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This lecture

◮ Talk about some things I learned while developing
high-performance codes.

◮ Focus on numeric computations.
◮ Linear algebra.
◮ Stencil computations.
◮ FFT.

◮ Caveat: experiments are somewhat IBM/PowerPC-centric.



Coding cache oblivious algorithms



Recursive matrix multiplication

The usual description of the algorithm:

Let A, B, and C be n × n matrices. Want C = AB.

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

]

×

[

B11 B12

B21 B22

]

=

[

A11B11 A11B12

A21B11 A21B12

]

+

[

A12B21 A12B22

A22B21 A22B22

]

The size of the submatrices in n/2 × n/2.

Theoretically a great algorithm: cache oblivious, easily
parallelizable, etc.



“Wrong” implementation

Too limited:

Works only for square
matrices, and only for
n = 2k .

void matmul(n, A, B, C)

{

if (n == 1) {

C += A * B;

} else {

matmul(n/2, A11, B11, C11);

matmul(n/2, A11, B12, C12);

matmul(n/2, A21, B11, C21);

matmul(n/2, A21, B12, C22);

matmul(n/2, A12, B21, C11);

matmul(n/2, A12, B22, C12);

matmul(n/2, A22, B21, C21);

matmul(n/2, A22, B22, C22);

}

}



Matrix multiplication viewed as traversal of a 3D
“iteration space”

Abstract matrix multiplication algorithm:

For all (i , j , k) such that i0 ≤ i < i1, j0 ≤ j < j1, k0 ≤ k < k1, in
some unspecified order, do

C[i][j ] += A[i][k ] * B[k][j ] .

For square matrices, i0 = j0 = k0 = 0 and i1 = j1 = k1 = n.



Recursive traversal of the iteration space

Given arbitrary ranges of i , j , and k . . .

C A B

j k j

=i i k



Recursive traversal of the iteration space

If i has the largest extent, cut i and recur.

C A B

j k j

=i i k



Recursive traversal of the iteration space

If j has the largest extent, cut j and recur.

C A B

j k j

=i i k



Recursive traversal of the iteration space

If k has the largest extent, cut k and recur.

C A B

j k j

=i i k

Always cut into two parts, not eight.



Cache oblivious matrix multiplication code

void recur(int i0, int i1, int j0, int j1, int k0, int k1)

{

int di = i1 - i0, dj = j1 - j0, dk = k1 - k0;

const int CUTOFF = 8; /* "large enough" */

if (di >= dj && di >= dk && di > CUTOFF) {

int im = i0 + di/2;

recur(i0, im, j0, j1, k0, k1);

recur(im, i1, j0, j1, k0, k1);

} else if (dj >= dk && dj > CUTOFF) {

int jm = j0 + dj/2;

recur(i0, i1, j0, jm, k0, k1);

recur(i0, i1, jm, j1, k0, k1);

} else if (dk > CUTOFF) {

int km = k0 + dk/2;

recur(i0, i1, j0, j1, k0, km);

recur(i0, i1, j0, j1, km, k1);

} else {

base_case(i0, i1, j0, j1, k0, k1);

}

}



Does the cache oblivious code work?

Performance of recursive matrix multiplication of N × N matrices,
for all 1 ≤ N < 5000 on POWER5 (peak 6.6Gflop/s).
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(As good as any cache-aware code, given the proper base case.)



Parallel matrix multiplication

C A B

j k j

=i i k

i-cut:

◮ The two subproblems update disjoint locations of C .

◮ Can execute the two subproblems in parallel.



Parallel matrix multiplication

C A B

j k j

=i i k

j-cut:

◮ The two subproblems update disjoint locations of C .

◮ Can execute the two subproblems in parallel.



Parallel matrix multiplication

C A B

j k j

=i i k

k-cut:

◮ The two subproblems update overlapping locations of C .

◮ Must execute the two subproblems sequentially.



Parallel matrix multiplication code (Cilk++)

void recur(int i0, int i1, int j0, int j1, int k0, int k1)

{

int di = i1 - i0, dj = j1 - j0, dk = k1 - k0;

const int CUTOFF = 8; /* "large enough" */

if (di >= dj && di >= dk && di > CUTOFF) {

int im = i0 + di/2;

cilk_spawn recur(i0, im, j0, j1, k0, k1);

recur(im, i1, j0, j1, k0, k1);

} else if (dj >= dk && dj > CUTOFF) {

int jm = j0 + dj/2;

cilk_spawn recur(i0, i1, j0, jm, k0, k1);

recur(i0, i1, jm, j1, k0, k1);

} else if (dk > CUTOFF) {

int km = k0 + dk/2;

recur(i0, i1, j0, j1, k0, km);

recur(i0, i1, j0, j1, km, k1);

} else {

base_case(i0, i1, j0, j1, k0, k1);

}

}



Cilk parallel performance

Performance for N = 8000 on up to 16 cores, using the MIT Cilk
system.
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My experience

◮ The technique of recursive decomposition of the iteration
space is widely applicable:

◮ Linear algebra: matrix multiplication, LU decomposition, QR
decomposition.

◮ Matrix transposition.
◮ Stencil computations.
◮ All-pairs shortest path.
◮ Dynamic programming: longest-common subsequence and

other problems.

◮ Life is simpler if your recursive routine traverses a trapezoid
rather than a rectangle.

Rectangle: Trapezoid:



Heat diffusion

1D heat diffusion equation:

u(t, x): temperature at time t at position x .

∂u

∂t
=

∂2u

∂x2
.

Finite difference approximation:

∂u

∂x
(t, x) ≈

u(t, x + ∆x/2) − u(t, x − ∆x/2)

∆x
∂2u

∂x2
(t, x) ≈

(∂u/∂x)(t, x + ∆x/2) − (∂u/∂x)(t, x − ∆x/2)

∆x

≈
u(t, x + ∆x) − 2u(t, x) + u(t, x − ∆x)

(∆x)2
.



3-point stencil

Finite differences for the heat diffusion equation:

u(t + 1, xi ) − u(t, xi )

∆t
=

u(t, xi−1) − 2u(t, xi ) + u(t, xi+1)

(∆x)2
.

Simple implementation:

for (t = 0; t < T; ++t) { /* time loop */

u[(t+1)%2][0] = left_boundary();

for (i = 1; i < N - 1; ++i) /* space loop */

u[(t+1)%2][i] =

kernel(u[t%2][i-1], u[t%2][i], u[t%2][i+1]);

u[(t+1)%2][N - 1] = right_boundary();

}

double kernel(ui−1, ui, ui+1)

{

return ui + ∆t

(∆x)2 * (ui−1 - 2*ui + ui+1);

}



3-point stencil on a cache
for (t = 0; t < T; ++t) { /* time loop */

u[(t+1)%2][0] = left_boundary();

for (i = 1; i < N - 1; ++i) /* space loop */

u[(t+1)%2][i] =

kernel(u[t%2][i-1], u[t%2][i], u[t%2][i+1]);

u[(t+1)%2][N - 1] = right_boundary();

}

t
i 3−point stencil

cache miss

If array u is larger than the
cache, the number of misses is
proportional to the number of
accesses.



Cache oblivious algorithm for 3-point stencil

Recursively traverse trapezoidal regions of spacetime points (t, x)

such that:
t0 ≤ t < t1

x0 + ẋ0(t − t0) ≤ x < x1 + ẋ1(t − t0)

ẋi ∈ {−1, 0, 1}

x0 x1

width

t0

t1

h
e
ig

h
t

x

t



Base case

If height = 1, compute all spacetime points in the trapezoid.

Any order of computation is valid, because these points do not
depend upon each other.

x

t



Space cut

If width ≥ 2 · height, cut the trapezoid with a line of slope −1
through the center.

x0 x1

t1

t0

x

t

Traverse first the trapezoid on the left, then the one on the right.



Time cut

If width < 2 · height, cut the trapezoid with a horizontal line
through the center.

x0

t1

t0

t

x1

x

Traverse the bottom trapezoid first, then the top one.



C implementation
void trapezoid(int t0, int t1, int x0, int ẋ0, int x1, int ẋ1)

{

int ∆t = t1 - t0;
if (∆t == 1) {

int x;
for (x = x0; x < x1; ++x)
kernel(t0, x);

} else if (∆t > 1) {

if (2 * (x1 - x0) + (ẋ1 - ẋ0) * ∆t >= 4 * ∆t) {

int xm = (2 * (x0 + x1) + (2 + ẋ0 + ẋ1) * ∆t) / 4;

trapezoid(t0, t1, x0, ẋ0, xm, -1);

trapezoid(t0, t1, xm, -1, x1, ẋ1);

} else {

int s = ∆t / 2;

trapezoid(t0, t0 + s, x0, ẋ0, x1, ẋ1);

trapezoid(t0 + s, t1, x0 + ẋ0 * s, ẋ0, x1 + ẋ1 * s, ẋ1);

}

}

}



Cache complexity of the stencil algorithm

When width + height = Θ(Z ):

◮ number of cache misses = O(width + height).

◮ number of points = Θ(width · height).

◮ Algorithm guarantees that height = Θ(width).

◮ Thus, height = Θ(Z ), width = Θ(Z ).

◮ Thus, number of cache misses = Θ(number of points/Z ).
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Demo

Simulation:

◮ ∆x = 95.

◮ ∆t = 87.

◮ ẋ0 = ẋ1 = 0.

◮ LRU cache.

◮ Line size = 4 points.

◮ Cache size = 4, 8, 16, or 32 cache lines.

◮ Cache miss latency = 10 cycles.



Exercise

Program an in-place recursive matrix transposition routine in two
ways:

1. Traversing the lower (or upper) trian-
gle of the matrix.

2. Tiling a square matrix with squares.



Choosing the input



Lax-Wendroff code (3-point stencil)

const double c = CONSTANT / 2.0;

const double c2 = CONSTANT * CONSTANT / 2.0;

double X[NUM_POINTS];

for (n=0; n<NSTEPS; n++) {

double X_i_minus_1 = X[0];

for (i=1; i<NUM_POINTS-1; i++) {

double X_i = X[i];

X[i] = X[i] - c * (X[i+1]-X_i_minus_1)

+ c2 * (X[i+1]-2.0*X[i]+X_i_minus_1);

X_i_minus_1 = X_i;

}

}

Should run in O(NSTEPS ∗ NUM_POINTS), right?



Speed depends on the input values!
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(On IBM POWER5.)



Speed of (1.0 + 2
−k) + (−1.0) (in double precision)
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(On IBM POWER5. Also on PowerPC 970, a.k.a. Apple G5.)



Floating-point numbers

Floating-point representation

A floating-point number x is represented as

x = m · 2e .

Normalization condition

Floating-point numbers are (usually) normalized: 1/2 ≤ m < 1.



Floating-point addition

Example input

Let m1 = 10001 (binary), m2 = −10000. Assume same exponent
e = 0.

Step 1: Add

10001 +

- 10000

---------

00001

Step 2: Normalize

◮ Find the most significant bit that is set and shift left.

◮ Before: m = 00001, e = 0.

◮ After: m = 10000, e = −4.



Data-dependent FPU timing

POWER5

◮ The POWER5 normalizer shifts by up to 16 positions in one
cycle.

◮ Larger shifts take longer.

x86 processors

◮ Huge slowdowns (100x) for denormalized numbers, infinities,
NaNs, etc.



My experience

◮ Hardware designers introduce irregularities for edge cases (by
necessity).

◮ Nobody knows these irregularities.
◮ Not even the “cycle accurate” simulator.

◮ To understand performance problems, you must know the
details of your computer’s architecture.

◮ In practice: It is ok to set the input to zero for development
purposes, but always verify with real data.



Automatic generation of efficient code



Automatic generation of computational kernels

How do you optimize the base case of your matrix multiplication
(or FFT, or stencil, or whatever)?

The hard way:

◮ Write code by hand and optimize it automatically using a
general-purpose tool called a “compiler”.

◮ If the compiler does not work, optimize your code by hand.

The harder way:

◮ Generate many “random” variants of a program and pick one
that happens to run fast.

◮ There are way too many “random” programs. Better have
some theory to restrict the search space, and hope that the
theory is correct.

◮ Your compiler may not like the programs that you generate.
You might have to write your own compiler as well.



Good kernels are hard to find
Unrolled cache oblivious matrix multiplication kernels, M × K by
K × N yielding M × N, for all M, N, K ∈ {1, . . . , 64} on POWER5.
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Successful automatically-generated systems

FFTW [Frigo and Johnson]

◮ Library for computing Fourier transforms.

◮ Generates hundreds of computational kernels (“codelets”) is a
cache oblivious style.

◮ Finds a combination of codelets that happens to run fast on
your machine.

ATLAS [Whaley]

◮ Library for linear algebra.

◮ Generates many matrix-multiplication kernels trying to find a
good one.

◮ Once found, it uses the kernel as much as possible.



Kernel generators are conceptually simple

Kernel (“does it”):

for (i = 0; i < NI; ++i)

for (j = 0; j < NJ; ++j)

for (k = 0; k < NK; ++k)

C[i][j] = A[i][k] * B[k][j];

Kernel generator (“tells somebody else to do it”):

for (i = 0; i < NI; ++i)

for (j = 0; j < NJ; ++j)

for (k = 0; k < NK; ++k)

printf("C[%d][%d] = A[%d][%d] * B[%d][%d];\n",

i, j, i, k, k, j);



My experience with kernel generators

◮ Not too hard to write.

◮ I usually generate C (but also tried assembly).

◮ I have never been able to beat my own kernel generators, after
appropriate exhaustive search. (Tried FFT, matrix
multiplication, small convolutions, fast Walsh transform.)

◮ However, naive generators produce poor code.

◮ In particular, you must worry about register allocation.



The register allocation problem



An optimization that isn’t

32-point complex FFT in FFTW, PowerPC 7447 (year 2004)

add/sub fma load store code size cycles

C source:
236 136 64 64 ≈ 600 lines

Output of gcc-3.4 -O2:
236 136 484 285 5620 bytes ≈ 1550

Output of gcc-3.4 -O2 -fno-schedule-insns:
236 136 134 125 2868 bytes ≈ 640

◮ Disabling the gcc schedule-insns “optimization” improves
performance by 2.5×.



What gcc -fschedule-insns does

CPU with 4 registers computes this graph:



What gcc -fschedule-insns does

Load two inputs into registers.



What gcc -fschedule-insns does

Compute two nodes, in registers.



What gcc -fschedule-insns does

Load two more inputs into registers.



What gcc -fschedule-insns does

Compute two more nodes, in registers.



What gcc -fschedule-insns does

Load another input. Must “spill” one register.



What gcc -fschedule-insns does

Load another input. Must spill another register.



What gcc -fschedule-insns does

Compute two more nodes, in registers.



What gcc -fschedule-insns does

keep going for a while...



What gcc -fschedule-insns does

4 values in registers, 12 values spilled.



What gcc -fschedule-insns does

Load one spilled value. Must spill one register.



What gcc -fschedule-insns does

Compute two nodes, in registers. Etc.



Why the gcc strategy cannot work

Theorem

If

◮ you compute the FFT level by level, like gcc; and

◮ n = number of inputs ≫ number of registers

then

◮ you must pay Θ(n log n) register spills irrespective of how you
allocate registers.

Corollary

Because the FFT requires Θ(n log n) operations, you pay Θ(1)

spills per useful operation, no matter how many registers the
machine has.



Better strategy: blocking



Better strategy: blocking
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Better strategy: blocking



Analysis of the blocking schedule

Theorem (Upper bound)

With R registers,

◮ a schedule exists such that

◮ a register allocation exists such that

◮ the execution incurs O(n log n/ log R) register spills.

Theorem (Lower bound, Hong and Kung ’81)

Any execution of the FFT graph with R registers incurs
Ω(n log n/ log R) register spills.

Corollary

The blocking schedule is asymptotically optimal.



Complexity of register allocation

Theorem (Motwani et al., 1995)

Given a dag, find both a schedule of the dag and a register
assignment that minimizes the number of register spills: NP-hard.

Theorem (Belady 1966)

Given a dag and a schedule of the dag, find register assignment
that minimizes the number of register spills: ≈ linear time.

Corollary

◮ It is unreasonable to expect a compiler to take an arbitrary
dag and produce good code.

◮ However, if you schedule the dag yourself, a decent compiler
should produce good code.



How do you find a good schedule?

Key insight:

◮ Registers are a cache managed by the compiler.

◮ Thus, techniques for optimizing the memory hierarchy
(including cache oblivious algorithms) yield good schedules.

◮ If your kernel is straight-line, the cache is ideal: fully
associative and with optimal replacement policy.

In practice:

◮ If you are lucky, the compiler might respect your schedule and
approximate an ideal cache.

◮ Otherwise, you can implement Belady’s algorithm yourself.
(Easy to do.)



Belady’s register allocation

Belady’s policy:

When you must evict a register, evict one used furthest in the
future.

Example (matrix multiplication, 4 registers):

r0 r1 r2 r3
c00 ← c00 + a00 · b00 a00 b00 c00

c00 ← c00 + a01 · b10 a00 b10 c00 a01

c01 ← c01 + a00 · b01 a00 b01 c01 a01

c01 ← c01 + a01 · b11 b11 b01 c01 a01

c10 ← c10 + a10 · b00 b00 b01 c10 a10

c10 ← c10 + a11 · b10 b10 b01 c10 a11

c11 ← c11 + a10 · b01 a10 b01 c11 a11

c11 ← c11 + a11 · b11 b11 b01 c11 a11

(blue = load, red = spill.)



Generated code with register allocation

r0 = a00

r1 = b00

r2 = c00

r2 = r2 + r0 * r1

r1 = b10

r3 = a01

r2 = r2 + r3 * r1

c00 = r2

r2 = c01

r1 = b01

r2 = r2 + r0 * r1

r0 = b11

r2 = r2 + r3 * r0

c01 = r2

r2 = c10

r0 = b00

r3 = a10

r2 = r2 + r3 * r0

r0 = b10

r3 = a11

r2 = r2 + r3 * r0

c10 = r2

r2 = c11

r0 = a10

r2 = r2 + r0 * r1

r0 = b11

r2 = r2 + r3 * r0

c11 = r2



Summary

◮ Forget the algebra, think iteration space.

◮ Know what you are trying to measure.

◮ When in doubt, use brute force.

◮ Register allocation is just another exercise in caching.
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