Experiences in coding high-performance numerical libraries

Matteo Frigo

Intel

April 18, 2010
This lecture

- Talk about some things I learned while developing high-performance codes.
- Focus on numeric computations.
 - Linear algebra.
 - Stencil computations.
 - FFT.
- Caveat: experiments are somewhat IBM/PowerPC-centric.
Coding cache oblivious algorithms
Recursive matrix multiplication

The usual description of the algorithm:

Let A, B, and C be $n \times n$ matrices. Want $C = AB$.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{bmatrix} + \begin{bmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}$$

The size of the submatrices in $n/2 \times n/2$.

Theoretically a great algorithm: cache oblivious, easily parallelizable, etc.
“Wrong” implementation

```c
void matmul(n, A, B, C) {
    if (n == 1) {
        C += A * B;
    } else {
        matmul(n/2, A11, B11, C11);
        matmul(n/2, A11, B12, C12);
        matmul(n/2, A21, B11, C21);
        matmul(n/2, A21, B12, C22);
        matmul(n/2, A12, B21, C11);
        matmul(n/2, A12, B22, C12);
        matmul(n/2, A22, B21, C21);
        matmul(n/2, A22, B22, C22);
    }
}
```

Too limited:

Works only for square matrices, and only for $n = 2^k$.
Matrix multiplication viewed as traversal of a 3D “iteration space”

<table>
<thead>
<tr>
<th>Abstract matrix multiplication algorithm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all ((i, j, k)) such that (i_0 \leq i < i_1, j_0 \leq j < j_1, k_0 \leq k < k_1), in some unspecified order, do</td>
</tr>
<tr>
<td>[C[i][j] += A[i][k] \times B[k][j].]</td>
</tr>
<tr>
<td>For square matrices, (i_0 = j_0 = k_0 = 0) and (i_1 = j_1 = k_1 = n.)</td>
</tr>
</tbody>
</table>
Recursive traversal of the iteration space

Given arbitrary ranges of i, j, and k...

\[C \] i j

\[A \] i k

\[B \] k j
Recursive traversal of the iteration space

If i has the largest extent, cut i and recur.
Recursive traversal of the iteration space

If j has the largest extent, cut j and recur.

\[C \quad j \quad k \quad j = \quad i \quad k \quad i \quad A \quad B \]
Recursive traversal of the iteration space

If k has the largest extent, cut k and recur.

Always cut into **two** parts, not **eight**.
void recur(int i0, int i1, int j0, int j1, int k0, int k1)
{
 int di = i1 - i0, dj = j1 - j0, dk = k1 - k0;
 const int CUTOFF = 8; /* "large enough" */
 if (di >= dj && di >= dk && di > CUTOFF) {
 int im = i0 + di/2;
 recur(i0, im, j0, j1, k0, k1);
 recur(im, i1, j0, j1, k0, k1);
 } else if (dj >= dk && dj > CUTOFF) {
 int jm = j0 + dj/2;
 recur(i0, i1, j0, jm, k0, k1);
 recur(i0, i1, jm, j1, k0, k1);
 } else if (dk > CUTOFF) {
 int km = k0 + dk/2;
 recur(i0, i1, j0, j1, k0, km);
 recur(i0, i1, j0, j1, km, k1);
 } else {
 base_case(i0, i1, j0, j1, k0, k1);
 }
}
Does the cache oblivious code work?

Performance of recursive matrix multiplication of $N \times N$ matrices, for all $1 \leq N < 5000$ on POWER5 (peak 6.6 Gflop/s).

(As good as any cache-aware code, given the proper base case.)
Parallel matrix multiplication

\[
\begin{array}{ccc}
 & j & \\
i & C & \\
\end{array}
\quad = \quad
\begin{array}{ccc}
 & k & \\
i & A & \\
\end{array}
\quad \begin{array}{c}
j & \\
k & B
\end{array}
\]

\textbf{\textit{i-cut:}}

- The two subproblems update \textbf{disjoint} locations of C.
- Can execute the two subproblems in parallel.
Parallel matrix multiplication

\[
\begin{array}{c}
\begin{array}{ccc}
 i & j & \text{cut:} \\
 \begin{array}{c}
 \text{C} \\
 \end{array} & = & \begin{array}{c}
 \text{A} \\
 \end{array} \\
 \begin{array}{c}
 \text{B} \\
 \end{array}
\end{array}
\end{array}
\]

\begin{itemize}
 \item The two subproblems update \textit{disjoint} locations of \textit{C}.
 \item Can execute the two subproblems in parallel.
\end{itemize}
Parallel matrix multiplication

\[C \begin{array}{c} i \end{array} \begin{array}{c} j \end{array} = \begin{array}{c} i \end{array} \begin{array}{c} k \end{array} \begin{array}{c} j \end{array} \]

\textbf{k-cut:}

- The two subproblems update \textit{overlapping} locations of \(C \).
- Must execute the two subproblems sequentially.
Parallel matrix multiplication code (Cilk++)

void recur(int i0, int i1, int j0, int j1, int k0, int k1) {
 int di = i1 - i0, dj = j1 - j0, dk = k1 - k0;
 const int CUTOFF = 8; /* "large enough" */
 if (di >= dj && di >= dk && di > CUTOFF) {
 int im = i0 + di/2;
 cilk_spawn recur(i0, im, j0, j1, k0, k1);
 recur(im, i1, j0, j1, k0, k1);
 } else if (dj >= dk && dj > CUTOFF) {
 int jm = j0 + dj/2;
 cilk_spawn recur(i0, i1, j0, jm, k0, k1);
 recur(i0, i1, jm, j1, k0, k1);
 } else if (dk > CUTOFF) {
 int km = k0 + dk/2;
 recur(i0, i1, j0, j1, k0, km);
 recur(i0, i1, j0, j1, km, k1);
 } else {
 base_case(i0, i1, j0, j1, k0, k1);
 }
}
Cilk parallel performance

Performance for $N = 8000$ on up to 16 cores, using the MIT Cilk system.
My experience

- The technique of recursive decomposition of the iteration space is widely applicable:
 - Linear algebra: matrix multiplication, LU decomposition, QR decomposition.
 - Matrix transposition.
 - Stencil computations.
 - All-pairs shortest path.
 - Dynamic programming: longest-common subsequence and other problems.

- Life is simpler if your recursive routine traverses a trapezoid rather than a rectangle.

![Rectangle](Rectangle.png) ![Trapezoid](Trapezoid.png)
Heat diffusion

1D heat diffusion equation:

\[u(t, x) \text{: temperature at time } t \text{ at position } x. \]

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}. \]

Finite difference approximation:

\[
\frac{\partial u}{\partial x}(t, x) \approx \frac{u(t, x + \Delta x/2) - u(t, x - \Delta x/2)}{\Delta x}.
\]

\[
\frac{\partial^2 u}{\partial x^2}(t, x) \approx \frac{(\partial u/\partial x)(t, x + \Delta x/2) - (\partial u/\partial x)(t, x - \Delta x/2)}{\Delta x}.
\]

\[
\approx \frac{u(t, x + \Delta x) - 2u(t, x) + u(t, x - \Delta x)}{(\Delta x)^2}.
\]
3-point stencil

Finite differences for the heat diffusion equation:

\[
\frac{u(t + 1, x_i) - u(t, x_i)}{\Delta t} = \frac{u(t, x_{i-1}) - 2u(t, x_i) + u(t, x_{i+1})}{(\Delta x)^2}.
\]

Simple implementation:

```c
for (t = 0; t < T; ++t) { /* time loop */
    u[(t+1)%2][0] = left_boundary();
    for (i = 1; i < N - 1; ++i) /* space loop */
        u[(t+1)%2][i] =
            kernel(u[t%2][i-1], u[t%2][i], u[t%2][i+1]);
    u[(t+1)%2][N - 1] = right_boundary();
}

double kernel(u_{i-1}, u_i, u_{i+1})
{
    return u_i + \frac{\Delta t}{(\Delta x)^2} * (u_{i-1} - 2*u_i + u_{i+1});
}
```
3-point stencil on a cache

for (t = 0; t < T; ++t) {
 /* time loop */
 u[(t+1)%2][0] = left_boundary();
 for (i = 1; i < N - 1; ++i) /* space loop */
 u[(t+1)%2][i] =
 kernel(u[t%2][i-1], u[t%2][i], u[t%2][i+1]);
 u[(t+1)%2][N - 1] = right_boundary();
}

If array u is larger than the cache, the number of misses is proportional to the number of accesses.
Cache oblivious algorithm for 3-point stencil

Recursively traverse trapezoidal regions of spacetime points \((t, x)\) such that:

\[
t_0 \leq t < t_1
\]

\[
x_0 + \dot{x}_0 (t - t_0) \leq x < x_1 + \dot{x}_1 (t - t_0)
\]

\[
\dot{x}_i \in \{-1, 0, 1\}
\]
Base case

If height $= 1$, compute all spacetime points in the trapezoid. Any order of computation is valid, because these points do not depend upon each other.
Space cut

If width $\geq 2 \cdot$ height, cut the trapezoid with a line of slope -1 through the center.

Traverse first the trapezoid on the left, then the one on the right.
Time cut

If width $< 2 \cdot$ height, cut the trapezoid with a horizontal line through the center.

 Traverse the bottom trapezoid first, then the top one.
C implementation

void trapezoid(int t0, int t1, int x0, int x0, int x1, int x1)
{
 int Δt = t1 - t0;
 if (Δt == 1) {
 int x;
 for (x = x0; x < x1; ++x)
 kernel(t0, x);
 } else if (Δt > 1) {
 if (2 * (x1 - x0) + (x1 - x0) * Δt >= 4 * Δt) {
 int x_m = (2 * (x0 + x1) + (2 + x0 + x1) * Δt) / 4;
 trapezoid(t0, 1, x0, x0, x_m, -1);
 trapezoid(t0, 1, x_m, -1, x1, x1);
 } else {
 int s = Δt / 2;
 trapezoid(t0, t0 + s, x0, x0, x1, x1);
 trapezoid(t0 + s, t1, x0 + x0 * s, x0, x1 + x1 * s, x1);
 }
 }
}
Cache complexity of the stencil algorithm

When \(\text{width} + \text{height} = \Theta(Z) \):

- number of cache misses = \(O(\text{width} + \text{height}) \).
- number of points = \(\Theta(\text{width} \cdot \text{height}) \).
- Algorithm guarantees that height = \(\Theta(\text{width}) \).
- Thus, height = \(\Theta(Z) \), width = \(\Theta(Z) \).
- Thus, number of cache misses = \(\Theta(\text{number of points}/Z) \).
Demo

Simulation:

- $\Delta x = 95$.
- $\Delta t = 87$.
- $\dot{x}_0 = \dot{x}_1 = 0$.
- LRU cache.
- Line size = 4 points.
- Cache size = 4, 8, 16, or 32 cache lines.
- Cache miss latency = 10 cycles.
Exercise

Program an in-place recursive matrix transposition routine in two ways:

1. Traversing the lower (or upper) triangle of the matrix.

2. Tiling a square matrix with squares.
Choosing the input
Lax-Wendroff code (3-point stencil)

const double c = CONSTANT / 2.0;
const double c2 = CONSTANT * CONSTANT / 2.0;
double X[NUM_POINTS];

for (n=0; n<NSTEPS; n++) {
 double X_i_minus_1 = X[0];
 for (i=1; i<NUM_POINTS-1; i++) {
 double X_i = X[i];
 X[i] = X[i] - c * (X[i+1]-X_i_minus_1)
 + c2 * (X[i+1]-2.0*X[i]+X_i_minus_1);
 X_i_minus_1 = X_i;
 }
}

Should run in $O(NSTEPS \times NUM_POINTS)$, right?
Speed depends on the input values!

(On IBM POWER5.)
Speed of \((1.0 + 2^{-k}) + (-1.0)\) (in double precision)

(On IBM POWER5. Also on PowerPC 970, a.k.a. Apple G5.)
Floating-point numbers

Floating-point representation
A floating-point number x is represented as

$$x = m \cdot 2^e.$$

Normalization condition
Floating-point numbers are (usually) normalized: $1/2 \leq m < 1.$
Floating-point addition

Example input

Let $m_1 = 10001$ (binary), $m_2 = -10000$. Assume same exponent $e = 0$.

Step 1: Add

\[
\begin{align*}
10001 & + \\
-10000 & \\
\hline
00001
\end{align*}
\]

Step 2: Normalize

- Find the most significant bit that is set and shift left.
- Before: $m = 00001$, $e = 0$.
- After: $m = 10000$, $e = -4$.
Data-dependent FPU timing

POWER5

- The POWER5 normalizer shifts by up to 16 positions in one cycle.
- Larger shifts take longer.

x86 processors

- Huge slowdowns (100x) for denormalized numbers, infinities, NaNs, etc.
My experience

- Hardware designers introduce irregularities for edge cases (by necessity).
- Nobody knows these irregularities.
 - Not even the “cycle accurate” simulator.
- To understand performance problems, you must know the details of your computer’s architecture.
- In practice: It is ok to set the input to zero for development purposes, but always verify with real data.
Automatic generation of efficient code
Automatic generation of computational kernels

How do you optimize the base case of your matrix multiplication (or FFT, or stencil, or whatever)?

The hard way:

- Write code by hand and optimize it automatically using a general-purpose tool called a “compiler”.
- If the compiler does not work, optimize your code by hand.

The harder way:

- Generate many “random” variants of a program and pick one that happens to run fast.
- There are way too many “random” programs. Better have some theory to restrict the search space, and hope that the theory is correct.
- Your compiler may not like the programs that you generate. You might have to write your own compiler as well.
Good kernels are hard to find

Unrolled cache oblivious matrix multiplication kernels, $M \times K$ by $K \times N$ yielding $M \times N$, for all $M, N, K \in \{1, \ldots, 64\}$ on POWER5.
Successful automatically-generated systems

FTTW [Frigo and Johnson]
- Library for computing Fourier transforms.
- Generates hundreds of computational kernels ("codelets") in a cache oblivious style.
- Finds a combination of codelets that happens to run fast on your machine.

ATLAS [Whaley]
- Library for linear algebra.
- Generates many matrix-multiplication kernels trying to find a good one.
- Once found, it uses the kernel as much as possible.
Kernel generators are conceptually simple

| Kernel ("does it"):
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>for (i = 0; i < NI; ++i)</td>
</tr>
<tr>
<td>for (j = 0; j < NJ; ++j)</td>
</tr>
<tr>
<td>for (k = 0; k < NK; ++k)</td>
</tr>
<tr>
<td>C[i][j] = A[i][k] * B[k][j];</td>
</tr>
</tbody>
</table>

| Kernel generator ("tells somebody else to do it"):
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>for (i = 0; i < NI; ++i)</td>
</tr>
<tr>
<td>for (j = 0; j < NJ; ++j)</td>
</tr>
<tr>
<td>for (k = 0; k < NK; ++k)</td>
</tr>
<tr>
<td>printf("C[%d][%d] = A[%d][%d] * B[%d][%d];\n", i, j, i, k, k, j);</td>
</tr>
</tbody>
</table>
My experience with kernel generators

- Not too hard to write.
- I usually generate C (but also tried assembly).
- I have never been able to beat my own kernel generators, after appropriate exhaustive search. (Tried FFT, matrix multiplication, small convolutions, fast Walsh transform.)
- However, naive generators produce poor code.
- In particular, you must worry about register allocation.
The register allocation problem
An optimization that isn’t

<table>
<thead>
<tr>
<th>add/sub</th>
<th>fma</th>
<th>load</th>
<th>store</th>
<th>code size</th>
<th>cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>C source:</td>
<td>236</td>
<td>136</td>
<td>64</td>
<td>64</td>
<td>≈ 600 lines</td>
</tr>
<tr>
<td>Output of gcc-3.4 -O2:</td>
<td>236</td>
<td>136</td>
<td>484</td>
<td>285</td>
<td>5620 bytes ≈ 1550</td>
</tr>
<tr>
<td>Output of gcc-3.4 -O2 -fno-schedule-insn:</td>
<td>236</td>
<td>136</td>
<td>134</td>
<td>125</td>
<td>2868 bytes ≈ 640</td>
</tr>
</tbody>
</table>

- Disabling the gcc schedule-insn “optimization” improves performance by 2.5×.
What `gcc -fschedule-insns` does

CPU with 4 registers computes this graph:
What `gcc -fschedule-insns` does

Load two inputs into registers.
What `gcc -fschedule-insns` does

Compute two nodes, in registers.
What `gcc -fschedule-insns` does

Load two more inputs into registers.
What gcc -fschedule-insns does

Compute two more nodes, in registers.
What gcc -fschedule-insns does

Load another input. Must “spill” one register.
What `gcc -fschedule-insns` does

Load another input. Must spill another register.
What `gcc -fschedule-insns` does

Compute two more nodes, in registers.
What `gcc -fschedule-insns` does

keep going for a while...
What `gcc -fschedule-insns` does

4 values in registers, 12 values spilled.
What gcc -fschedule-insns does

Load one spilled value. Must spill one register.
What `gcc -fschedule-insns` does

Compute two nodes, in registers. Etc.
Why the `gcc` strategy cannot work

Theorem

If

- you compute the FFT level by level, like gcc; and
- \(n = \text{number of inputs} \gg \text{number of registers} \)

then

- you must pay \(\Theta(n \log n) \) register spills irrespective of how you allocate registers.

Corollary

Because the FFT requires \(\Theta(n \log n) \) operations, you pay \(\Theta(1) \) spills per useful operation, no matter how many registers the machine has.
Better strategy: blocking
Analysis of the blocking schedule

Theorem (Upper bound)

With R registers,

- a schedule exists such that
- a register allocation exists such that
- the execution incurs $O\left(\frac{n \log n}{\log R}\right)$ register spills.

Theorem (Lower bound, Hong and Kung ’81)

Any execution of the FFT graph with R registers incurs $\Omega\left(\frac{n \log n}{\log R}\right)$ register spills.

Corollary

The blocking schedule is asymptotically optimal.
Complexity of register allocation

<table>
<thead>
<tr>
<th>Theorem (Motwani et al., 1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a dag, find both a schedule of the dag and a register assignment that minimizes the number of register spills: NP-hard.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Belady 1966)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a dag and a schedule of the dag, find register assignment that minimizes the number of register spills: \approx linear time.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ It is unreasonable to expect a compiler to take an arbitrary dag and produce good code.</td>
</tr>
<tr>
<td>▶ However, if you schedule the dag yourself, a decent compiler should produce good code.</td>
</tr>
</tbody>
</table>
How do you find a good schedule?

Key insight:

- Registers are a cache managed by the compiler.
- Thus, techniques for optimizing the memory hierarchy (including cache oblivious algorithms) yield good schedules.
- If your kernel is straight-line, the cache is *ideal*: fully associative and with optimal replacement policy.

In practice:

- If you are lucky, the compiler might respect your schedule and approximate an ideal cache.
- Otherwise, you can implement Belady’s algorithm yourself. (Easy to do.)
Belady’s register allocation

Belady’s policy:
When you must evict a register, evict one used furthest in the future.

Example (matrix multiplication, 4 registers):

\[
\begin{array}{l}
c_{00} \leftarrow c_{00} + a_{00} \cdot b_{00} \\
c_{00} \leftarrow c_{00} + a_{01} \cdot b_{10} \\
c_{01} \leftarrow c_{01} + a_{00} \cdot b_{01} \\
c_{01} \leftarrow c_{01} + a_{01} \cdot b_{11} \\
c_{10} \leftarrow c_{10} + a_{10} \cdot b_{00} \\
c_{10} \leftarrow c_{10} + a_{11} \cdot b_{10} \\
c_{11} \leftarrow c_{11} + a_{10} \cdot b_{01} \\
c_{11} \leftarrow c_{11} + a_{11} \cdot b_{11} \\
\end{array}
\]

\[
\begin{array}{cccc}
& \text{r}_0 & \text{r}_1 & \text{r}_2 & \text{r}_3 \\
\text{a}_{00} & \text{b}_{00} & \text{c}_{00} & \text{a}_{01} \\
\text{a}_{00} & \text{b}_{10} & \text{c}_{00} & \text{a}_{01} \\
\text{a}_{00} & \text{b}_{01} & \text{c}_{01} & \text{a}_{01} \\
\text{b}_{11} & \text{b}_{01} & \text{c}_{01} & \text{a}_{01} \\
\text{b}_{00} & \text{b}_{01} & \text{c}_{10} & \text{a}_{10} \\
\text{b}_{10} & \text{b}_{01} & \text{c}_{10} & \text{a}_{11} \\
\text{a}_{10} & \text{b}_{01} & \text{c}_{11} & \text{a}_{11} \\
\text{b}_{11} & \text{b}_{01} & \text{c}_{11} & \text{a}_{11} \\
\end{array}
\]

(blue = load, red = spill.)
Generated code with register allocation

\[
\begin{align*}
 r0 &= a_{00} \\
 r1 &= b_{00} \\
 r2 &= c_{00} \\
 r2 &= r2 + r0 \times r1 \\
 c_{00} &= r2 \\
 r2 &= c_{01} \\
 r1 &= b_{01} \\
 r2 &= r2 + r0 \times r1 \\
 r0 &= b_{11} \\
 r2 &= r2 + r3 \times r0 \\
 c_{01} &= r2 \\
 r2 &= c_{10} \\
 r0 &= a_{10} \\
 r3 &= a_{10} \\
 r2 &= r2 + r3 \times r0 \\
 c_{10} &= r2 \\
 r2 &= c_{11} \\
 r3 &= a_{11} \\
 r2 &= r2 + r3 \times r0 \\
 r0 &= a_{10} \\
 r2 &= r2 + r0 \times r1 \\
 r0 &= b_{11} \\
 r2 &= r2 + r3 \times r0 \\
 c_{11} &= r2
\end{align*}
\]
Summary

- Forget the algebra, think iteration space.
- Know what you are trying to measure.
- When in doubt, use brute force.
- Register allocation is just another exercise in caching.