Introduction to Multicore Programming J

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 1/ 60

]
Plan

@ Multi-core Architecture
@ Multi-core processor
e CPU Cache
@ CPU Coherence

© Concurrency Platforms
@ PThreads
e TBB
e Open MP
o Cilk ++
@ Race Conditions and Cilkscreen
@ MMM in Cilk++

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 2 / 60

Plan

@ Multi-core Architecture
@ Multi-core processor
e CPU Cache
@ CPU Coherence

(Moreno Maza) Introduction to Multicore Programming

CS 433 - CS 9624

3/ 60

Multi-core Architecture Multi-core processor

10,000

1,000

Power Density 100

(Wiem2)

Pentium®

processors
486

00

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624

Multi-core Architecture Multi-core processor

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 5/ 60

Multi-core Architecture

Multi-core processor

CPU Core Chip

CPU Core
and
L1 Caches

5 &

L2 Caches

Bus Interface
and

Dual
r
CPU Core
and
L1 Caches
_

(Moreno Maza) Introduction to Multicore Programming

CS 433 - CS 9624

6/ 60

Multi-core Architecture Multi-core processor

Memory 1/0
5 6 6 5 5 6
Network

Chip Multiprocessor (CMP)

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 7 / 60

Multi-core processor

@ A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.

@ In a many-core processor the number of cores is large enough that
traditional multi-processor techniques are no longer efficient.

@ Cores on a multi-core device can be coupled tightly or loosely:
e may share or may not share a cache,
e implement inter-core communications methods or message passing.
@ Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, SIMD or multi-threading.

@ Many applications do not realize yet large speedup factors:
parallelizing algorithms and software is a major on-going research area.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 8 / 60

Multi-core Architecture

CPU Cache (1/7)

CPU Cache

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of of the main
memory locations that are expectedly frequently used.

@ Most modern desktop and server CPUs have at least three

independent caches: the data cache, the instruction cache and the

translation look-aside buffer.

(Moreno Maza) Introduction to Multicore Programming

CS 433 - CS 9624

9/ 60

Multi-core Architecture CPU Cache

CPU Cache (2/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rof

@ Each location in each memory (main or cache) has
e a datum (cache line) which ranges between 8 and 512 bytes in size,
while a datum requested by a CPU instruction ranges between 1 and
16.
e a unique index (called address in the case of the main memory)
@ In the cache, each location has also a tag (storing the address of the
corresponding cached datum).

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 10 / 60

Multi-core Architecture CPU Cache

CPU Cache (3/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ When the CPU needs to read or write a location, it checks the cache:
e if it finds it there, we have a cache hit
o if not, we have a cache miss and (in most cases) the processor needs to
create a new entry in the cache.
@ Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 11 / 60

Multi-core Architecture

CPU Cache (4/7)

CPU Cache

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ Read latency (time to read a datum from the main memory) requires
to keep the CPU busy with something else:
out-of-order execution: attempt to execute independent instructions

arising after the instruction that is waiting due to the
cache miss

hyper-threading (HT): allows an alternate thread to use the CPU

(Moreno Maza) Introduction to Multicore Programming

CS 433 - CS 9624

12 / 60

Multi-core Architecture CPU Cache

CPU Cache (5/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ Modifying data in the cache requires a write policy for updating the
main memory
- write-through cache: writes are immediately mirrored to main
memory
- write-back cache: the main memory is mirrored when that data is
evicted from the cache
@ The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 13 / 60

Multi-core Architecture CPU Cache

CPU Cache (6/7)

Direct Mapped 2-Way Associative
Cache Fill Cache Fill
Main Main
Memory Cache Memory Cache
Index Memory Index Memory
0 Index 0 0 Index 0, Way 0
1 Index 1 1 Index 0, Way 1
2 Index 2 2 Index 1, Way 0
3 Index 3 3 Index 1, Way 1
4 4
5 5
Ea(h locatian in main memory can be Ea(h location in main memory can be
cached by justane cache beation. cached by one of two cache bcations.

@ The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:
- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N-way set associative: N possible entries can hold it

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 14 / 60

Multi-core Architecture

CPU Cache

0.1

0.001 |

miss rate

0.0001 |
1e-005 |-

1e-006

T
Direct

2-way
4-way
8-way

Full

1K

4K

16K

64K

cache size

256K

M

Inf

@ Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

@ The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’'s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000).

(Moreno Maza)

Introduction to Multicore Programming

CS 433 - CS 9624 15 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (1/6)

Figure: Processor P; reads x=3 first from the backing store (higher-level memory)

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 16 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (2/6)

Figure: Next, Processor P, loads x=3 from the same memory

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624

17 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (3/6)

Figure: Processor P, loads x=3 from the same memory

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 18 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (4/6)

x
Il
w

Figure: Processor P, issues a write x=5

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 19 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (5/6)

Figure: Processor P, writes x=5 in his local cache

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624

20 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (6/6)

Figure: Processor P; issues a read x, which is now invalid in its cache

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624

21 / 60

Multi-core Architecture CPU Coherence

MSI Protocol

@ In this cache coherence protocol each block contained inside a cache
can have one of three possible states:

- M: the cache line has been modified and the corresponding data is
inconsistent with the backing store; the cache has the responsibility to
write the block to the backing store when it is evicted.

- S: this block is unmodified and is shared, that is, exists in at least one
cache. The cache can evict the data without writing it to the backing
store.

- Iz this block is invalid, and must be fetched from memory or another
cache if the block is to be stored in this cache.

@ These coherency states are maintained through communication
between the caches and the backing store.

@ The caches have different responsibilities when blocks are read or

written, or when they learn of other caches issuing reads or writes for
a block.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 22 / 60

Multi-core Architecture CPU Coherence

True Sharing and False Sharing

@ True sharing:

e True sharing cache misses occur whenever two processors access the
same data word

e True sharing requires the processors involved to explicitly synchronize
with each other to ensure program correctness.

e A computation is said to have temporal locality if it re-uses much of
the data it has been accessing.

e Programs with high temporal locality tend to have less true sharing.

o False sharing:
o False sharing results when different processors use different data that
happen to be co-located on the same cache line
e A computation is said to have spatial locality if it uses multiple words
in a cache line before the line is displaced from the cache
e Enhancing spatial locality often minimizes false sharing
@ See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam

http://suif.stanford.edu/papers/anderson95/paper.html
Introduction to Multicore Programming CS 433 - CS 9624 23 / 60

Multi-core Architecture CPU Coherence

Multi-core processor (cntd)

o Advantages:

o Cache coherency circuitry operate at higher rate than off-chip.
o Reduced power consumption for a dual core vs two coupled single-core
processors (better quality communication signals, cache can be shared)

o Challenges:

e Adjustments to existing software (including OS) are required to
maximize performance

o Production yields down (an Intel quad-core is in fact a double
dual-core)

e Two processing cores sharing the same bus and memory bandwidth
may limit performances

o High levels of false or true sharing and synchronization can easily
overwhelm the advantage of parallelism

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 24 / 60

Plan

© Concurrency Platforms
@ PThreads
e TBB
e Open MP
o Cilk ++
@ Race Conditions and Cilkscreen
@ MMM in Cilk++

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 25 / 60

Concurrency Platforms

@ Programming directly on processor cores is painful and error-prone.

@ Concurrency platforms
e abstract processor cores, handles synchronization, communication

protocols
o (optionally) perform load balancing

@ Examples of concurrency platforms:

Pthreads
o Threading Building Blocks (TBB)
e OpenMP
o Cilk++

@ We use an implementation of the Fibonacci sequence
Frnt+2 = Fpy1 + F, to compare these four concurrency platforms.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 26 / 60

Fibonacci Execution

fib(4)
fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0) int fibCint n)
{

. . . if (n < 2) return n;
Key idea for parallelization else { _
The calculations of fib(n-1) T“E = Tﬁ‘_ggn:gf
and fib(n-2) can be ot e il
executed simultaneously }
without mutual interference. i | 4

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624

27 / 60

PThreads

@ Pthreads is a POSIX standard for threads, communicating though
shared memory.

@ Pthreads defines a set of C programming language types, functions
and constants.

@ It is implemented with a pthread.h header and a thread library.

@ Programmers can use Pthreads to create, manipulate and manage
threads.

@ In particular, programmers can synchronize between threads using
mutexes, condition variables and semaphores.

@ This is a Do-it-yourself concurrency platform: programmers have to
map threads onto the computer resources (static scheduling).

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 28 / 60

Key PThread Function

int pthread_create(

pthread_t *thread,

//returned identifier for the new thread
const pthread_attr_t *attr,
//object to set thread attributes (NULL for default)
void *(*func) (void %),
//routine executed after creation
void *arg
//a single argument passed to func

) //returns error status

int pthread_join (
pthread_t thread,
//identifier of thread to wait for
void **status
//terminating thread’s status (NULL to ignore)
) //returns error status
*WinAPI threads provide similar functionality.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 29 / 60

PThreads

Overhead: The cost of creating a thread is more than 10,000 cycles.
This enforces coarse-grained concurrency. (Thread pools can

help.)

Scalability: Fibonacci code gets about 1.5 speedup for 2 cores for
computing £ib(40).
@ Indeed the thread creation overhead is so large that only
one thread is used, see below.
@ Consequently, one needs to rewrite the code for more
than 2 cores.

Simplicity: Programmers must engage in error-prone protocols in order
to schedule and load-balance.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 30 / 60

Concurrency Platforms PThreads

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int fib(int n)
{
if (n < 2) return n;
else {
int x = fib(n-1);
int y = fib(n-2);
return x + y;
}
}
typedef struct {
int input;
int output;
} thread_args;

void *thread_func (void *ptr)

{
int i = ((thread_args *) ptr)->input;
((thread_args *) ptr)->output = fib(i);
return NULL;

}

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 31/ 60

Concurrency Platforms PThreads

int main(int argc, char *argv[])
{
pthread_t thread;
thread_args args;
int status;
int result;
int thread_result;
if (argc < 2) return 1;
int n = atoi(argv([1]);
if (n < 30) result = fib(n);
else {
args.input = n-1;
status = pthread_create(&thread,
NULL,
thread_func,
(void*) &args);
// main can continue executing
result = fib(n-2);
// Wait for the thread to terminate.
pthread_join(thread, NULL);
result += args.output;
}
printf ("Fibonacci of %d is %d.\n", n, result);
return 0O;

}
(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 32 /60

TBB (1/2)

@ A C++ library that run on top of native threads

@ Programmers specify tasks rather than threads:

o Tasks are objects. Each task object has an input parameter and an
output parameter.

o One needs to define (at least) the methods: one for creating a task and
one for executing it.

o Tasks are launched by a spawn or a spawn_and wait_for_all
statement.

@ Tasks are automatically load-balanced across the threads using the
work stealing principle.

@ TBB Developed by Intel and focus on performance

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 33 /60

TBB (2/2)

@ TBB provides many C++ templates to express common patterns
simply, such as:

e parallel for for loop parallelism,
e parallel reduce for data aggregation
e pipeline and filter for software pipelining

@ TBB provides concurrent container classes which allow multiple
threads to safely access and update items in the container
concurrently.

@ TBB also provides a variety of mutual-exclusion library functions,
including locks.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 34 / 60

Concurrency Platforms [Nz

class FibTask: public task {

public:

const long n;
long* const sum;
FibTask(long n_, long* sum_)

n(n_), sum(sum_) {}

task* execute() {
if(n<2) {

*sum = n;

} else {

}

long x, y;

FibTask& a = *new(allocate_child())
FibTask(n-1,&x);

FibTask& b = *new(allocate_child())
FibTask(n-2,&y) ;

set_ref_count(3);

spawn(b);

spawn_and_wait_for_all(a);

*sum = x+y;

return NULL;

}
};

(Moreno Maza) Introduction to Multicore Programming

CS 433 - CS 9624

35 / 60

e (K17
Open MP

Several compilers available, both open-source and Visual Studio.

Runs on top of native threads

Linguistic extensions to C/C++ or Fortran in the form of compiler
pragmas (compiler directives):
o # pragma omp task shared(x) implies that the next statement is an
independent task;
e moreover sharing of memory is managed explicitly
e other pragmas express directives for scheduling, loop parallelism amd
data aggregation.

Supports loop parallelism and, more recently in Version 3.0, task
parallelism with dynamic scheduling.

OpenMP provides a variety of synchronization constructs (barriers,
mutual-exclusion locks, etc.)

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 36 / 60

Concurrency Platforms OIS MV

int fib(int n)

{
if (n < 2) return n;
int x, y;

#pragma omp task shared(x)
x = fib(n - 1);

#pragma omp task shared(y)
y = fib(n - 2);

#pragma omp taskwait
return x+y;

}

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 37 / 60

Concurrency Platforms Cilk ++

From Cilk to Cilk++

@ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

@ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

@ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

@ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009. Today, it
can be freely downloaded. The place where to start is
http://www.cilk.com/

@ Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 38 / 60

Concurrency Platforms Cilk ++

Cilk ++

@ Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++
(resp. C) supporting fork-join parallelism

@ Both Cilk and Cilk++ feature a provably efficient work-stealing
scheduler.

@ Cilk++ provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

@ Cilk++ includes the Cilkscreen race detector and the Cilkview
performance analyzer.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 39 / 60

Concurrency Platforms Cilk ++

Nested Parallelism in Cilk ++

int fib(int n)
{
if (n < 2) return n;
int x, y;
X cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

@ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent

@ Cilk++ keywords cilk_spawn and cilk_sync grant permissions for
parallel execution. They do not command parallel execution.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 40 / 60

Concurrency Platforms Cilk ++

Loop Parallelism in Cilk +-+

djp Ay - Ay Ay dgp - dpy

dyy App .. Apy |:> Ay Ay - Ap

an] an2 e ann a]n a2n . ann
A AT

// indices run from 0, not 1
cilk_for (int i=1; di<n; ++i) {
for (int j=0; j<i; ++j) {
double temp = A[i][j];
A[i1[3] = A[31L0AT;
A[j1[i]1 = temp;

The iterations of a cilk_for loop may execute in parallel.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 41 / 60

Concurrency Platforms Cilk ++

Serial Semantics (1/2)

@ Cilk (resp. Cilk++) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

@ Cilk (resp. Cilk++) is a faithful extension of C (resp. C++):

o The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct
implementation of the semantics of the program.

e Moreover, on one processor, a parallel Cilk (resp. Cilk++) program
scales down to run nearly as fast as its C (resp. C++) elision.

@ To obtain the serialization of a Cilk++ program

#define cilk_for for
#define cilk_spawn
#define cilk_sync

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 42 / 60

Gils 4+
Serial Semantics (2/2)

(Moreno Maza)

1nt f1b (int n) {
f (n<2) return (n);
e1se {

1nt X, {

X k_ spawn fib(n-1);
y = ﬁb(n 2)¢
cilk_sync;

return (x+y);

| Cilk++ |

v

int fib (int n) {
if (n<2) return (n);

else {
int ng;
x = fib(n-1);
y = fib(n-2);

return (x+y);

Introduction to Multicore Programming CS 433 - CS 9624

43 / 60

Concurrency Platforms Cilk ++

Scheduling (1/3)

(Moreno Maza)

int fib (int n) {

if (n<2) return (n);

else {
T >3]
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

Network

Introduction to Multicore Programming

CS 433 - CS 9624

44 / 60

Concurrency Platforms Cilk ++

Scheduling (2/3)

@ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

o A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

o Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

e A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

o Deletion from the top of the deque corresponds to that procedure
instance being stolen.

@ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

@ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C

function call on a modern Intel processor.
Introduction to Multicore Programming CS 433 - CS 9624 45 / 60

Concurrency Platforms Cilk ++

Scheduling (2/3)

‘T delete

= queueend

—_— stack end

push T ¢ pop

(Moreno Maza) Introduction to Multicore Programming

CS 433 - CS 9624

46 / 60

Concurrency Platforms Cilk ++

D ® ®

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 47 / 60

Concurrency Platforms Cilk ++

® ®

ee o

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 48 / 60

Concurrency Platforms Cilk ++

P

®
> ®

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 49 / 60

Concurrency Platforms Cilk ++

® @ @

e &0

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 50 / 60

Concurrency Platforms Cilk ++

® @ @

® @ @

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 51 / 60

Concurrency Platforms Cilk ++

®

)
® © ®

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 52 / 60

Concurrency Platforms Cilk ++

®

)
=
® © ®

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 53 / 60

Concurrency Platforms Cilk ++

The Cilk++ Platform

int fib (int n) {
if (n<2) return (n);
else {

Cille+ Hyperobject
Compiler Library
int x

Conventional
Compiler
X = ﬁ'g'(n—l) d

Yo ﬁ'bEn—Zgi Binary Cilkscreen
return (x+y); ‘ Race Detector

Parallel
Regression Tests

Cilkview
Scalability Analyzer

int fib_(int n) {
if (n<2) return (n);
else {

Conventional
Regression Tests

Reliable Single- Exceptional Reliable Multi-
Threaded Code Performance Threaded Code

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 54 / 60

Race Bugs (1/3)

Example Q

int ;_= OB

cilk_for(int i=0, i1<2, ++i) {
O *x+; Q| x++; x++; | @
C) ;ssert(x =="7)) 5 L____T____J
| assert(x == 2); |
Q
Dependency Graph

@ lterations of a cilk_for should be independent.

@ Between a cilk_spawn and the corresponding cilk_sync, the code
of the spawned child should be independent of the code of the parent,
including code executed by additional spawned or called children.

@ The arguments to a spawned function are evaluated in the parent
before the spawn occurs.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 55 / 60

Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (2/3)

int x = 0;

Q| x++; X++;
‘ assert(x == 2); ‘

Q v
Q ‘ assert(x == 2);

ri X r2

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 56 / 60

Race Bugs (3/3)

@ Watch out for races in packed data structures such as:

struct{
char a;
char b;
}

Updating x.a and x.b in parallel can cause races.

@ If an ostensibly deterministic Cilk++ program run on a given input
could possibly behave any differently than its serialization,
Cilkscreen race detector guarantees to report and localize the
offending race.

e Employs a regression-test methodology (where the programmer
provides test inputs) and dynamic instrumentation of binary code.

o ldentifies files-names, lines and variables involved in the race.

@ Runs about 20 times slower than real-time.
Introduction to Multicore Programming CS 433 - CS 9624 57 / 60

Concurrency Platforms MMM in Cilk++

template<typename T> void multiply_iter_par(int ii, int jj, int Kkk,

T* C)
{
cilk_for(int i = 0; i < ii; ++i)
for (int k = 0; k < kk; ++k)
cilk_for(int j = 0; j < jj; ++j)
Cli * jj + j] += A[i * kk + k] + B[k * jj + jl;
}

Does not scale up well due to a poor locality and uncontrolled granularity.

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 58 / 60

Concurrency Platforms MMM in Cilk++

template<typename T> void multiply_rec_seq_helper(int i0, int il, int jO,

int j1, int kO, int k1, T* A, ptrdiff_t lda, T* B, ptrdiff_t 1ldb, T* C,

ptrdiff_t 1ldc)

{
int di = il - 1i0;
int dj = j1 - jO;
int dk = k1 - kO;
if (di >= dj && di >= dk && di >= RECURSION_THRESHOLD)
int mi = i0 + di / 2;
multiply_rec_seq_helper(iO, mi, jO, ji1, kO, ki, A,
multiply_rec_seq_helper(mi, i1, jO, ji1, kO, ki, A,
} else if (dj >= dk && dj >= RECURSION_THRESHOLD) {
int mj = jO + dj / 2;
multiply_rec_seq_helper(iO, i1, jO, mj, kO, ki, A,
multiply_rec_seq_helper(iO, i1, mj, j1, kO, ki, A,
} else if (dk >= RECURSION_THRESHOLD) {
int mk = k0 + dk / 2;
multiply_rec_seq_helper(iO, i1, jO, j1, kO, mk, A,
multiply_rec_seq_helper(iO, i1, jO, ji, mk, ki1, A,
} else {
for (int i = i0; i < il; ++i)
for (int k = k0; k < k1; ++k)
for (int j = jO; j < ji; ++j)
C[i * 1dc + j] += A[i * 1da + k] * B[k
}
}

(Moreno Maza) Introduction to Multicore Programming

{
1da,

1lda,

1da,
1lda,

1da,
1da,

1db,
1db,

1db,
1db,

1db,
1db,

* 1db + jl;

CS 433 - CS 9624

1dc);
1ldc);

1dc);
ldc);

1ldc);
1dc);

59 / 60

Concurrency Platforms MMM in Cilk++

template<typename T> inline void multiply_rec_seq(int ii, int jj, i
T+ B, T* C)
{
multiply_rec_seq_helper(O, ii, 0, jj, 0, kk, A, kk, B, jj, C, j
}

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

@ on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

@ The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.
#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

(Moreno Maza) Introduction to Multicore Programming CS 433 - CS 9624 60 / 60

	Multi-core Architecture
	Multi-core processor
	CPU Cache
	CPU Coherence

	Concurrency Platforms
	PThreads
	TBB
	Open MP
	Cilk ++
	Race Conditions and Cilkscreen
	MMM in Cilk++

