.2)... 9 N log N + 19N basic steps. 

If 9/2 N log N + 14N > (m-N) 2 + (m-N) then 
2 

this method is faster than the basic FFT method. 
This inequality predicts that if: N < m ~N+120 
then the hybrid strategy is better than the basic 
FFT strategy. In fact, this cross-over point of 
120 is borne out in empirical tests. In order not 

to make an 0(N 2) algorithm out of an O(N log N) 
algorithm, the hybrid method is used up to the 
point where 120 leading and trailing terms are 
computed classically. Above this point, the 
basic FFT method is used. 

The performance of the hybrid strategy is 
shown in figures 1,2 and 3 and in table III. It 
leads to a much more smoothly growing liming 
function, which for large intervals, is faster 
than the basic FFT method. This Hybrid method 
crosses over with respect to the classical method 
at degree 25, a significant improvement over the 
degree 70 of the basic FFT method. 

2.3) Mixed Basis FFTs 

The FFT described in section 2.1 is called 

~he radix 2 form since N=2 k. In fact the FFT need 
not be restricted to radix 2. N can be any highly 

composite number. For example radix 3 with N = 3 j 

or N = 2k3 j etc 

It would seem that another way to improve the 
efficiency of the FFT multiplication algorithm is 
to choose a value for N which more closely matches 
the size of the problem. If we allow mixed radix 

FFTs then we have a larger selection of Ns to 
choose from. However, the reason that the radix 
2 FFT is the one most frequently used is that it 
is easiest to implement. This partly is due to 
the digit reverse permutation which is required 
for an iterative version of the algorithm. 

The digit reverse permutation in radix 3 looks 
a little strange, but the permutation in a 2-3 
radix FFT is stranger still. A number in the 
(2,2, .... 2,3,...,3) number system has as its 
reverse form a number in the (3,...,3,2 .... ,2) 
number system (cf. Knuth [Knu 69]). This means 
that the permutation is not so easily computed. 

An alternative is to use N = ~'2 k, where ~ is 
some small prime (e.g. 3,5 or 7). This choice 
together with the sequential access algorithm 
allows the following variant of the FFT to be 
applied. 

The Mixed Basis FFT Multiplication Algorithm 

For a product of degree m, choose N = 2k'~ > m 

and a 2k-th primitive root of unity w. 

2) Perform the Sequential Access FFT algorithm, 

3) 

N _ w2k. 
carrying out the computation modulo x 

This means that the final step of the FFT 

yields 2 k pairs of polynomials {Ai(x)} and 

{Bj(x)} of degree ~-i of the form: 

A.(x) E a(x) mod x ~ -w i , 0 ~ i < 2 k 
i 

i 2 k" ,0~i< Bi(x) ~ b(x) mod x -w 

The products Ci(x) and Ai(x)*Bi(x) mod x -w 

can now be formed using the classical algor- 

ithm. 

4) Finally the polynomials Ci(x) have the inverse 

FFT applied to them, to yield the product c(x) 

in coefficient form. 

Note that the results of the inverse FFT are 

divided by 2 k and not N in this case. Counting 
the cost for each of steps 2, 3 and 4 we have: 

2(N + 3/2 Nk) + (2k'2~ 2) + (2N + 3/2 Nk) 

= 9/2 Nk + N(4 + 2~) where N =%-2k > m. 

We can summarise this in: 

Theorem: The total number of steps for the Mixed 
Basis FFT Multiplication Algorithm is: 

2.3)... 9/2 Nk + N(4 + 2~), basic operations. 
0 

An implementation of this algorith with 
= 1,3,5,7 was made. The performance curve of 

this code is shown in figures i, 2 and 3 and in 
table III. This curve is much smoother than that 
given by either of the two previous methods. This 
is because the curve has many small plateaus, 
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where the Basic radix 2 FFT has only one. This 
technique is at least as fast as the Basic FFT 
strategy almost everywhere and in some cases fast- 
er than the Hybrid method. However, in general, 
the improvement is not as substantial as the 
Hybrid method. 

The two improved methods can be combined to- 
gether to give a Hybrid-Mixed-Basis FFT algorithm 
which is the best of the four methods (cf. 
figures i, 2, 3 and table III). However, the 
improvements of the Hybrid and Mixed Basis algor- 
ithms do not combine together strictly additively 
and so the improvement of the combined method is 
not as large as might be expected. 

This Hybrid-Mixed-Basis method can be tuned 
by choosing optimum values for ~ and k and hence 
N in: 

m/2 < N = ~'2 k < m 

for a product of degree m. How to find this algo- 
rithm is an object for further study. At the 
moment a "good" value is chosen by: 

a) finding N = 2 k > m/2 

b) while m-N > i00, increment N to a form 

N = 2k.z. 

At the moment ~ is always chosen as ~ = 1,3,5 or 
7, but other choices might be better. In parti- 
cular, if ~ is a small multiple of 2, equation 
(2.3) predicts that the Mixed Basis method will be 
marginally faster than the Basic FFT method. 

Multivariate Polynomials 

So far we have only considered univariate 
polynomial multiplication. We have seen that the 
methods based on the FFT have a cross-over point 
about degree 25, with respect to classical 
multiplication. While problems of this size or 
larger do arise in algebraic manipulation, 
generally the problems are smaller. If we look at 
the multivariate case we see polynomials with 
similar low degrees but they tend to have a large 
number of coefficients. This raises the 
question, "Can the FFT methods be applied to the 
multivariate case?". 

3.1) Recursive Classical Method 

The standard approach to multiplication of 
polynomials: 

a(xl ..... Xv),b(Xl ..... x v) g R[xl ..... x v] 

is to view the polynomials as being represented 
recursively in: 

a(X) g R[x ..... Xv_l][X v] 

i.e. as polynomials in the indeterminant x whose 
coeffients are polynomials in the remainin~ v-I 
variables. Then the classical algorithm can be 
applied as before. Whenever the product of two 
coefficients is required, the polynomial multi- 
plication algorithm calls itself recursively, 

until coefficients in the base ring R are found. 

Let MCPM(n,v) be the number of steps required 
to multiply dense polynomials of degree n in each 
of v variables, using this method. Then: 

MCPM(n,v) = (n+l) 2 coefficient multiplications 

+n 2 additions to these products 

= (n+l) 2 MCPM(n,v-i) + n2(2n+l) v-I 

where MCPM(n,0)=i. The asymptotic form of this 

function is MCPM(n,v) = 0(n2V). 

3.2 The Recursive FFT Method 

One proposal for applying the FFT methods is 
to also apply them recursively. Viewing the FFT 
as a quick method to evaluate the polynomial at a 
set of points, we could use the following process. 

I) Evaluate the (n+l) v-I coefficient polynomials 

in x I of a(X) and b(X) at m points. This 

yields m pairwise products of polynomials in 

v-i variables to be formed. These products 

can be computed by applying this method recur- 

sively. 

2) The coefficients of these products can then be 
interpolated using the inverse FFT to give 
the product of a(X) and b(X). Again the 
recursion stops at the pairwaise multiplication 
of base ring elements. 

Let MFPM(n,v) be the number of steps required 
to multiply two polynomials of degree n in each, of 
v variables. Then: 

MFPM(n,v) = 2(N+l)V-l(m + 3/2mlog m) 

+ m MFPM(n,v-i) 

+ mV-l(2m + 3/2mlogm) 

where MFPM(n,O) = i and m = 2r,[r = log(2n+l)]. 

The function is asymptotically MFPM(n,v) = 

Q(v n v logn). 

One problem with this method is that FFT 
methods are worthwhile only for large degree poly- 
nomials. Even with the modifications suggested in 
the previous section it appears intuitively that 
the polynomial must be of degree 25 in each vari- 
able ~efore this method will pay dividends. This 
does not require many variables before the size of 
the problem is compounded out of any useful range. 

3.3) The Kronecker Trick 

A third possibility advocated here and in 
[Moe 76] is to map the multivariate problem into a 
univariate one and then apply an FFT method to the 
univariate case. Consider the multiplication of 
a(x,y) by b(x,y) where: 

a(x.y) = (2y+l)x + (-y+2) 

b(x,y) = (y+3)x + (4y-3) 
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Since the product will be of degree two in each 

variable we might try substituting x = y3 in each 

of the polynomials, to obtain a'(y) and b'~): 
3 a' (~) = 2y 4 + y - y + 2 

b'(y) = y4 + 3y3 + 4y - 3 

and a' (y)*b' (y) = 

2Y 8 + 7Y 7 + 3y 6 - 7y 5 - 3y 4 + 3y 3 - 4y 2 + fly - 6. 

Taking the remainder of successive quotients with 

respect to {y3i} , 2 > i > 0 , we invert the sub- 

stitution to get: 

(2y 2 + 7y + 3)x 2 + (7y 2 - 33 + 3)x + 

(-4y 2 + lly - 6). 

This is the product of a(x,y) and b(x,y) as can be 
verified by carrying out the multiplication in 
some more conventional way. This method is known 
in the literature as "Kronecker's Trick". 

For the general case the validity of the 
method is established by the following theorems 
shown in [Moe 76]. 

Theorem: 

In the polynomial ring R[x I ..... Xv], v > 2. 

The mapping: ~ : R[X]---~ R[Xl] 

: x i ~---~'xlni , I ~ i ~ v 

~here nv > "'" > nl = 1 is a homomorphism of rings. 

D 

Let di(p) be the maximum degree of the poly- 

nomial p in variable x i. The following theorem 

relates the {n.} of the mapping to d. and est- 
l i 

abilishes the validity of the inverse mapping. 

Theorem: 

Let ~ be the homomorphism of free R-modules 
defined by: 

: R[x i] ~ R[x I . . . . .  x v] 

: xlk ~ F i if k = 0, 

xi ., 
where ni÷ ~ > k > n., k = q*n i + r, 0 _< r < n. 

i i 

and n > ... > n_ = i. 
v I 

The~for all p(X) e R[X],  l~(q~(p)) = p 

3.1... iff V i, i -< i < v, 

i 
~: d. (p)n < 

j =1 3 J ni+l. 

Note that this result in effect shows that the 
set of polynomials, for which relation (3.1) holds, 
are isomorphic to their univariate images. Thus 
any polynomial ring operation on elements of this 
set, giving results in the set, will be preserved 
by the isomorphism. In this sense ~ behaves like 
a ring isomorphism on the set of polynomials. 
Another way to view the mapping given in the 
theorems is: 

m i 
~ : X i ~ Xi_l , for l < i ~ v. 

3.4) The Kronecker Trick Algorithm 

We can apply these results in the following: 

Kronecker Trick Al$orithm 

i) For two polynomials a(X) and b(X), find a 
bound on the maximum degree in each vari- 
able of their product: 

m i = di(a) + di(b) + l. 

2) Apply the Kronecker Trick mapping: 
m. 

: x. ~ x i for l=v,v-l,. ,2 
l i-l' "" 

to a(X) and b(X) to give two univariage 

polynomials a ' ( x l )  and b ' ( x i ) .  

3) Multiply the polynomials a'(x I) and 

b'(Xl) to give a product of c'(xl). Any 

fast multiplication algorithm may be used. 

4) Invert the Kronecker Trick mapping on 
c'(x I) to give a multivariate product 

c (x). 

From the theorems given above, the result 
c(X) will be the product of a(X) and b(X). The 
Kronecker Trick mapping and its inverse can be 
accomplished by a linear scan over the terms of 
the polynomial. This means we can count the steps 
used in the algorithm as follows. Let MKPM(n,v) 
be the number of steps required to multiply two 
polynomials of degree n in each of v variables, 
using the Kronecker Trick and a univariate FFT 
method. Then: 

MKPM(n,v) = (9/2m logm + 5m) 

where m = 2 r and r = [log (2n+l)V]. Again the 
asymptotic form of the function is MKPM(n,v) = 

0(v n v logn). However, the constants of pro- 
portionality are smaller in this case than in the 
recursive FFT algorithm 

The three functions MCPM, MFPM and MKPM can 
be evaluated using their reeursive definitions and 
an estimate of the cross-over points can be made. 
Some sample values for small n and v are displayed 
in table IV. The table illustrates the character- 
istic jumps in the timing function of the FFT 
methods. One effect of the Kronecker Trick is to 
smooth out these jumps to give a more uniform 
function. While the recursive FFT method is 
better than the Kronecker method at a few points, 
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generally the latter is faster. The cross-over 
points for the Kronecker method with respect to 
the classical method are shown in the following 
table. 

theoretical empirical 
variables degree degree 

i0 
7 
4 
4 
3 

Some empirical tests using the Hybrld-Mixed- 
Basis FFT algorithm together with the Kronecker 
Trick were carried out. The results of these are 
shown in figure 4 and table IV. It can be seen 
that for bivariate polynomials a cross-over ~oint 
at degree 5 and for trlvarlate polynomials a 
cross-over point at degree 3 is obtained. 

Summary and Conclusions 

We have surveyed some of the existing fast 
methods for computing the product of two poly- 
nomials. When contrasted with the classical 
algorithm for computing products, these methods 
tend to suffer from the common problem that they 
do not perform well for small degrees. A number 
of techniques were proposed to improve these 
methods. These techniques include: 

i) Performing the basis step of Karatsuba's 
algorithm classically. If the degree of the 
basis was increased to 7, the algorithm 
attains a cross-over point at degree 15, with 
respect to classical multiplication. 

2) Another technique used was the Hybrid FFT 
algorithmwhlch computed the leading and 
trailing coefficients of the product classi- 
cally, and left the intermediate terms to an 
FFT algorithm. 

3) A Mixed-Basis FFT algorithm reduced the com- 
putation of one large product to that of a 
large number of small products, which could 
be computed classically. 

4) A Hybrid-Mixed-Basls FFT algorithm combined 
the previous two methods. This last method 
was the best of the FFT methods considered 
here, attaining a cross-over point at 
degree 25 and having a much smoother per- 
formance curve. 

The problem of multivariate multiplication 
was also considered. The Kronecker Trick was 
proposed as an alternative to the standard 
reeursive approach to multivariate problems. 
Evidence was presented showing that the Kronecker 
Trick is superior to the standard methods. A 
cross-over point at degree 5 for bivarlate poly- 
nomials was obtained in empirical tests. 

When this research was begun, it was hoped 
that a definitive answer could be found for the 
question, "What is the best all-round polynomial 
multiplication algorithm(at least in the dense 

case)?". Instead of a definitive answer, more 
questions were found. Some of these were: 

l) The techniques used to speed up the basic 
algorithms suggest that there are classes of 
methods for polynomial multiplication that are 
yet to be explored, e.g. 

a) The Hybrid method uses the classical algo- 
rithm to compute up to 60 of the leading 
and trailing terms of a product. Could 
some other algorithm (e.g. Karatsuba's) do 
this computation more efficiently? 

b) The Hybrid method uses the FFT to compute 
half of the terms of the product. Could 
the FFT be used to compute a quarter of 
the terms, leaving the rest to be formed 
classically? This might reduce the cross- 
over point for these methods. 

c) What is the optimum choice for the 
division of labour in a Hybrid-Mixed-Basis 
FFT method? 

2) The FFTs used in the empirical tests were the 
standard finite field methods (cf. [Pol 71]). 
Recently, Merse~ne and Fermat Transforms 
which replace multiplication by powers of w 
with clever shifting, have been proposed. 
Agrarwal and Burrus [Agr 74] claim that such 
methods are faster than FFT method by a factor 
of 3. The techniques used in the Hybrid and 
Mixed Basis methods are not senstitive to the 
kind of transform employed, and so could be 
used in conjunction with such methods. Would 
this yield a better algorithm? 

3) The products considered in this paper have all 
been balanced in the following sense: for a 
product of polynomials of degrees n and m: 
n < m < 2n. If they are unbalanced i.e. 
n << m, then usually one segments the poly- 
nomial of degree m into a number of "chunks" 
each of approximate degree n, and forms the 
product of these with the polynomials of 
degree n. What is the best way to do this? 

4) Last, but not least, Comes the question of 
sparse polynomials. These have been com- 
pletely ignored in the present work because 
the dense case has enough problems of its own. 
The classical algorithm can perform as 

0(t 3) when multiplying polynomials with t 
terms. Johnson [Joh 74] and Horowitz [Hor 

74] have proposed 0(t21og t) algorithms and 

Gustavson and Yun have an 0(t 2) algorithm for 
performing unordered sparse polynomial multi- 
plication. 

Current opinion holds that fast techniques 
are hopeless for sparse polynomials. Is this in 
fact true? The Kronecker Trick maps a dense 
multivariate problem onto a sparse univariate one. 
For example the bivariate case where half the 
terms are zero. In a sense, the classical algo- 
rithm knows that the problem is sparse, and yet it 
still looses to the FFT techniques. 

One might define the density of a polynomial 
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as the fraction of non-zero coefficients, when 
the polynomial is viewed in its dense form. The 
best multiplication algorithm to use, is a 
function of the density and the degree of the 
result. The optimum regions for the various 
methods are probably as shown below. 

densit 

O 

~ I ~  ~ FaslMeth°ds 

~ ~ p a r s e  Methods 

Classical ~ 

Method ~ L 

degree 

At the moment a best all-round algorithm for 
polynomial multiplication is probably a poly- 
algorithm which would examine the density and 
degree of the result and choose an appropriate 
method to compute the product. In order to 
generate such a poly-algorithm, the boundar.ies 
between these optimum regions must be known. 
Exactly where the boundaries between the methods 
lie is another question for further research. 
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N 

DeE + 1 

2 
4 
8 

16 
32 
64 

128 
256 

Classical Method FFT Method 

Empirical Theoretical Empirical 
Sees./60 9N lo8 N + 19N Sees./60 2N - 2N + 1 

0.01 
0.03 
0.08 

481 0.29 
1985 1.10 
8055 4.25 

17 
66 

880 
2048 
4672 

0.12 
0.16 
0.3 
0.55 
1.05 
2.3 
5.0 

11 

Table i 

A comparison of the classical vs. the FFT method of unl- 
varlate polynomial multiplication. Times are taken for an 
AlgoI-W code running on an IBM 360-75 for multipllcatlon of 
polynomials with coefficients in the finite field GF(40961). 
Note that both the theoretical and empirical times indicate a 
c r o s s - o v e r  p o i n t  a t  d e g r e e  31. 

Deg Classical KPM-0 KPM-i KPM-3 I KPM-7 FFT 

3 0.7 3 i.i 0.8 
7 2 8 4 3 2 8 

15 8 30 15 I0 8 20 
31 38 91 50 30 27 42 
63 113 150 100 90 97 

Table I I  

A table comparing empirical times i n  milli-seconds f o r  
c l a s s i c a l  m u l t i p l i c a t i o n  w i t h  a c l a s s  of  K a r a t s u b a  a l g o r i t h m s .  
The t i m e s  were o b t a i n e d  from an Algol -W code r u n n i n g  on an 
IBM 360-75. KPM-n indicates the basis of degree n multl~ 
plicatlon was performed classically. 

The times f o r  an FFT algorithm operating on polynomials 
of the same degree are included for contrast. Note that the 
classical method and Karatsuba's algorlthmwere carried out 
over the integers. This accounts for the discrepancy with 
Table I. The FFT times are for computation in a finite field. 
Each finite field operation involves an extra division to 
compute the residue of the result of an integer operation. 

.35 
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.25 

"2 

.15 

"I 
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time 
(seconds) 

O- 
O 

Figure I: Performance of Polynomial Multiplication Methods 
(medium sized problems) 
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Figure 2: Performance of Multiplication Methods 
(large problems) 
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Degree of Multiplicands 

i0  
20 
30 
40 
50 
60 
70 
80 
90 

i00 
150 
200 
250 
300 

Classical Basic FFT Hybrid Mixed Basis HMB-FFT 

5.5 
16.6 
33 
66 
94 

139 
194 
250 
294 
377 
866 

1600 
2238 
3128 

22 
44 
44 
94 
88 
94 

205 
200 
206 
206 
450 
455 
433 
906 

15 
28.3 
35 
62 
68 
88 

117 
125 
137 
163 
255 
412 
530 
583 

16 
33 
55 
72 
88 

iii 
133 
166 
166 
200 
294 
444 
511 
606 

ii 
22 
33 
50 
61 
83 
94 

iii 
139 
150 
250 
350 
472 
572 

Table III 

This table contrasts the run-times for the Classical, Basic 
FFT, Hybrid, Mixed Basis and Hybrid Mixed Basis univariate 
polynomial multiplication algorithms. The times (in milli- 
seconds) are taken from an Algol-W code running on an IBM 360-75. 
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Figure 3: Graph of Performance of Multivariate Polynomial 

Multiplication Algorithms 

time 
(seconds} 

P 
"Classical Method ~- 

V= 3 

V=2 

4' 

J 2 3 ~/ 5 ~ 7 ~ ? /o ~I 12 13 ie /~ J~ 

Kronecker Trick with 

HMB-FFT Algorithm 

Degree in each variable 
of the multiplicands 

f 

:vat de 
vN 

Classical Kronecker 
steps tlme steps time 

2 2 137 8.33 
4 1169 43.3 
6 4633 135 
8 12833 345 

I0 28841 696 
12 56497 1333 
14 100409 2200 
16 165953 
18 259273 
20 387281 

3 2 1333 80 
4 30521 1166 
6 233101 6780 
8 1057969 

i0 35333861 
4 2 12497 

4 774689 
6 11501041 

5 2 114937 
4 19472201 

6 2 1047257 
4 487749809 

88O 
4670 

10496 
23296 
23296 
51200 
51200 

111616 
111616 
111616 

4672 
51200 

241664 
520192 

11114112 
51200 

520192 
2375680 
241664 

5046272 
1114112 
9961472 

13.3 
50 

130 
257 
405 
650 
850 

85 
727 

3012 

FFT 
steps 

1192 
7264 
7712 

47392 
48480 
49568 
S 0 6 ~  

328960 
331520 
334080 

10328 
121824 
134368 

1560608 
1617184 

85000 
1977184 
2226720 

687128 
31774944 
5518408 

509099104 

Table IV 

A t a b l e  comparing the  number of s t e p s  and t he  run t imes  (In 
milll-seconds) of the Recursive Classical, Kronecker Trick and 
Recursive FFT algorithms for multivariate polynomial multi- 
pllcatlon. 
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