
Practical Fast Polynomial Multiplication

Robert T. Moenck

Dept. of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT

The "fast" polynomial multiplication algor-
ithms for dense univariate polynomials are those
which are asymptotically faster than the classical
0(N 2) method. These "fast" algorithms suffer from
a common defect that the size of the problem at
which they start to be better than the classical
method is quite large; so large, in fact that it
is impractical to use them in an algebraic manip-
ulation system.

A number of techniques are discussed here for
improving these fast algorithms. The combination
of the best of these improvements results in a
Hybrid Mixed Basis FFT multiplication algorithm
which has a cross-over point at degree 25 and is
generally faster than a basic FFT algorithm, while
retaining the desirable O(N log N) timing function
of an FFT approach.

The application of these methods to multi-
variate polynomials is also discussed. The use is
advocated of the Kronecker Trick to speed up a
fast algorithm. This results in a method which
has a cross-over point at degree 5 for bivariate
polynomials. Both theoretical and empirical com-
puting times are presented for all algorithms
discussed.

Introduction

One of the most frequently used algorithms in
any algebraic manipulation system is multi-
plication of expressions. For example:

(eY/2sin(x) - cos(x))*(sin(x) - eY/2cos(x)).

One way we might compute this product is to view

it in the polynomial ring Q[eY/2sin(x), cos(x)],
i.e. the functions are considered indeterminants
over the ring Q. Then we might form the product
using a polynomial multiplication algorithm:

.Z
[-(eY/~sin(x)cos(x) + (sin2(x)+cos2(x))eY/2-
sin(x)cos(x)].

Finally, we might simplify the resulting product
to:

e y/z _ i/2(eY+l)sin(2x).

This means we can break the general problem of
expression multiplication into two subproblems:

a) polynomial multiplication and
b) simplification of expressions.

Ignoring the latter completely, it is the former
problem that this paper considers. Since a lot of
polynomial multiplication, in one form or another,
is done in an algebraic manipulation system, we
would like to use the best possible algorithm.
The measure of "best" we will use here is the
number of steps used in the algorithm.

A second reason for interest in the problem is
that over the last several years, a class of
algorithms, for operations on polynomials have
been developed 9 whose efficiency (the number of
steps they use) is related to the efficiency of
polynomial multiplication. In simple terms, if
polynomial multiplication can be done quickly,
then these algorithms can be performed quickly. A
partial list of such algorithms based on an
O(N log N) multiplication algorithm is given
below.

Polynomial Operation Operation Count Reference

Multiplication 0(N log N) [Pol 71]

Division with
Remainder 0(N log N) [Str 73]

GCD and Resultants 0(N log2N) [Moe 73]

Multipoint Evaluation 0(N log2N) [Bor 74]

Interpolation 0(N logaN) [Bor 74]

Factoring 0(N log~N) [Moe 75]

A list of some fast algebraic algorithms

In the case of dense univariate polynomials of
degree n, the classical polynomial multiplication
algorithm uses 0(n z) steps to compute a product.
Workers in the field of algorithmic complexity
have developed several algorithms for polynomial
multiplication. These are the so-called "fast"
algorithms which use 0(f(n)) steps to form a
product. They have the property that:

LIm f(n)
n~ -7-+0

Proceedings o.[Ihe 1976 ACM Symposium
on Symbolic and Algebraic Computation 136

i.e. they are asymptotically faster than the
classical method. In more concrete terms, for
large degrees they are faster than the classical
method and this superiority increases as n does.

The problem with these "fast" methods is that
they tend to be impractical. The degree at which
they start being better than the classical
method (the cross-over point) is fairly high. In
fact the cross-over points tend to be so high
that they are larger than most problems en-
countered in algebraic manipulation systems.
This paper sets out to answer the questions:

i) Can a fast algorithm be made practical?
2) What is the best all-round polynomial

multiplication algorithm?

In section i, we review the classical method
and two fast methods and look at their performenc~
The performance of the algorithms is investigated
both from the theoretical point of view and in
terms of the run times of Algol-W implementations
of the algorithms. Section 2 deals with improve-
ments to one of the fast methods. These lead to
an algorithm with the same asymptotic properties
as the best of the fast algorithms, but is more
practical and in general, faster than such a
method. In section 3, we examine methods for
multivariate multiplication, and suggest a new
approach to this problem. Finally, in section 4
we summarise the results and see what conclusions
can he drawn.

Three Basic Methods

In the first two sections we will consider
dense univariate polynomials i.e. polynomials
a(x) c R[x]

n i
w h e r e a (x) = Z a . x and a . ~ ' 0 f o r 0 ~ i 5 n .

i=O i I

The base ring R will usually be a finite field Z .
For some of the algorithms, the base ring could p
equally well be the integers Z or rationals Q or
any other suitable number ring. Coefficients in
such rings can be mapped into the finite field Z
and recovered by means of the Chinese Remainder p
Algorithm (cf. [LipTl], so there is no loss of
generality in considering only finite fields.

1.1) The Classical Method

The Classical Method for polynomial multi-
plication is the one which is commonly employed
in algebraic manipulation systems. If we have
two polynomials:

n i m . xj
a(x) = Z a.x , b(x) = Z b

i=O i j=O i

then their product c(x) can be written as:

i.i)... C(X) = a(x)*b(x) =
m+n

Z (Z ai*bj)xm
f=o ~=i+j

Expression (i.i) can be directly translated into
an algorithm for computing this product. This
algorithm uses:

(n+l) (m+l) coefficient multiplications and

nm coefficient additions.

For a total of : 2mn + (m+n) + i coefficient
operations.

If n = m this is : 2n 2 + 0(n) operations.

While this function only counts the number of
arithmetic operations which are used in the algor-
ithm, all other types of operations (e.g. sub-
script calculations, store, fetch etc.) will
increase proportionally.

1.2) The Fast Fourier Transform Method

In recent years the study of algorithmic com-
plexity has produced a number of multiplication
algorithms having operation counts which grow more
slowly than 0(n2). The best of these to date is
the one based on the Fast Fourier Transform (FFT)
(cf. [Pol 71]). Gentleman and Sande [Gen 66]
appear to have been the first to propose the use
of the FFT for polynomial multiplication.

The FFT provides an efficient method for eval-
uating a polynomial at M roots of unity {w i} in a

finite field. Since evaluation of a polynomial
induces a homomorphism from the polynomial ring to
the ring of coefficients, the values of the
product polynomial can be found by multiplying the
values of the multiplicants pairwise.

i.e. if c(x) = a(x) * b(x)

then c(w i) = a(w i) * b(wi).

Given the values of the product {c(wi)} at the

points {wi}, the coefficients of the product can

De recovered by interpolation. This interpolation
can be performed by means of the inverse FFT.

The advantage to this method is that the FFT

can be performed very quickly. If M = 2 r then
this algorithm uses:

2 Forward FFTs = 2(M + 3/2 M log M)
1 Multiplication of values = M
1 inverse FFT = 2M + 3/2 M log M)

For a total of : 9/2 log M log M + 5M coefficient
operations.

Note: all logarithms used in this paper will be
base 2 unless otherwise specified.

We will postpone the details of computing the FFT
until section 2.1. In applying the FFT method to
multiply two polynomials of degree m and n the
usual approach is to choose r = [log (m+n+l)7.
Then the polynomials are considered to be of

degree M-i = 2r-i by adding a suitable number of
zero leading coefficients. This approach does
handicap the algorithm by making the polynomials
appear larger than necessary, but does not destroy
the desired 0(M log M) operation count.

Applying this method to two polynomials of
degree n, the number of steps in the algorithm is:

137

9N log N + 19 N

where N = 2 k, k = [log (n+l)7.

1.3) Comparison of the Methods

Table i compares the two methods both in terms
of their operational counts and in terms of the
actual run times of an Algol-W implementation of
the algorithms. It can be seen that the operation
count predicts that the FFT method will start
being more efficient than the classical method
when multiplying polynomials of degree 31.

The empirical run-times bear out this cross-
over point. They also illustrate the character-
istic quadratic behaviour of the classical method
and the slightly faster than linear behavior of
the FFT method. This table of performance might
be used to advocate the use of the FFT method as
the standard algorithm to be used in an algebraic
manipulation system. However, several problems
arise:

a) For degrees below the cross-over point the FFT
method is very much worse than the classical
method. This problem might be resolved by
combining the two methods and using the FFT
method for large problems and the classical
for small.

Even if this combined approach is taken there are
problems.

b)

c)

The cross-over point is quite high. Although
products of degree 31 do appear in algebraic
manipulation, they do not arise that fre-
quently. Is it worth the trouble of imple-
menting a fast algorithm if it will only be
used occasionally?

The table does not illustrate the fact that
the FFT is performed on sequences of length
2 k. This means that to multiply two poly-
nomials of degree 32, a sequence of length
128 must be used. For this case the imple-
mentation of the FFT method takes 2.3 time
units and the classical method about i.i
units. In other words, the FFT method has
not one, but three cross-over points with
respect to the classical method (at degrees
31, 50 and 70). (see Fig. i)

It was with these problems in mind that an
attempt was made to improve on the existing
multiplication algorithms.

1.4) Karatsuba's Algorithm

The first attempt involved looking at an
alternative to the FFT method. It was hoped that
a different algorithm might be more efficient
than the classical method, but not much worse
than the FFT method. The method used is due to
Karatsuba (see [Kar 62]). Fateman [Fat 72] calls
this algorithm SPLIT.

Karatsuba's algorithm applied to two poly-
nomials of degree n-l:

a(x) = al(x)x n/2 + a0(x)

b(x) = bl(x)x n/2 + bO(x)

where deg(al), deg(aO), deg(bl), deg(b0) N n/2-1.

Then: c(x) = a(x) * b(x)

= (x n + x n/2) al*bl + (x n/2 + i)

a0*b0 - xn/2(al - a0)*(bl-b0)

The three products of half the degree are
formed by applying the algorithms recursively.
With care, the addition of the coefficients of the
products can be done in 7/2n steps. Therefore,
the number of steps used by the algorithm to
multiply two polynomials of degree n-i can be ex-
pressed in the following recurrence relation:

r(n) = 3T(n/2) + 7/2n

= 23/2 n log 3 _ 7n

= 23/2 n 1.585 _ 7n coefficient

operations.

This means that Karatsuba's algorithm is more
efficient than the classical method, but not as
efficient as the FFT method, for large inputs.
However, it was hoped that the simplicity of the
algorithm (in its recursive form it requires about
as many line of ALGOL code as the classical method
might give it a lower cross-over point with
respect to the classical method.

Table II compares the empirical run times of
the classical method with Karasuba's algorithm.
The second column gives the time for the first
version of the algorithm, where the recursion was
carried out down to the level of the coefficients
(i.e. degree0). It may be seen that at degree 31
Karatsuba's algorithm takes three times longer
than the classical method. Also the method
exhibits the same poor performance for small deg-
rees as the FFT method.

On reason for the poor performance of the
algorithm was that it had to labour very ha;d to
perform many operations both in the form of pro-
cedure calls and arithmetic operations close to
the base of its recursion. Therefore, one way to
improve the algorithm would be to stop the re-
cursion at some small degree and perform this
multiplication classically. The remainder of the
columns of Table II show the times when the base
of recursion was polynomials of degree i, 3 or 7.

It can be seen that KPM-7 achieves a cross-
over point at degree 15, which is the best of the
fast methods. However, at about degree 63 the
FFT method is almost as fast as KPM-7. For larger
degrees the KPM algorithm will be slower than the
FFT method. An advantage of the KPM algorithm
shared by the classical method, is that it can be
carried out in the original polynomial ring. This
means that coefficients do not require any mapping
to a residue representation with its attendant
overhead in computation.

The FFT Revisited

2.1) Two Views of the FFT

A second attempt involved looking for ways to
improve the FFT method. In order to discuss thes%

138

it is first necessary to review the algorithm for
computing the FFT.

There are in fact many algorithms for comput-
ing FFTs. Each has its advantages, and the choice
of which one to use, depends on the nature of the
problem. There is a considerable literature on
the FFT, Aho et al [Aho 74] give a brief survey.
Gentleman and Sande [Gen 66] discuss several such
algorithms and compare their merits.

The first view considered here is the
"evaluation" form. For this the transform of a
polynomial a(x) of degree N is considered as eval-
uation of a(x) at the points {w i} where 0 < i < N
and w is a primitive N-th root of unity of the

finite field Z , i.e. w N = i, w j # i for 0 < j <
P

This can be viewed as:
N-i

a(w i) ffi ~ a.w ij

j=O 3

N/2-1 N/2-1
= Z a2jw 2ij + w i Z 2ij

j=O j=O a2 j+ lW

2i i aodd(W2i) = aeven(W) + w

ForO<i<n.

Note: a'(w 2(N/2+~)) = a'(wNw 2i) = a'(w 2i)

where a'(x) is aeven(X) or aodd(X).

Now aeven(X) and aodd(X) are two polynomial

forms, each with half the number of terms of a(x),

which are to be evaluated at a point w 2i which is

also a root of unity. Thus the same process can

be applied. The inverse transform of {a(wi)} can

be computed as:

N-i N-i N-I
Z a(wi)w -ij ffi Z w -ij Z aiwi£

i=0 i=0 t=0

N-i N-i
w i (~-J))= N aj Z a~(Z

~=o i=o

since
N-i

ik
Z w

i=O
= ~ if k = 0 mod N

otherwise.

{w -1} is also a primitive root of unity and so the
same algorithm as the forward FFT can be used.

This leads, naturally to a recursive algor-
ithm for computing the transform. However, for an
actual implementation, a recursive algorithm is
not the most suitable since recursion is usually
an expensive operation on many computers. It is
possible to express this algorithm in an iterative
"bottom-up" form which is much more efficient.

A second consideration is the storage used by
the algorithm. It would seem that extra storage

might be needed to store the aeven(X) and aodd(X)

results at each level, so that the coefficients of
a(x) are not overwritten while they are still
needed. In fact the algorithm can be coded in
such a fashion that it works "in-space" and the
values which are overwritten are those which are
no longer required.

A peculiarity of the algorithm is the order in
which it selects coefficients. Selecting even and
odd parts means that the lowest order bit of the
index of a coefficient is used as a selector. If
this is carried through several levels, it is
apparent that the indices of the coefficients are
being read as binary numbers from right to left,
rather than left to right as is conventional.
This is the digit reverse form discussed by Cooley
and Tukey [Coo 65]. One problem with this method
of indexing is that it is necessary to perform
"random" accessing of coefficients to apply the
algorithm. This is easy if the coefficients are
stored in an array, but in the realm of symbolic
mathematics, polynomials are usually represented
by linked lists ordered by exponent and this mode
of accessing is quite unacceptable.

An alternative algorithm can be obtained by
viewing the computation as being carried out

N N
modulo x - w .

N-1
N N

a(x) = i_Z0= aixi mod x - w Hence:

aixi.~ ~ N/2-I i

= /2 i=0

xN/2
= ahigh(X) + alow(X)

Then a(x) E a(x) mod x N/2 - w N/2

w N/2 a'
= alow(X) + ahigh(X) = (x)

and a(x) E a(x) rood x N/2 + w N/2

= alow(X) - ahigh(X) w ~/2 = a"(x)

Note that x N/2 + w N/2 N/2 N = x - w and so the
process can be recursively or iteratively applied
to a'(x) and a"(x) until the values of

i
a(x) mod x-w are reached. It is apparent that
a'(x) and a"(x) can be generated simultaneously by
scanning the top and bottom halves of a(x)
sequentially. This algorithm can also be perform-
ed "in-space". Perhaps less obvious, is the fact
that, the powers of w used by the algorithm are
accessed in digit reverse order and that the
transformed representation of the polynomial is
also permuted in this fashion.

This is less serious than the previous case
since the powers of w can be generated in this
order in linear time. Secondly, since the pro-
ducts of two transformed polynomials are formed
pairwise, any permutation of the transformed

139

representation is irrelevant, and the inverse
transform unscrambles the results. As Singleton
[Sin 67] points out, this permutation must appear
somewhere in an FFT algorithm. We will call this
form of the FFT the sequential access method.

In the case of the second form of the FFT the
inverse transform may be computed by forming a(x)
out of a'(x) and a"(x) as follows:

w-N/2
a(x) = 1/2 [a'(x) + a"(x)]x N/2 + ~ [a'(x) -a~(x~

xN/2
= ahigh(X) + alow(X)

For either algorithm it may be seen that each
level of the FFT may be accomplished in 3/2N step&
Each level d~vides the problem into two sub-
problems of half the degree, each of which is to
be evaluated at half the number of points. There-
fore, the number of steps used by the algorithms
exhibits the characteristic recurrence relation:

T(N) = 2T(N/2) + 3/2N

= 3/2 N log N + N steps.

During the inverse transform the factor of 1/2
is not usually divided out at each stage but
accumulated and divided out in a final step as

1/21og N = i/N. Thus the inverse FFT takes:

3/2N log N + 2N steps.

2.2) A Hybrid Method

The basic strategy for the FFT polynomial
multiplication algorithm applied to two poly-
nomials a(x) and b(x) of degree n is as follows:

Basic Radix-2 FFT Multiplication Al~orithm

i) Choose N > 2n+l such that N=2 [l°g(2n+l)].

2) Perform the N point FFT on a(x) and b(x) to
give the sequences {A i} and {Bi}.

3) Multiply the sequences pairwise to give a
sequence {Ci}.

4) Perform the N point FFT on {C.} to give a
l

polynomial c(x). This polynomial is the
product of a(x) and b(x).

The problem with this approach is that it
chooses a gross maximum degree N for the
prod~Ict. All products in the range
N/2 < 2n+l < N are essentially treated the
same way. One consequence of this is that for
large problems within such a range the time for
the multiplication is constant. For example,
it takes no more time for n=240 than it does
for n=130.

On the other hand, at the end of such a range
there is a large jump in time from one interval to
the next. Clearly it is not a great deal more
dffficult to multiply polynomials of degree 32
than it is for degree 31. However, the basic FFT
strategy does not reflect this fact.

One way we can improve on this situation is to
notice that the FFT method is a powerful engine
for multiplying polynomials. We can use it to best
effect by giving it the "difficult" problems and
solving the "easy" ones some other way. In poly-
nomial multiplication the "easy" problems are the
leading and trailing coefficients of the product.
These involve only a few terms and operations and
are best done using a classical algorithm. The
"difficult" problems are the intermediate co-
efficients of the product. These involve most of
the coefficients of the multiplicands and many
operations.

To see how this might be done we can examine
the inverse transform for the j-th coefficient of
the product.

N-i
1 "" cj =~ z C.w -~j

i=O i

N-i C wN/2iw(-N/2-j)i = ! Z
N i

i=0

1 i w- (N/2+j) i
= --N Z Ci(-1)

and
N-i

1 Z C.w - (N/2+j)i
CN/2+J = N i=0 i

Then consider extracting the even order terms from
each sum:

Pj = c . + c
3 N/2+j

2 N/2-1 (N/2+j) 2i

= ~ i=ZO C2i w-

Note that the {pj} are just the result of an N/2

point inverse FFT and that

c.] = pj - ON/2+ j

for 0 < j < N/2

CN/2+ j = pj - cj

This means we could use an N/2 point FFT to
compute the {pj} (i.e. the "difficul@' terms) and

and use a classical method to compute the leading
and trailing terms. The two sets of terms can be
combined to find the coefficients of the product.

This leads to an alternate strategy for a
Hybrid Method computing a product of degree m.

l)

2)

3)

The Hybrid Multiplication Algorithm

Choose N = 2 Llog mJ.

Apply the FFT method to find the {pj}.

Form the coefficients C~ classically for
0 ~ i ~ [m/2/~N/2 and N/2+[m/2J+l ~ i ~ m.
i.e. the ~eadlng and trailing terms.

140

4~ Find the remaining coefficients of the product
using the relations:

c. = pj - CN/2+ j for [m/2]+N/2+l N j ~ N/2+m
j

CN/2+ j = pj - cj , for Lm/2J+N/2+l N j s m

c. = p. , for the rest of the coefficients.
J 3

Examining the algorithm, we see that step 2
takes: 9/2 N log N + 5N operations. Step 3 will
take the same number of steps as multiplying two
polynomials of degree m/2 - N/2 i.e.

i (m-N-l) 2 + (m-N-l) operations. There are (m-N)
2

subtractions used in step 4. In summary we can
state:

Theorem: The Hybrid multiplication algorithm
takes:

2.1)... (9/2 N log N + 5N) + ((m-H) 2 + (m-N))
2

operations, where N = 2 [l°g
m]

D

This can be compared to the Basic FFT method which
takes:

2.2)... 9 N log N + 19N basic steps.

If 9/2 N log N + 14N > (m-N) 2 + (m-N) then
2

this method is faster than the basic FFT method.
This inequality predicts that if: N < m ~N+120
then the hybrid strategy is better than the basic
FFT strategy. In fact, this cross-over point of
120 is borne out in empirical tests. In order not

to make an 0(N 2) algorithm out of an O(N log N)
algorithm, the hybrid method is used up to the
point where 120 leading and trailing terms are
computed classically. Above this point, the
basic FFT method is used.

The performance of the hybrid strategy is
shown in figures 1,2 and 3 and in table III. It
leads to a much more smoothly growing liming
function, which for large intervals, is faster
than the basic FFT method. This Hybrid method
crosses over with respect to the classical method
at degree 25, a significant improvement over the
degree 70 of the basic FFT method.

2.3) Mixed Basis FFTs

The FFT described in section 2.1 is called

~he radix 2 form since N=2 k. In fact the FFT need
not be restricted to radix 2. N can be any highly

composite number. For example radix 3 with N = 3 j

or N = 2k3 j etc

It would seem that another way to improve the
efficiency of the FFT multiplication algorithm is
to choose a value for N which more closely matches
the size of the problem. If we allow mixed radix

FFTs then we have a larger selection of Ns to
choose from. However, the reason that the radix
2 FFT is the one most frequently used is that it
is easiest to implement. This partly is due to
the digit reverse permutation which is required
for an iterative version of the algorithm.

The digit reverse permutation in radix 3 looks
a little strange, but the permutation in a 2-3
radix FFT is stranger still. A number in the
(2,2, 2,3,...,3) number system has as its
reverse form a number in the (3,...,3,2 ,2)
number system (cf. Knuth [Knu 69]). This means
that the permutation is not so easily computed.

An alternative is to use N = ~'2 k, where ~ is
some small prime (e.g. 3,5 or 7). This choice
together with the sequential access algorithm
allows the following variant of the FFT to be
applied.

The Mixed Basis FFT Multiplication Algorithm

For a product of degree m, choose N = 2k'~ > m

and a 2k-th primitive root of unity w.

2) Perform the Sequential Access FFT algorithm,

3)

N _ w2k.
carrying out the computation modulo x

This means that the final step of the FFT

yields 2 k pairs of polynomials {Ai(x)} and

{Bj(x)} of degree ~-i of the form:

A.(x) E a(x) mod x ~ -w i , 0 ~ i < 2 k
i

i 2 k" ,0~i< Bi(x) ~ b(x) mod x -w

The products Ci(x) and Ai(x)*Bi(x) mod x -w

can now be formed using the classical algor-

ithm.

4) Finally the polynomials Ci(x) have the inverse

FFT applied to them, to yield the product c(x)

in coefficient form.

Note that the results of the inverse FFT are

divided by 2 k and not N in this case. Counting
the cost for each of steps 2, 3 and 4 we have:

2(N + 3/2 Nk) + (2k'2~ 2) + (2N + 3/2 Nk)

= 9/2 Nk + N(4 + 2~) where N =%-2k > m.

We can summarise this in:

Theorem: The total number of steps for the Mixed
Basis FFT Multiplication Algorithm is:

2.3)... 9/2 Nk + N(4 + 2~), basic operations.
0

An implementation of this algorith with
= 1,3,5,7 was made. The performance curve of

this code is shown in figures i, 2 and 3 and in
table III. This curve is much smoother than that
given by either of the two previous methods. This
is because the curve has many small plateaus,

141

where the Basic radix 2 FFT has only one. This
technique is at least as fast as the Basic FFT
strategy almost everywhere and in some cases fast-
er than the Hybrid method. However, in general,
the improvement is not as substantial as the
Hybrid method.

The two improved methods can be combined to-
gether to give a Hybrid-Mixed-Basis FFT algorithm
which is the best of the four methods (cf.
figures i, 2, 3 and table III). However, the
improvements of the Hybrid and Mixed Basis algor-
ithms do not combine together strictly additively
and so the improvement of the combined method is
not as large as might be expected.

This Hybrid-Mixed-Basis method can be tuned
by choosing optimum values for ~ and k and hence
N in:

m/2 < N = ~'2 k < m

for a product of degree m. How to find this algo-
rithm is an object for further study. At the
moment a "good" value is chosen by:

a) finding N = 2 k > m/2

b) while m-N > i00, increment N to a form

N = 2k.z.

At the moment ~ is always chosen as ~ = 1,3,5 or
7, but other choices might be better. In parti-
cular, if ~ is a small multiple of 2, equation
(2.3) predicts that the Mixed Basis method will be
marginally faster than the Basic FFT method.

Multivariate Polynomials

So far we have only considered univariate
polynomial multiplication. We have seen that the
methods based on the FFT have a cross-over point
about degree 25, with respect to classical
multiplication. While problems of this size or
larger do arise in algebraic manipulation,
generally the problems are smaller. If we look at
the multivariate case we see polynomials with
similar low degrees but they tend to have a large
number of coefficients. This raises the
question, "Can the FFT methods be applied to the
multivariate case?".

3.1) Recursive Classical Method

The standard approach to multiplication of
polynomials:

a(xl Xv),b(Xl x v) g R[xl x v]

is to view the polynomials as being represented
recursively in:

a(X) g R[x Xv_l][X v]

i.e. as polynomials in the indeterminant x whose
coeffients are polynomials in the remainin~ v-I
variables. Then the classical algorithm can be
applied as before. Whenever the product of two
coefficients is required, the polynomial multi-
plication algorithm calls itself recursively,

until coefficients in the base ring R are found.

Let MCPM(n,v) be the number of steps required
to multiply dense polynomials of degree n in each
of v variables, using this method. Then:

MCPM(n,v) = (n+l) 2 coefficient multiplications

+n 2 additions to these products

= (n+l) 2 MCPM(n,v-i) + n2(2n+l) v-I

where MCPM(n,0)=i. The asymptotic form of this

function is MCPM(n,v) = 0(n2V).

3.2 The Recursive FFT Method

One proposal for applying the FFT methods is
to also apply them recursively. Viewing the FFT
as a quick method to evaluate the polynomial at a
set of points, we could use the following process.

I) Evaluate the (n+l) v-I coefficient polynomials

in x I of a(X) and b(X) at m points. This

yields m pairwise products of polynomials in

v-i variables to be formed. These products

can be computed by applying this method recur-

sively.

2) The coefficients of these products can then be
interpolated using the inverse FFT to give
the product of a(X) and b(X). Again the
recursion stops at the pairwaise multiplication
of base ring elements.

Let MFPM(n,v) be the number of steps required
to multiply two polynomials of degree n in each, of
v variables. Then:

MFPM(n,v) = 2(N+l)V-l(m + 3/2mlog m)

+ m MFPM(n,v-i)

+ mV-l(2m + 3/2mlogm)

where MFPM(n,O) = i and m = 2r,[r = log(2n+l)].

The function is asymptotically MFPM(n,v) =

Q(v n v logn).

One problem with this method is that FFT
methods are worthwhile only for large degree poly-
nomials. Even with the modifications suggested in
the previous section it appears intuitively that
the polynomial must be of degree 25 in each vari-
able ~efore this method will pay dividends. This
does not require many variables before the size of
the problem is compounded out of any useful range.

3.3) The Kronecker Trick

A third possibility advocated here and in
[Moe 76] is to map the multivariate problem into a
univariate one and then apply an FFT method to the
univariate case. Consider the multiplication of
a(x,y) by b(x,y) where:

a(x.y) = (2y+l)x + (-y+2)

b(x,y) = (y+3)x + (4y-3)

142

Since the product will be of degree two in each

variable we might try substituting x = y3 in each

of the polynomials, to obtain a'(y) and b'~):
3 a' (~) = 2y 4 + y - y + 2

b'(y) = y4 + 3y3 + 4y - 3

and a' (y)*b' (y) =

2Y 8 + 7Y 7 + 3y 6 - 7y 5 - 3y 4 + 3y 3 - 4y 2 + fly - 6.

Taking the remainder of successive quotients with

respect to {y3i} , 2 > i > 0 , we invert the sub-

stitution to get:

(2y 2 + 7y + 3)x 2 + (7y 2 - 33 + 3)x +

(-4y 2 + lly - 6).

This is the product of a(x,y) and b(x,y) as can be
verified by carrying out the multiplication in
some more conventional way. This method is known
in the literature as "Kronecker's Trick".

For the general case the validity of the
method is established by the following theorems
shown in [Moe 76].

Theorem:

In the polynomial ring R[x I Xv], v > 2.

The mapping: ~ : R[X]---~ R[Xl]

: x i ~---~'xlni , I ~ i ~ v

~here nv > "'" > nl = 1 is a homomorphism of rings.

D

Let di(p) be the maximum degree of the poly-

nomial p in variable x i. The following theorem

relates the {n.} of the mapping to d. and est-
l i

abilishes the validity of the inverse mapping.

Theorem:

Let ~ be the homomorphism of free R-modules
defined by:

: R[x i] ~ R[x I x v]

: xlk ~ F i if k = 0,

xi .,
where ni÷ ~ > k > n., k = q*n i + r, 0 _< r < n.

i i

and n > ... > n_ = i.
v I

The~for all p(X) e R[X], l~(q~(p)) = p

3.1... iff V i, i -< i < v,

i
~: d. (p)n <

j =1 3 J ni+l.

Note that this result in effect shows that the
set of polynomials, for which relation (3.1) holds,
are isomorphic to their univariate images. Thus
any polynomial ring operation on elements of this
set, giving results in the set, will be preserved
by the isomorphism. In this sense ~ behaves like
a ring isomorphism on the set of polynomials.
Another way to view the mapping given in the
theorems is:

m i
~ : X i ~ Xi_l , for l < i ~ v.

3.4) The Kronecker Trick Algorithm

We can apply these results in the following:

Kronecker Trick Al$orithm

i) For two polynomials a(X) and b(X), find a
bound on the maximum degree in each vari-
able of their product:

m i = di(a) + di(b) + l.

2) Apply the Kronecker Trick mapping:
m.

: x. ~ x i for l=v,v-l,. ,2
l i-l' ""

to a(X) and b(X) to give two univariage

polynomials a ' (x l) and b ' (x i) .

3) Multiply the polynomials a'(x I) and

b'(Xl) to give a product of c'(xl). Any

fast multiplication algorithm may be used.

4) Invert the Kronecker Trick mapping on
c'(x I) to give a multivariate product

c (x).

From the theorems given above, the result
c(X) will be the product of a(X) and b(X). The
Kronecker Trick mapping and its inverse can be
accomplished by a linear scan over the terms of
the polynomial. This means we can count the steps
used in the algorithm as follows. Let MKPM(n,v)
be the number of steps required to multiply two
polynomials of degree n in each of v variables,
using the Kronecker Trick and a univariate FFT
method. Then:

MKPM(n,v) = (9/2m logm + 5m)

where m = 2 r and r = [log (2n+l)V]. Again the
asymptotic form of the function is MKPM(n,v) =

0(v n v logn). However, the constants of pro-
portionality are smaller in this case than in the
recursive FFT algorithm

The three functions MCPM, MFPM and MKPM can
be evaluated using their reeursive definitions and
an estimate of the cross-over points can be made.
Some sample values for small n and v are displayed
in table IV. The table illustrates the character-
istic jumps in the timing function of the FFT
methods. One effect of the Kronecker Trick is to
smooth out these jumps to give a more uniform
function. While the recursive FFT method is
better than the Kronecker method at a few points,

143

generally the latter is faster. The cross-over
points for the Kronecker method with respect to
the classical method are shown in the following
table.

theoretical empirical
variables degree degree

i0
7
4
4
3

Some empirical tests using the Hybrld-Mixed-
Basis FFT algorithm together with the Kronecker
Trick were carried out. The results of these are
shown in figure 4 and table IV. It can be seen
that for bivariate polynomials a cross-over ~oint
at degree 5 and for trlvarlate polynomials a
cross-over point at degree 3 is obtained.

Summary and Conclusions

We have surveyed some of the existing fast
methods for computing the product of two poly-
nomials. When contrasted with the classical
algorithm for computing products, these methods
tend to suffer from the common problem that they
do not perform well for small degrees. A number
of techniques were proposed to improve these
methods. These techniques include:

i) Performing the basis step of Karatsuba's
algorithm classically. If the degree of the
basis was increased to 7, the algorithm
attains a cross-over point at degree 15, with
respect to classical multiplication.

2) Another technique used was the Hybrid FFT
algorithmwhlch computed the leading and
trailing coefficients of the product classi-
cally, and left the intermediate terms to an
FFT algorithm.

3) A Mixed-Basis FFT algorithm reduced the com-
putation of one large product to that of a
large number of small products, which could
be computed classically.

4) A Hybrid-Mixed-Basls FFT algorithm combined
the previous two methods. This last method
was the best of the FFT methods considered
here, attaining a cross-over point at
degree 25 and having a much smoother per-
formance curve.

The problem of multivariate multiplication
was also considered. The Kronecker Trick was
proposed as an alternative to the standard
reeursive approach to multivariate problems.
Evidence was presented showing that the Kronecker
Trick is superior to the standard methods. A
cross-over point at degree 5 for bivarlate poly-
nomials was obtained in empirical tests.

When this research was begun, it was hoped
that a definitive answer could be found for the
question, "What is the best all-round polynomial
multiplication algorithm(at least in the dense

case)?". Instead of a definitive answer, more
questions were found. Some of these were:

l) The techniques used to speed up the basic
algorithms suggest that there are classes of
methods for polynomial multiplication that are
yet to be explored, e.g.

a) The Hybrid method uses the classical algo-
rithm to compute up to 60 of the leading
and trailing terms of a product. Could
some other algorithm (e.g. Karatsuba's) do
this computation more efficiently?

b) The Hybrid method uses the FFT to compute
half of the terms of the product. Could
the FFT be used to compute a quarter of
the terms, leaving the rest to be formed
classically? This might reduce the cross-
over point for these methods.

c) What is the optimum choice for the
division of labour in a Hybrid-Mixed-Basis
FFT method?

2) The FFTs used in the empirical tests were the
standard finite field methods (cf. [Pol 71]).
Recently, Merse~ne and Fermat Transforms
which replace multiplication by powers of w
with clever shifting, have been proposed.
Agrarwal and Burrus [Agr 74] claim that such
methods are faster than FFT method by a factor
of 3. The techniques used in the Hybrid and
Mixed Basis methods are not senstitive to the
kind of transform employed, and so could be
used in conjunction with such methods. Would
this yield a better algorithm?

3) The products considered in this paper have all
been balanced in the following sense: for a
product of polynomials of degrees n and m:
n < m < 2n. If they are unbalanced i.e.
n << m, then usually one segments the poly-
nomial of degree m into a number of "chunks"
each of approximate degree n, and forms the
product of these with the polynomials of
degree n. What is the best way to do this?

4) Last, but not least, Comes the question of
sparse polynomials. These have been com-
pletely ignored in the present work because
the dense case has enough problems of its own.
The classical algorithm can perform as

0(t 3) when multiplying polynomials with t
terms. Johnson [Joh 74] and Horowitz [Hor

74] have proposed 0(t21og t) algorithms and

Gustavson and Yun have an 0(t 2) algorithm for
performing unordered sparse polynomial multi-
plication.

Current opinion holds that fast techniques
are hopeless for sparse polynomials. Is this in
fact true? The Kronecker Trick maps a dense
multivariate problem onto a sparse univariate one.
For example the bivariate case where half the
terms are zero. In a sense, the classical algo-
rithm knows that the problem is sparse, and yet it
still looses to the FFT techniques.

One might define the density of a polynomial

144

as the fraction of non-zero coefficients, when
the polynomial is viewed in its dense form. The
best multiplication algorithm to use, is a
function of the density and the degree of the
result. The optimum regions for the various
methods are probably as shown below.

densit

O

~ I ~ ~ FaslMeth°ds

~ ~ p a r s e Methods

Classical ~

Method ~ L

degree

At the moment a best all-round algorithm for
polynomial multiplication is probably a poly-
algorithm which would examine the density and
degree of the result and choose an appropriate
method to compute the product. In order to
generate such a poly-algorithm, the boundar.ies
between these optimum regions must be known.
Exactly where the boundaries between the methods
lie is another question for further research.

Acknowledgement

The author would like to thank
Professor J. Lipson for introducing him to FFT
techniques.

Agr 74

Aho 74

Bor 74

Coo 65

Fat 74

Gen 66

Gus 76

Hal 71

References

Agarwal R.C. and Burrus C.S.: Number
Theoretic Transforms to Implement Fast
Digital Convolution; IBM Research Report
RC5025, 40 pp, (1974).

Aho A., Hopcroft, J., Ullman J.: The
Design and Analysis of Computer
Algorithms; Addison-Wesley, Reading,
Mass (1974).

Borodin A. and Moenck R.: Fast Modular
Transforms; J. Computer and System
Sciences, Vol 18, pp 366-387 (1974).

Cooley J.W. and Tukey J.W.: An Algorithm
for Machine Calculation of Complex
Fourier Series; Math. Comp., Vol 19,
pp 297-301 (1965).

Fateman R.J.: Polynomial Multiplication,
Powers and Asymptotic Analysis: Some
Comments; SIAM J. of Computing, Vol 3,
pp 196-213 (1974).

Gentleman W.M. and Sande G.: Fast Fourier
Transforms - For Fun and Profit; Proc
AFIPS 1966 FJCC, Vol 29, pp 563-578.

Gustavson
lexity of
preprlnt.

F. and Yun D.: Arithmetic Comp-
Unordered Sparse Polynomials;

Hall A.D.: The Altran System for Rational
Function Manipulation - A Survey; CACM,
Vol 14, pp 517-521 (1971)

Hor 75 Horowitz E.: A Sorting Algorithm for
Polynomial Multiplication; JACM, Vol 22,
No. 4, pp 450-462 (Oct 1975).

Joh 74 Johnson S.C.: Sparse Polynomial Arith-
metic; Proc EuroSam 74 Conf, pp 63-71
(1974).

Kanada E. and Goto E.: A Hashing Method for Fast
Polynomial Multiplication.

Kar 62 Karatsuba A.: Doklady Akademia Nauk SSSR,
Vol 145, pp 293-294 (1962).

Knu 69 Knuth D.: Seminumerical Algorithms;
Addison-Wesley, Reading, Mass (1962).

Lip 71 Lipson J.D.: Chinese Remainder and Inter-
polation-Algorithms; In: Petrick S.R. (ed.)
Proc. 2nd Symp. on Symbolic and Algebraic
Manipulation, New York, ACM, pp 188-194
(1971).

Moe 73 Moenck R.: Studies in Fast Algebraic
Algorithms; University of Toronto, Ph.D.
Thesis, Sept 1973.

Moe 74 Moenck R.: On the Efficiency of Algorithm
for Polynomial Factoring; to appear in
Math. Comp.

Moe 75 Moenck R.: Another Polynomial Homo-
morphism; to appear in Acta Informatica.

Pol 71 Pollard J.M.: The Fast Fourier Transform
in a Finite Field; Math. Comp., Vol 25,
No. 114, pp 365-374 (April 1971).

Sin 67 Singleton R.G.: On Computing the Fast
Fourier Transform; CACM, Vol i0, No% I0,
pp 647-654 (Oct 1967).

Str 73 Strassen V.: Die Berechnungs
Komplexitaete elementar symetrischen
Funktionen und von interpolations
Koeffizienten; Numerlsche Math., Vol. 20,
pp 238-251 (1973).

145

N

DeE + 1

2
4
8

16
32
64

128
256

Classical Method FFT Method

Empirical Theoretical Empirical
Sees./60 9N lo8 N + 19N Sees./60 2N - 2N + 1

0.01
0.03
0.08

481 0.29
1985 1.10
8055 4.25

17
66

880
2048
4672

0.12
0.16
0.3
0.55
1.05
2.3
5.0

11

Table i

A comparison of the classical vs. the FFT method of unl-
varlate polynomial multiplication. Times are taken for an
AlgoI-W code running on an IBM 360-75 for multipllcatlon of
polynomials with coefficients in the finite field GF(40961).
Note that both the theoretical and empirical times indicate a
c r o s s - o v e r p o i n t a t d e g r e e 31.

Deg Classical KPM-0 KPM-i KPM-3 I KPM-7 FFT

3 0.7 3 i.i 0.8
7 2 8 4 3 2 8

15 8 30 15 I0 8 20
31 38 91 50 30 27 42
63 113 150 100 90 97

Table I I

A table comparing empirical times i n milli-seconds f o r
c l a s s i c a l m u l t i p l i c a t i o n w i t h a c l a s s of K a r a t s u b a a l g o r i t h m s .
The t i m e s were o b t a i n e d from an Algol -W code r u n n i n g on an
IBM 360-75. KPM-n indicates the basis of degree n multl~
plicatlon was performed classically.

The times f o r an FFT algorithm operating on polynomials
of the same degree are included for contrast. Note that the
classical method and Karatsuba's algorlthmwere carried out
over the integers. This accounts for the discrepancy with
Table I. The FFT times are for computation in a finite field.
Each finite field operation involves an extra division to
compute the residue of the result of an integer operation.

.35

'3

.25

"2

.15

"I

.05

time
(seconds)

O-
O

Figure I: Performance of Polynomial Multiplication Methods
(medium sized problems)

J I

Classical Method

Basic FFT Method

Hybrid Method

Hybrid Mixed Base Method

I

......... ! o ;

7 IO 15 io 30 ~'o ?o go 6~

I

A

Degree of
Multiplicands

/ , I I I

146

time
(seconds)

Figure 2: Performance of Multiplication Methods
(large problems)

5"0 A -- Classical Method

-- Basic FFT Method

Q _ Hybrid Method

2~ X - " - - - Mixed Base Method

~--I I Hybrid Mixed Base Method

2 " 0 F

1.5 . ;

I-o

6o ~o

; i I I I I
~oo J~.~ i~o J[o 19o ,Zoo ,ZZo 2Qo ,Z~o

:>
~00

Degree of Multiplicands

i0
20
30
40
50
60
70
80
90

i00
150
200
250
300

Classical Basic FFT Hybrid Mixed Basis HMB-FFT

5.5
16.6
33
66
94

139
194
250
294
377
866

1600
2238
3128

22
44
44
94
88
94

205
200
206
206
450
455
433
906

15
28.3
35
62
68
88

117
125
137
163
255
412
530
583

16
33
55
72
88

iii
133
166
166
200
294
444
511
606

ii
22
33
50
61
83
94

iii
139
150
250
350
472
572

Table III

This table contrasts the run-times for the Classical, Basic
FFT, Hybrid, Mixed Basis and Hybrid Mixed Basis univariate
polynomial multiplication algorithms. The times (in milli-
seconds) are taken from an Algol-W code running on an IBM 360-75.

147

5"0 -

25

2.0

I.o

Figure 3: Graph of Performance of Multivariate Polynomial

Multiplication Algorithms

time
(seconds}

P
"Classical Method ~-

V= 3

V=2

4'

J 2 3 ~/ 5 ~ 7 ~ ? /o ~I 12 13 ie /~ J~

Kronecker Trick with

HMB-FFT Algorithm

Degree in each variable
of the multiplicands

f

:vat de
vN

Classical Kronecker
steps tlme steps time

2 2 137 8.33
4 1169 43.3
6 4633 135
8 12833 345

I0 28841 696
12 56497 1333
14 100409 2200
16 165953
18 259273
20 387281

3 2 1333 80
4 30521 1166
6 233101 6780
8 1057969

i0 35333861
4 2 12497

4 774689
6 11501041

5 2 114937
4 19472201

6 2 1047257
4 487749809

88O
4670

10496
23296
23296
51200
51200

111616
111616
111616

4672
51200

241664
520192

11114112
51200

520192
2375680
241664

5046272
1114112
9961472

13.3
50

130
257
405
650
850

85
727

3012

FFT
steps

1192
7264
7712

47392
48480
49568
S 0 6 ~

328960
331520
334080

10328
121824
134368

1560608
1617184

85000
1977184
2226720

687128
31774944
5518408

509099104

Table IV

A t a b l e comparing the number of s t e p s and t he run t imes (In
milll-seconds) of the Recursive Classical, Kronecker Trick and
Recursive FFT algorithms for multivariate polynomial multi-
pllcatlon.

148

