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Solving Sparse Linear Equations Over 
Finite Fields 

DOUGLAS H. WIEDEMANN, MEMBER, IEEE 

Ahstruct-A “coordinate recurrence” method for solving sparse systems 
of linear equations over finite fields is described. The algorithms discussed 
all require O( n,( w + nl) logkn,) field operations, where nI is the maxi- 
mum dimension of the coefficient matrix, w is approximately the number 
of field operations required to apply the matrix to a test vector, and the 
value of k depends on the algorithm. A probabilistic algorithm is shown to 
exist for finding the determinant of a square matrix. Also, probabilistic 
algorithms are shown to exist for finding the minimum polynomial and rank 
with some arbitrarily small possibility of error. 

I. INTR~DUCTI~N 

T HIS ARTICLE presents a random method of solving 
a nondegenerate linear system in n equations and n 

unknowns over a finite field in O(nw) field operations, 
where w is the total number of nonzero coefficients in all 
the equations. The method requires O(n) space in addition 
to that required to store the coefficient matrix. The prob- 
lem of solving sparse linear systems has been discussed in 
application to the discrete logarithm problem [l] and the 
problem of factoring large integers [2]. Experts have real- 
ized that fast algorithms for solving sparse systems bring 
several algorithms for these two problems to roughly the 
same computational complexity. Thus the complexity 
exp ((1 + o(l))(log, n log, log, n)“‘) for factoring integers 
close to n and computing discrete logarithms in finite fields 
with approximately n elements, for the most general cases 
of these problems, has become something of an apparent 
“barrier” [3]. 

The method for sparse systems described here was devel- 
oped after the NSF-CBMS Regional Conference in Com- 
plexity Theory at Eugene, OR. At this conference methods 
proposed by Coppersmith, Karmarkar, and Odlyzko were 
mentioned. These previous methods are finite-field adapta- 
tions of two methods for solving sparse linear systems over 
the reals, the Lanczos, and conjugate gradient algorithms. 
The method described here was developed directly for 
finite fields. 

The method of this article is based on the fact that, when 
a square matrix is repeatedly applied to a vector, the 
resulting vector sequence is linear recursive. The problem is 
to solve the linear system 

Ax = b (1) 
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for a column vector x with A a given sparse matrix and b 
any column vector. The entries will be assumed to lie in 
some finite field E = GF(q). The parameter to describe 
sparsity will be w, the number of nonzero entries in A. It 
can be assumed that A is stored in w memory locations 
and that A can be applied to a row or column vector in at 
most 2w operations. In fact, the methods here will not 
require representation of A to be manipulated, and they 
will work when A is any linear operator that requires O(o) 
operations to apply. Various special cases of (1) will be 
investigated. 

The next section gives practical algorithms for the solu- 
tion of the simplest case. It is expected that typical prob- 
lems can be made to fit this case. Subsequent sections show 
that more complex versions of the same method can be 
used to solve very singular cases we well as to find the 
determinant, minimum polynomial, and rank, although we 
only know how to solve the last two problems mentioned 
up to some arbitrarily small possibility or error. Throughout 
this paper we used the notation log for natural logarithm, 
log, for logarithm to base q, and lg for log,. 

II. THENONSINGULARSQUARECASE 

The simplest case is when A is square (say n x n) and 
known to be nonsingular. In this case, (1) has a unique 
solution for each b. Let S be the space spanned by 
{ A’bli = 0, 1,2, . . . } with A0 defined to be the identity 
matrix. Then A acts in a nonsingular way on S. Let A, 
denote the operator A restricted to S, and let the minimum 
polynomial of A, be f(z), normalized so that the trailing 
coefficient is one. Because A, is nonsingular, z is not a 
factor of f(z). Let d = deg f and f[i] denote the coeffi- . cient of z’ m f(z). Provided f can be found, the solution 
to (1) can quickly be constructed. In fact, f(A,)b = 0, so 
f( A)b = 0. Then rearranging terms shows that A applied 
to 

d 

x = - zf[i]A’-‘b 69 
r=l 

gives 6. Note d = dim S I n, so that (2) can be computed 
in 2n (w + 1) field operations. Also, the storage required to 
do this is no more than a small constant times n in 
addition to the storage required for A. The first algorithm 
we give for finding f also has the property that the storage 
required is small; however, this algorithm is a probabilistic 
one. 
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Let u  be  any column vector, and  let (,) denote vector dot 
product. The  sequence (u, A’b) satisfies the linear recur- 
rence whose associated polynomial is f. This may not be  
the linear recurrence of smallest span of this sequence. Let 
f,, be  the polynomial indicating the smallest span linear 
recurrence of the sequence {(u, Aib)}~co. Call f, the 
m inimum polynomial of the sequence, and  normalize f, to 
have trailing coefficient one. It follows from elementary 
considerations that f,]f. It is well-known that (1) f, can be  
computed from the first 2n terms of the sequence (u, A’b) 
using the Berlekamp-Massey algorithm [4]-[7] in time  
0( n  *) field operations and (2) the mu ltiplicative constant 
is small. It follows from the work in [8] that asymptotically 
much faster ways exist of finding the m inimum poly- 
nomial, but using these probably gives no  significant im- 
provement in the total time  taken by the algorithms de- 
scribed later. A method that solves (1) is to select u  
repeatedly at random, compute f,, assume that f, = f, and 
compute x by (2). W ith probability one  this will eventually 
achieve a  solution to (1); proposition 3  in Section VI shows 
the expected number  of passes is O(logn). 

A better algorithm is to use the factors of f as they are 
found. Let 6, = b and fi = f,. Then if b, = f,(A)b, # 0, 
the procedure can be  restarted with b, in place of b,. That 
is, a  vector u2  is selected, and  the m iniumum polynomial 
fi of the sequence (u,, A’b,) is computed. If b, = f2(A)bl 
# 0, the procedure continues. Eventually, some b, = 0 = 

fk ... f,(A)b,, in which case f = fk . . * fi can be  com- 
puted and the solution found by (2). A more efficient 
version of this is to compute the solution as a  byproduct. 
For any polynomial g, define g-(z) = (g(z) - g(O))/z. 

Algorithm 1 

1) Set b, = b, k = 0, y. = 0, and  do = 0. 
2) If b, = 0, then the solution is x = -y, and  stop. 
3) Select uk+ t at random. 
4) Compute the first 2(n - dk) terms of {( uk+i, 

A’b,)}:,. 
5) Set fk+l(z) to the m inimum polynomial of the se- 

quence of step 4. 
6) Set ykil = yk + f,L+l(A)bkT bk+l = b. + Ayktly and 

d k+l = dk + d&f,+,). 
7) Set k = k + 1  and go  to step 2. 

The  only reason for introducing the y, is that it avoids a  
separate computation of (2) at the end. If it is only desired 
to compute f, bk+l = f,+,( A)b, can be  computed directly 
in step 6. To  find f an initial estimate of one  is set to the 
polynomial in step 1, and  in step 6  the current value should 
be  mu ltiplied by fk+l. 

Note that the computation in step 4  can be  done in 4n 
memory locations if the vectors A’b, are not kept as they 
are generated. Although this is recommended,  it requires 
recomputation of A’b, in step 6. In Section VI it is proved 
that Algorithm 1  stops after three passes with probability 
at least 70  percent. Selecting uk to be  the kth unit vector, 
can convert the Algorithm 1  to a  deterministic algorithm. 
The  following algorithm always completes in O(n( o  + 
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n log n log log n)) operations but requires 2n2 extra mem- 
ory locations. 

Algorithm 2 

1) 

2) 
3) 
4) 

5) 
6) 

7) 
8) 

9) 

Compute A’b for i = 0, 1,. . . ,2n - 1, and  save all 
results. 
Set k = 0  and g,(z) = 1. 
Set uk+l to be  the k + 1st unit vector. 
Extract from the result of step 1  the sequence 
{(u k+l, A’b)};:;‘. 
Apply gk(z) to this sequence. 
Set fk+l to be  the m inimum polynomial of the 
sequence produced in step 5. 
Set gk+l =fk+&k. 
Set k = k + 1; and  then if deg( gk) < n and k < n 
go to step 3. 
Using f = g, and  the table computed in step 1, 
compute the solution x by (2). 

Some comments are required to see that Algorithm 2  
runs in the claimed time. In step 5  a  polynomial is applied 
to a  sequence. G iven a  polynomial g(z) of degree d and a  
sequence { ~i}~=o, let 

s(z) = 1  s;zi, 
i=O 

and say that by definition the result of applying g  to the 
sequence is 

{ (d-1>4z>)[il} 11 ,“. (4 
Clearly, applying a  polynomial to a  sequence can be  

done by mu ltiplying polynomials. In step 5  fast polynomial 
mu ltiplications taking 0( n log n log log n) operations [9] 
are used. The  sequence produced in step 5  is in fact 
(U k+ i, A’g,( A)b), and it follows that the m inimum poly- 
nomial extracted in step 6  is a  factor of f(z)/gk(z). 

To bound the work in step 6, the additional observation 
must be  used that if the Berlekamp-Massey algorithm is 
applied to a  sequence of length 2n to obtain a  polynomial 
of degree d, the number  of operations is O(nd). The total 
work in step 6  is O(n2), because the sum of the degrees of 
the factors extracted in step 6  is deg  f I n. 

III. SINGULARANDNONSQUARECASES 

If A is square and singular, b must lie in a  proper 
subspace of E” for a  solution to (1) to exist. If b is selected 
at random, then with probability at least 1  - l/q 2  l/2 
there will be  no  solution. If (1) has no  solution, then 
applying either of the algorithms will result in a  proof that 
A is singular. In this case, one  of the coordinate recur- 
rences will have zero constant term, because this is the only 
way the algorithms can fail to produce a  solution to (1). If 
zlf(z) then A(f-(A))b = f(A)b = 0 so the vector fP(A)b 
provides a  linear combination of the columns resulting in 
zero. Moreover, f-(A)b # 0, by m inimality of f. 

If a  column that is dependent  on  the other columns is 
found, it can be  eliminated from the system. Also, if a  
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dependent  row is located, it can be  eliminated along with 
the corresponding entry of b, after checking that the 
eliminated equation is consistent with the equations with 
which it is dependent.  W e  have just seen how dependencies 
can be  found in square matrices. By transposing if neces- 
sary and  ignoring excess columns, finding dependencies in 
nonsquare matrices can always be  reduced to the case of 
finding a  column dependency in an  n  X (n + 1) matrix, 
say M . Remove the final column from M , breaking it into 
an  n  x n matrix A and a  column vector b. Then applying 
algorithms of the previous section produces either a  solu- 
tion to Ax = b or a  column dependency of A. In either 
case, a  column dependency of M  has been produced. 

A method for solving singular or nonsquare systems is to 
continue eliminating dependent  rows and columns until an  
inconsistency or a  square nonsingular system is obtained. 
This can be  done deterministically if Algorithm 2  is used, 
and  we note that the elimination of rows or columns does 
not otherwise change the coefficient matrix, so this matrix 
need not be  mod ified. A difficulty with this method is that 
the work becomes large if many rows and columns must be  
eliminated. Another possible difficulty is that it requires 
application of the transpose of the coefficient matrix to 
column vectors, a  possibly inconvenient operation. 

Let A be  an  m X n matrix, and  let no  = m in (m, n) and  
n r = max (m, n). A random method will now be  described 
for finding a  solution to Ax = b if one  exists. This method 
requires that rank (A) = n, and will require O(n,(w + 
n, log nl)) field operations to find a  solution with probabil- 
ity l/2. The  idea is to extend A to an  n, X n, nonsingular 
matrix B by adjoining randomly selected rows or columns. 
If m > n, the extension will have extra variables but no  
extra equations. The  solution to the extended system By = 
b will set to zero the extra variables and will therefore 
restrict to a  solution of the original equations. If m < n the 
extra rows correspond to extra equations that may be  
taken to be  homogeneous.  The  solution to the extended set 
must also be  a  solution to the original set. The  following 
propositions are useful elementary inequalities for bound-  
ing the number  of sparse vectors that are included in a  
subspace. The  number  of nonzero entries in a  vector is 
called its Hamming weight. 

Proposition 1: Let C be  any linear vector space of 
dimension k in E”. Let a[j] denote the number  of ele- 
ments of C with Hamming weight j. Then  for each i, 

Oliln, 

Proof: Consider a  k x n matrix whose rows span C. 
Permute the columns, if necessary, so that the matrix can 
be  written in the form (F, G), where F is a  nonsingular 
k X k matrix. Column permutation does not alter the 
weight distribution of the rowspace. Each vector is now 
uniquely determined by its leading k coordinates, and  any 
vector of weight at most i has weight at most i in its 
leading k coordinates. Exactly c’.= J o (q - l)j vectors of 

length k and weight at most i exist in their leading k 
coordinates, and  the result follows. 

Proposition 2: If C is a  linear vector space of dimension 
k in E”, and 

u(r) = i a[j]rj, 
j=o 

then for 0  I r I 1, a(r) I (1 + (q - l)r)k. 

Proof: Given the constraints on  r, the numbers ri - 
)A+1 , i = O,l;.. n - 1, are non-negative. Summing the 
inequalities of pioposition 1  with these weights and  the 
inequality at i = n with weight r” gives 

,, - 1  
1 (ri - r’“) i u[j] + r” 5 u[j] 
i=o j=O j=o 

n-1 
< C (ri - ri+l 

i=O 
1 li j:)k 1)’ 

j=O 

+r” i j=o( $4 - 1)‘. 

Collecting coefficients of rj on both sides gives 

a(r) I t ri 
j=O i 1  

T  (q - l)‘= (1 + (q - 1)r)“. 

Assume that a  matrix A is m X n with m < n and rank 
A = m. The strategy for completing A to a  square nonsin- 
gular matrix is to generate a  row i for i = m  + 1, m + 
2; f *, n as follows. For each i a parameter wi I 1  - q-l 
will be  chosen in advance. Select each entry of row i to be  
0  with probability 1  - wi; otherwise, set that entry to a  
uniform randomly selected nonzero element of E. All 
random selections are to be  made  independently. 

Any vector of Hamming weight j has probability (q - 
l))iw,i(l - wi)‘-j of being selected. Let a  be  the weight 
enumerator polynomial of the subspace spanned by the 
first i - 1  rows. By proposition 2  the probability that row i 
lies in this subspace is 

I(1 - w,)“(l + w/(1 - wi))i-l 
= (1 - W i)n-(i--l). 

If the first i - 1  rows are linearly independent and  row i 
happens not to be  in the span of the previous i - 1 rows, 
then the first i rows are linearly independent.  Let wI = 
m in(l - q-‘,2(logn)/(n + 1 - i)). If wi = 2(logn)/(n 
+ 1  - i), then (1 - w~)~-(~-‘) I (1 - 2(log n)/(n + 1 - 
9) ‘+‘-‘I exp(-210gn) = n -‘. On  the other hand, if 
w, = l- q-l, (1 - W i)n-(i-l) = q-(n+l-i)s Let j = n  + 1  
- i. The conditional probability that the first i rows are 
independent,  given that the first i - 1  rows are indepen- 
dent, is at least 1  - (ne2 + q-j). By mu ltiplying all these 
together the probability that the whole n X n matrix is 
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nonsingular is at least 
PI 

I-J (1 - b - 2 + q-j)) = (1 - ne2)” 

This bound does not depend on  the value of m, and 
through some calculation it can be  shown to be  greater 
than l/7 for n 2 3  and q 2 2. Furthermore, the expected 
number  of nonzero entries in the rows beyond the first m 
is 

This does not exceed 2n(log n)(l + log (n - m)) I 
2n(log n)(l + log n). Furthermore, the variance of the 
weight of any component  is at most l/4, so the variance of 
the weight of the entire matrix is at most n2/4. By 
Chebyshev’s inequality the probability that the mean  is 
exceeded by more than 8n is less than l/256. 

Theorem I: For any integers n > m 2 0  a  random pro- 
cedure exists for generat ing n - m row vectors of length n 
such that if A is an  m X n matrix of rank m, then with 
probability at least l/8, both of the following statements 
are true. 1) The  n x n matrix formed by A and theses rows 
is nonsingular. 2) The  total Hamming weight of the ad- 
ditional rows is at most 2n(2 + log n)2. 

Proof: For n 2 3  the aforementioned procedure pro- 
duces a  nonsingular matrix with probability at least l/7. 
The  procedure produces additional Hamming weight of 
more than 2n(2 + log n)2 2 2n(log n)(l + log n) + 8n 
with probability less than l/256. Therefore, the probability 
of satisfying statements 1  and  2  is at least l/7 - l/256 > 
l/8. To  complete the proof, only the cases n = 1,2 re- 
ma in; but then statement 2  will always hold, and  if the 
additional entries are selected uniformly at random, state- 
ment 1  is satisfied with probability at least l/4. 

Theorem 1  is not asymptotically the best possible. The  
following improvement was made  mostly through the ef- 
forts of one  of the referees, and  the author is grateful for 
being permitted to include it. 

Theorem 1’: Numbers c > 0  and  c1 exist, both inde- 
pendent  of q, with the following property. For any integers 
n > m 2 0  a  random procedure exists for generat ing n - m  
row vectors of length n such that if A is an  m X n matrix 
of rank m, then with probability at least C, the resulting 
n x n matrix is nonsingular and  the total Hamming weight 
of the generated rows is at most 1  + cIn log n. 

Proof: Assume first that q I n2, since larger values of 
q will be  handled by a  different method. W e  may suppose 
n=m+k+c,, where k > c3 log n and c2, cg are con- 
stants to be  selected later. If n - m would be  smaller than 
this, simply generate all n - m rows uniformly at random, 
and the resulting matrix will be  nonsingular with prob- 
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ability at least l/4 < (1 - q-‘)(l - q-‘)(l - qp3) . . . , 
and the weight bound is obviously satisfied. As it is, fill in 
the final c2 rows uniformly at random. Let z = 1  - 
c3(log n)/k. For each entry of the first k rows, the method 
sets that entry to zero with probability z and  to a  randomly 
selected element of GF(q) otherwise. The  weight bound 
with an  appropriate cr is satisfied with high probability. It 
must be  shown that when A is adjoined to the first k rows 
the result has rank m + k with probability bounded away 
from zero. 

The  probability that a  particular sum of the first k 
generated rows with j nonzero coefficients yields a  particu- 
lar vector of weight i is 

( ,j+ ;(I - zj))n-i( i(l - zj))i. (5) 

Let a  be  the weight enumerator polynomial of the row 
space of A. Let p  be  the probability that the m + k rows 
are linearly dependent.  By (5) and  the union bound,  

p 5 5 u[i] i: (r)(q - 1)’ 
i=O j=l 

. zj+~(l-zi))np'(~(l-zi))i 

i 

~~~~(~j(q-l)j~zj+t(l-zii~fl 

* i$04il 
i 

q-l(1 _ zj) i 
(z’ + q-y1 - zj)) I . 

By proposition 2  

P~~~(~~(q-l)~jz~+~(l-z~) 

Now zJ I exp( -c,j(log n)/k). Let p  = j/k and c3 = 
3c,, and  since q < n2, zj I (nq)-Q8. Then 

Split the summation in (6) into two pieces, p. for 
j < k/3, and p1  for j 2  k/3,, where & > 0  is a  constant to 
be  determined later. It will be  shown that each piece can be  
made  less than l/3. If p  2  &,, then for cq sufficiently 
large, 

(1 + (q - l)(nq)-““p)“-m 

5 exp((q - l)(n - m)(nq)-““‘) I 2  

and therefore 

p1 2 2q-‘n-m’ j;p 
0 

($4 - 1)’ 5 wc2, 

and this is less than l/3 for c2 2  3. 
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In order to bound pO, invoke the inequality 
(l/(pp(l - P)‘-P))k [lo, lemma 10.71 and with (6) 

I 

obtain 
\\k 

Consider the function f(q) = (q - l)p(q- l + (1 - 
q-l)(nq)p?). It will be shown that if cq is sufficiently 
large, 0 < p < l/4, n 2 1, and q 2 2, then f(q) I f(2). 
Differentiating with respect to q, we have that 

q2(4 - wwq> 
P4 =- 

q-1 
+ p(nq)y8q - I 

- c,/Iq( nq)-‘4B + (c$ + l)(nq)-c4P. (8) 

To show that (8) is negative, we first have 

(P4 - c,Pq + c4P)(nq>Yp < 0 
because cq 3 2 implies c,(q - 1) > q. When this is sub- 
tracted from (7) the remainder 

/?q(q - 1)-l - 1 + (nq)-c4p (9) 
is also negative. Clearly (9) is decreasing in n and q; so 
replace n by 1 and q by 2, giving 2/? - 1 + 2-c4fl. Let 
2-(‘4 = e-4. A Taylor expansion and 0 < 4b < 1 give 

2p - 1 + e-48 < -2p + S/I2 < -2p + 2p = 0. 
In fact, this means (9) and (8) are negative for all values of 
c4 2 4 log2, 0 < /3 x 14, n 2 1, and q 2 2; therefore, the 
claim is proved. 

In (7), p 2 l/k, so n-l 5 p. Hence 

f(2) I ; + $‘“P. 

Using pB = 1 + /3 logp, 

p-q - p)-“-p) f(2) 5 1 + (tc4 - 1)PW + a> 

as /3 --, O+. It follows that for some PO, 0 < &, < 1, for 
sufficiently large c4, n-l 
p)-‘l-9(2) < /Ifi. 

5 /3 < PO implies p-p(l - 
Th en for sufficiently small &, and 

sufficiently large c4, 

p. I -=c l/3 
1 sj<k/$, j=l 

as required. 
Having completed the case q I n2, we use a different 

method for q > n2. Begin by forming n - m rows as the 
method would produce for q = 2, and call the resulting 
0 - 1 matrix M’. The matrix A must contain an m X m 
nonsingular submatrix. Such a submatrix must have at 
least one transversal with only nonzero entries. Let A’ be a 
matrix over GF(2) with ones at positions corresponding to 
the transversal and zeros elsewhere. Since A’ with M’ 
adjoined has nonzero determinant with probability at least 
6 > 0, A with M’ adjoined possesses a transversal of 

nonzero entries with probability at least 6. Assume that A 
with M’ adjoined has such a transversal. 

Let M be a matrix formed by replacing each one-entry 
of M’ with a different GF(q) indeterminate. Let B be the 
n x n matrix consisting of A with M adjoined. Under the 
assumption of the preceding paragraph, det (B) does not 
identically vanish. Because det (B) is a polynomial of 
degree at most n, a result of Schwartz [ll] shows that if 
each variable entry of B is replaced by an independently 
selected random element of GF( q), det (B) f 0 with prob- 
ability at least 1 - n/q > 1 - n-‘. The overall procedure 
of selecting M’ and an instance of M produces a nonsin- 
gular matrix with probability at least 6(1 - n-l). 

IV. HIGHLY SINGULAR CASES 

If A is m x n, m < n, and rank A = m, the following 
method is better than completing A to an n X n matrix 
when m is much smaller than n/2. Suppose a sparse 
n x m matrix Q can be found such that det (AQ) # 0. 
Then the unique solution y to A& = b can be found, and 
x = Qv will solve the equation Ax = b. A similar proce- 
dure will find a solution to an overdetermined system, say 
ATx = b, where AT denotes the transpose of A. Now QT is 
a sparse m X n matrix such that det ( QTAT) # 0. Applying 
QT to both sides of the equation gives Q?tTx = QTb, 
which can now be solved for x. The unique solution of this 
derived equation then must solve the original system if it is 
consistent. 

Fortunately, Q can be generated by the method de- 
scribed in the previous section. In fact, let V be the 
subspace of En spanned by the rows of A. Let VI be the 
(n - m)-dimensional space of vectors having zero dot 
product with all members of I’. If Q is an n x m matrix, 
then det (QTAT) # 0 if any only if the row space of QT 
together with I” generates all of E ‘. This is because a 
nonzero vector u of length m such that uQTAT = 0 exists if 
and only if there is a nonzero combination of the rows of 
QT that has zero dot product with each row of A and 
therefore lies in Y’ . It follows that Q can be constructed 
exactly as if completing an (n - m) X n matrix to a non- 
singular square matrix. In this case, the (n - m) x n ma- 
trix would represent a basis of I” . 

In solving the systems with coefficient matrix QTAT or 
AQ, the two matrices never need be multiplied, because we 
may first apply one and then the other. 

Now let A be the m X n coefficient matrix, with m and 
n unrestricted. Let n, = min(m, n) and n, = max(m, n), 
as in the previous section. We have not yet given a method 
that will find a solution for the case rank A < n,. Suppose 
that the rank is known to be r. A method is to select r x m 
and n x r matrices P and Q, respectively, such that 
det (PAQ) f 0. The selection of P and QT can be made 
according to Theorem 1’ and the probability that PAQ is 
nonsingular is bounded away from zero. Once the two 
matrices have selected, the solution to PAQy = Pb can be 
found, and x = Qr can be tested in (1). If PAQ is nonsin- 
gular, then a solution to (1) will be found, provided one 
exists. 
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If the rank r is unknown, then it can be  arrived at using 
binary search. As a  guess, s, s x m, and n x s matrices P 
and Q  are selected, and  PAQ is tested probabilistically for 
singularity. If s > r the result will always be  singular. 
After being repeated several times the question, “Is s > r?” 
can be  answered with probability of error at most l/3. 
This allows conducting a  binary search with a  constant 
level of uncertainty for each reply. The  value of r can 
therefore be  guessed with probability of error at most l/3 
by conducting O(log n,) tests of values s. O f course, more 
certainly can be  obtained by a  small increase in the num- 
ber of tests. All this leads to an  0( n O( o + n, log n,) log n O) 
expected time  method of producing a  solution to any linear 
system, providing a  solution exists. W e  do  not consider it 
obvious that binary search of a  space of size no can still be  
done in O(log no) queries even if each answer has a  
bounded probability of being incorrect. However, prob- 
lems close to this are discussed by Rivest et al. [12], and  
the method of that paper  extends to solve our problem. 

In highly singular systems, it may be  desired to produce 
more than one solution. In the remainder of this section 
methods will be  given for extracting uniform randomly 
selected solutions to (1). One  method is to find r and an  
r x m  matrix P such that rank( PA) = r. Then (1) is 
equivalent to solving (PA)x = Pb. Extend PA to an n  X n 
matrix G  by adjoining sparse rows as in Theorem 1’. If G  
can be  shown singular, then another G  must be  con- 
structed. Continue until a  G  that is thought to be  nonsin- 
gular is found. Assuming G  is nonsingular, solve Gx = g, 
where g  is a  column vector whose first r entries are Pb and 
whose remaining entries are filled in at random. The  unique 
solution to Gx = g  must also solve (PA)x = Pb. Since a  
one-to-one correspondence exists between solutions to 
(PA)x = Pb and the vectors g, a  uniform random solution 
is selected by selecting g  uniformly at random. 

A second method may be  better. Assume an  r X m  
matrix P and an  n X r matrix Q  have been found such 
that PAQ is nonsingular. Extend Q  to a  square matrix M  
as shown: 

M= Q ; II 1  
where I denotes the identity matrix of size n - r. Suppose 
M  is nonsingular. Random solutions to PAMy = Pb can 
easily be  found because the first r columns of PAM form 
PAQ, a nonsingular matrix. Thus the last n  - r coordi- 
nates of y can be  set to any value, and  the initial r 
coordinates can be  subsequently filled in by solving an  
r x r system to yield a  solution to PAMy = Pb. This again 
gives a  method of uniform random selection of solutions 
x = My to (1). There is a  problem in using Theorem 1’ to 
select Q : both PAQ and the first r X r m inor of Q  must 
be  nonsingular. The  theorem bounds the probability of 
each event away from zero but not necessarily their inter- 
section. However, the proof of Theorem 1’ can be  mod ified 
to show that the same type of procedure will produce a  set 
of row vectors that completes both of two matrices to 
nonsingular matrices with probability bounded away from 

zero for n  sufficiently large. This method may be  advanta- 
geous for r 4~ n. 

In this section some possibility of error was due to not 
knowning rank A and some was due to not being certain 
that a  matrix is nonsingular. The  next section gives a  
method of proving a  sparse square matrix is nonsingular. 

V. FINDINGTHEDETERMINANT 

Given a  sparse n X n matrix A, a random algorthim has 
been given for establishing that the determinant is zero. A 
more difficult problem is to find the determinant of A 
when it is not zero. Let fA be  the m inimum polynomial of 
A, and let fh be the m inimum polynomial of A, where S 
is the space generated from the column vector b as in 
Section II. Each of the two algorithms in that section 
provides a  method of computation of fh for any given b. 
Since f” is the lowest degree of polynomial such that 
f A(A)b = 0  for all b, fA is the least common mu ltiple 
(lcm) of all the f “. In fact, it will be  shown in the next 
section that selecting O(1) values of b uniformly at ran- 
dom and computing the lcm of the resulting fh will nearly 
always give f A. This method finds the m inimum poly- 
nomial of A with arbitrarily high probability. Let cA 
denote the characteristic polynomial of A. If cA = fA, A is 
said to be  nonderogatory. This happens if and  only if f A 
has degree n. Whenever  the Icm of the fh has degree n, the 
m inimum and characteristic polynomial have been de- 
termined with certainty. 

If cA has been found, then normalizing it to have 
leading coefficient one, and  evaluating at zero gives 
( - 1)“det (A). Whenever  A is nonderogatory, det (A) can 
be  evaluated by finding fA. This will take an  expected 
number  of field operations that is 0( n( o + n)). If it is 
suspected that A is derogatory, one  can randomly permute 
the rows of A and try to compute the determinant of the 
result. The  two determinants are related by a  known sign 
factor. However, some matrices cannot be  permuted to 
form a  nonderogatory matrix. An example of this is any 
sufficiently large identity matrix. To  overcome this diffi- 
culty a  slightly cumbersome method that may involve field 
extensions is now described. 

If cA is square-free, then f” = cA because every irre- 
ducible factor of cA must appear  in f”. Note that cA is 
square-free if and  only if its discriminant disc(cA) is a  
nonzero element of E. 

Lemma: If A is an  n X n matrix over E and all leading 
principal m inors of A, including A itself, are nonsingular, 
then the discriminant of the characteristic polynomial of 
A * diag(y,;.., y,,) is not the zero polynomial in 
Y13’. .) Y,,. 

Proof (mathematical induction): The statement is obvi- 
ous for n = 1  where the discriminant is identically one. 
Assume that it is true for (n - 1) X (n - 1) matrices, 
n > 1. Then  substitute zero for y, in det (~1 - A diag 
(Yl,. . ., y,)) to obtain z det (zl’ - A’diag (yl;.*, 
y,,-t)), where I’ is an  (n - 1) x (n - 1) identity matrix 
and  A’ is a  leading principal m inor. The  discriminant of 
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this is 

det2(A’diag(y,;.., y,-i)) 
.disc(det(zI’- A’diag(y,;.., y,-i))). 

The first factor equals .det’ (A’)yf . . . y,“_i and is not 
identically zero by hypothesis. By the induction hypothesis 
the second factor is not identically zero. 

The result of Schwartz [II] used in Section III states that 
for any polynomial of total degree d over a field of order I, 
if the variables are substituted with uniform random field 
elements, the result is zero with probability no more than 
d/l, provided the polynomial is not the zero polynomial. 
Applying this and the lemma to y1y2 * * * y, times the 
discriminant of A diag (yi; * *, y,) if A and all of its 
leading principal minors are nonsingular, then the y, 
can be selected uniformly at random from any sufficiently 
large extension field of E, and with high probability 
A diag(y,; * ., y,) will be nonderogatory and nonsingular. 
Then det(Adiag(y,;.., y,)) can be evaluated, and by 
dividing this by yi . . . y,,, det A is found. 

If A is nonsingular there is some permutation matrix P 
such that AP has only nonsingular leading principal 
minors. This is easily proven by induction or by ordering 
the columns as they would be used in a Gaussian reduction 
of A. To incorporate the unknown permutation P into a 
probabilistic algorithm, we find a parametric family of 
nonsingular matrices that gives P for some setting of the 
parameters. Consider the matrix product 

This product is always nonsingular; in fact, its determinant 
is always one. For (a, b, c) = (O,O, 0) the result is the 
identity permutation matrix, and for (a, b, c) = (1, - 1,l) 
the result is the transposition permutation matrix except 
that one entry is negated. Negation of some entries as they 
are permuted is unimportant because the result will be 
ultimately multiplied by an arbitrary diagonal matrix. 

For n > 2 any, possibly incomplete, pairing on n entries 
of a vector can be taken and an independent member of 
(10) applied to each pair. For n a power of two, a highly 
structured sequence of pairings exists [13] such that each 
permutation on n elements is achieved by interchanging or 
leaving unchanged each of the pairs. There are such “per- 
muting networks” for n not a power of two, but there is 
the option of extending the matrix A to have size a power 
of two by adding diagonal ones and zeros elsewhere. If A is 
extended in this way, the determinant will not change. 

Let n = 2k, k > 1, in the following.The permuting net- 
work will have 2k - 1 levels or pairings. The result of all 
the associated applications of (10) is a matrix P in a large 
number of variables with each entry of total degree no 
more than 6k - 3. Multiply this by diag ( y,, . . . , y,), where 
Yl,’ . .> y, are n new parameters, and call the resulting 
matrix Y. By the lemma, if A is nonsingular, disc,(det (zl 
- A Y)) is not identically zero, because for some substitu- 
tion of the parameters of P, AP is in the form required by 

the lemma. Furthermore, the degree of the discriminant is 
at most 6kn(n - 1). Now select all the parameters uni- 
formly randomly from a field of order I containing E. 
Then yi . .. y, disc ( ) evaluates to a nonzero element with 
probability at least 1 - 6kn2/1. In such cases det (AY) can 
be found by finding its characteristic polynomial, and 
det(A) = y;’ ..a y;‘det(AY). 

Theorem 2: Let A be an n X n matrix over a finite 
field. There is a random algorithm that with probability at 
least l/2 will evaluate det (A). The algorithm requires 
0( n( w + n log n)) field operations in an extension field 
having at least 50n2 lg n elements, where it requires o 
operations to apply A to a vector. The additional storage 
required is O(n log n) elements of the extension field. 

Proof In the foregoing discussion, which applied to a 
nonsingular matrix with size a power of two, applying Y 
required 0( n log n) field operations, so Algorithm 1 may 
be applied to find the minimum polynomial in the required 
number of operations. If A is singular this can be estab- 
lished separately by the method in Section III, but it will 
also become known when a minimum polynomial of A Y 
that has zero constant term is found. If n is not a power of 
two, A can be extended to be E x E, where ti is a power of 
two. Since E may be nearly 2n, requiring that the extension 
field have size at least I = 50n2 lg n forces 6n2 lg ii/l -c 2/3 
for any reasonably large value of n. Then the probability 
of success of the entire procedure is bounded away from 
zero. Repeating this a fixed number of times will provide 
det (A) with probability at least l/2. 

VI. PROBABILISTIC ANALYSIS 

In this section we prove statements previously made 
concerning the probability that the minimum polynomial is 
obtained. Let A be any n x n matrix, possibly singular. As 
in Section II let b be any column vector in E”, let 
S = span{b, Ab, A’b;.. } and let A, be the operator A 
restricted to S. Define fb(z) to be the minimum poly- 
nomial of A,. An important fact is that the elements of S 
can be identified with the elements of the ring R = 
E[z]/(fh(z)). This is established by means of a mapping 
from E [z] to S defined such that one is mapped to b and 
multiplication by z corresponds to application of A in S. 
The kernel of this mapping is the principal ideal ( fh( z)), 
and reduction by this kernel produces the bijection I+!I: 
R + S. 

The set of linear functionals from R to E, R*, may be 
identified with R by a bijection 77: R + R* defined as 
follows. Let d = deg fh 2 1 and define ~(1) so that 
T)7(l)(z ‘-l) = 1 and q(l)(z’) = 0 for each value of i such 
that 0 I i < d - 1. The definition of 71 can then be 
uniquely extended to all of R such that q(zg)(h) = 
q(g)(zh) for all g, h E R. It is easily established that n is 
injective and therefore a bijection, since R and R* have 
the same dimension over E. Associated with J, is the dual 
map $.J*: S* + R* defined by the equation #*(Z)(g) = 
(f)($(g)) for any I E S* and g E R. Note that #* is also 
a bijection. 
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Now if u  is any vector in E”, dot product with u  defines Note that for k > 1 
a  linear functional c(u) on  S. The  mapp ing [: E” + S* is 
clearly surjective. It follows that if u  is selected uniformly Q(f) 2 1 - Cq-kd, 

at random, then l(u) is uniform random in S*. If g  is the 

i 

1 2 

unique member  of R such that #*(S(u)) = n(g), the fol- >l- 
lowing sequences in E are equal: 

$k + +2k + . . . 

4  k-l 

{(u, A’b)}zo = {hdw}:~ = (~CWd}p”=,,. = 1  - log 
( 1  4  k-l _  1  ’ 

The maximum polynomial of any of these sequences is 
called f,“. By virtue of the last sequence, f,” = Even for k = 2  this is more than 0.3, so Algorithm 1  has at 
f ‘/gcd ( f ‘, g). This is true because h = f ‘/gcd ( f ‘, g) is least a  30  percent chance of succeeding after the second 
the lowest degree polynomial such that in R, hz’g = 0 for pass. 
all nonnegat ive values of i. In fact, it is the lowest degree Now we move on  to a  probability calculation for the 
polynomial such that hg = 0. Therefore, the probability m inimum polynomial of A itself, f ‘. What  is the probabil- 
that f,” = fb is the probability that a  randomly selected ity, for b selected at random, that f b = f A? A lower bound 
element of R is a  unit. In analogy with the computation of on  this probability is obtained using the fact that for at 
the Euler phi-function of an  integer, this fraction can be  least one  vector v, f” = f A. This fact can be  easily proved 
calculated by the following formula: by consideration of the rational canonical form of A or 

@(fb) = jJ(1 - q-4) (I11 
from first principles. 

i Proposition 4: For b,, . . . , b, selected uniformly at ran- 

where d, is the degree of the ith irreducible factor of f ‘, 
dom, the probability that lcm(fhl; . 1, f ‘“) =fA is at 

and  in (11) each irreducible factor of fh appears exactly 
least Qk( f A). 

once. Proof: Let A be an  arbitrary n X n matrix and  u  a  
Proposition 3: If deg  f I q + * * * +qj for j a  positive length n vector such that f” = f A. For vectors b,, . . *, b,, 

integer, then Q(f) 2 1/(6j). let f;: be the m inimum polynomial of {(bj, A’u)}y=“=,. Let h 

Proof: Since the factorization of zq’ - z includes each 
be  the Icm of the fi. It is known that h = f” = f” with 

irreducible polynomial of degree i, the number  of irreduci- 
probability exactly ak( f A). 

Let B be  the transpose of A. Since {(b,, A%I)}?-~ = 
bles of degree Z’ is at most qi/i. Let X,(q’/i) be  the {(u, B’b,)}$, h is the m inimum degree polynomial such 
number  of irreducibles of degree i that divide f. Then that (u, h( B)B’b,) is zero for all i and  j. Therefore, if g  is 

O IX;Sl (*) the m iniumum degree polynomial such that g( B)b, = 0 for 
00  all j, then hlg. However, g  divides the m inimum poly- 
c xiqi 2  degf s q + ..a +qj. (**) nomial of B, f B = f A. Thus if h = f A, g  = f ‘, so with 

i=l probability at least Qk( f ‘) the lowest degree polynomial 
G iven the constraints in (*) and  (**), the maximum g, such that g(B)bj = 0  for j = 1,2; . ., k, equals f B. This 
possible value of C~=ixi/i is Hj = l/l + l/2 + . . * + l/j. p  roves the theorem for the transpose of an  arbitrary square 
This is because the constraint coefficients q’ are increasing matrix A, and so the theorem holds for every square . 
in i and the objective functional coefficients l/i are de- matr1x. 
creasing in i, so the maximum value is obtained by setting 
the first j variables xi to one  and all others to zero. Now VII. CONCLUDINGREMARKS 
since q 2 2 Some applications require the solution of sparse linear 

log Q(f) = c log(1 - q-l)xiqi/i equations over the integers modu lo m. Using the Chinese 
i remainder theorem, we can reduce this to the problem of 

2 - C(q-’ + q-2i)x1qi/i finding a  solution to a  sparse system modu lo pk for each 
prime p dividing m. Suppose we wish to solve (1) modu lo 

2 - xxi/i - log2. pk where A is square and det (A) # 0  (mod p). First find a  

Thus log Cp ( f ) 2  - Hj - log 2. Exponentiating and using 
solution y to (1) modu lo p. Then if x is a  solution to the 

H, < 1  + log j gives the result. 
original equation, A(x - y) = b - Ay (mod pk). Each 
coordinate of the right-hand side is divisible by p. Then 

This result shows that, after a  reasonable number  of dividing each side by P reduces the problem to solving 
choices of u, one  can be  found such that f,” = f b. How- AZ = b’ (mod P k-1 ). Once this is solved, x = y + pz solves 
ever, Algorithm 1  will find f b faster in general  because, in the original equation. Repetition of this reduction allows 
effect, it computes the lcm of several of the f,“. Suppose f,” solving the original problem by solving k equations mod-  
is computed for k randomly selected values of u. In ulo p. 
analogy with (11) the probability that the lcm of the k For the most part, the algorithms in this paper  are 
polynomials is fb is probabilistic, and  it would be  of some interest to have 

Ok(f) = fl(l - q-kd$ (12) 
deterministic versions and, more importantly, to remove in 

i some algorithms the possibility of error. In addition, it 
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would be of interest to know if there is a fast method of 
computing the inverse of a sparse matrix. Another question 
to ask is whether a rapid method exists for finding the 
characteristic polynomial. This seems likely because the 
minimum polynomial can be computed, and the character- 
istic polynomial can be evaluated at any specific value. 

With one exception the methods in this paper apply the 
coefficient matrix to column vectors and not to row vec- 
tors. For sparse matrices the distinction is probably unim- 
portant, but situations may arise where application of a 
row vector may be difficult. At the beginning of Section III 
a technique of finding a dependent row in an (n + 1) x n 
matrix M was given. This involved transposing A4 and 
removing the final column, say b, to obtain a square matrix 
A. Attempting to solve Ax = b produced a row depend- 
ency in M. 

Briefly, we indicate how to salvage this technique when 
M can only be applied to column vectors. If A is the 
operator formed earlier, it is easy to apply AT to any 
column vector. Then let us estimate the minimum poly- 
nomial of AT to be, say, g(z), with very small chance of 
error. The minimum polynomial of A is the same poly: 
nomial. If g(0) # 0, A can be assumed to be nonsingular 
and the final row of M is dependent on the others, because 
Ax = b will have a solution. Suppose g(0) = 0. Then A . 
g-(A) = 0, but g-(A) is not the zero matrix. Since A is 
easily applied to row vectors, products #‘g-(A), where or 
is any row vector, can be computed in O(n( w + n)) oper- 
ations. Beginning with a randomly selected or such that 
this product is nonzero, and using binary search, a unit 
vector elr is found such that el?g-(A) # 0. This means 
e,Tg-(A)ej # 0 for some unit vector ej. Then x = g-(A)ej 
is a nonzero solution to Ax = 0. Furthermore, if e, has a 
one at position i, the ith component of x is nonzero, so the 
i th row of M is dependent on the others. 

The method just described is not as nice as the method 
that permits application of row vectors to M. A much more 
ambitious task is to find a fast algorithm for solving 
x’A = bT by application of A to column vectors only. We 
do not have an algorithm that does this. 

Linear operators do exist that are easy to apply but 
whose matrices are not sparse. For example, x may be 
considered as a sequence of field elements, and convolution 

of this sequence with an arbitrary fixed sequence is such an 
operator. The author has not been able to find an example 
of a linear operator that is easy to apply but whose 
transpose is difficult to apply. If it can be shown that no 
such operator exists, then the restriction to application to 
column vectors is of little importance. 
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