FFT-based Dense Polynomial Arithmetic on
Multi-cores

Marc Moreno Maza
Ontario Research Centre for Computer Algebra (ORCCA)
University of Western Ontario, Canada
joint work with
Yuzhen Xie
SuperTech Group, MIT CSAIL

CS 4435 - CS 9624, February 1st, 2010

Introduction (1/2)

Developing basic polynomial algebra subroutines (BPAS) in
support of polynomial system solvers and targeting hardware
acceleration technologies (multi-cores, GPU, ...)

BPAS operations: +, X, + and normal form computation
w.r.t. a reduced monic triangular set

multiplication and normal form cover all implementation
challenges

BPAS ring: Z/pZ[x1, ..., xn)

We focus on dense polynomial arithmetic over finite fields,
and therefore on FFT-based arithmetic.

Introduction (2/2)

BPAS assumption: 1-D FFTs are computed by a black box
program which could be non-parallel.

We rely on the modpn C library for serial 1-D FFTs/TFTs,
and for integer modulo arithmetic (Montgomery trick).

We use the multi-threaded programming model of (Frigo,
Leiserson and Randall, 1998) and cache model of (Frigo,
Leiserson, Prokop, and Ramachandra 1999)

Our concurrency platform is Cilk++-:

— provably efficient work-stealing scheduling

— ease-of-use and low-overhead parallel constructs:
cilk_for, cilk_spawn, cilk_sync

— Cilkscreen for data race detection and parallelism analysis

(1)

Outline

Identifying Balanced Bivariate Multiplication as a good
kernel for dense multivariate and univariate multiplication
w.r.t. parallelism and cache complexity

Reducing to balanced bivariate multiplication by contraction,
extension, and contraction+extension techniques

Optimizing this kernel:

— performance evaluation by VTune and Cilkscreen

— determining cut-off criteria between the different algorithms
and implementations

Obtaining efficient parallel computation of normal forms by
composing the parallelism of multiplication and that of
normal forms

Combining theoretical analysis with experimental study!

Review of 2-D FFT

Let f(x,y) = 7o &i(x)y’, where gi(x) = 337 o i,
(1) FFTs along x: gi(wk)= 213 0 c,le , where 0 < k < 3.

Co Co1 Co2 Co3 — go(»q) go(wl) go(wf) go(wf)
Clo €11 €12 €13 — gl(’uf?) gl(w%) gl(wf) gl(wf)
2 3
1 i

Cpo Ca C2 €3 — gz(w(l)) gz(w%) &(wi) g(wi)

Review of 2-D FFT

Let f(x,y) = 7o &i(x)y’, where gi(x) = 337 o i,
(1) FFTs along x: gi(wk)= 213 0 c,le , where 0 < k < 3.

Co Co1 Co2 Co3 — go(»q) go(wl) go(wf) go(wf)
Clo €11 €12 €13 — gl(w?) gl(w%) gl(wf) gl(wf)
2 3
1 i

Cpo Ca C2 €3 — gz(w(l)) gz(w%) &(wi) g(wi)

(2) FFTs along y: f(wh,wh)= 20 gi(wh)wd’, where 0 < k <3
and 0 </ < 2.

g0(w)) &(wf)) &«f) = fof,0f) f(wfw) f(wf,w)
go(wi) gu(wi) ew)) = fwi,0f) flufw;) flwg,w)
go(wi) &(wf) gwf) = f(of,of) flwfw) f(of,w3)
go(wi) &) &) = flwiwd) flofw;) flwf,w))

Remark 1: This procedure evaluates f(x, y) on the grid (wk, w$),
for0< k<3and0</<2.

FFT-based Multivariate Multiplication

> Let k be a finite field and f, g € k[x1 < -+ < x,] be
polynomials with n > 2.

» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.

» Assume there exists a primitive s;-th root of unity w; € k, for
all i, where s; is a power of 2 satisfying s; > d; +d’; + 1.

Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f(P),g(P)) of the
n-dimensional grid ((wf',...,ws),0< e < 51,...,0< e, <s,)
via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing
f(P)g(P),
Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Performance of Bivariate Interpolation in Step 3

(di = db)
16.00 - Bivariate Interpolation
14.00 -
—-—16383
12.00 1 ——8191
10.00 - =%=4095
=3 —6=2047
>
® 8.00 -
Q
Q.
wv
6.00 -
4.00 4
2.00 =
0.00

0 2 4 6 8 10 12 14 16
Number of Cores

Thanks to Dr. Frigo for his cache-efficient code for matrix transposition!

Performance of Bivariate Multiplication
(dy = dr = df = df)

16.00 Bivariate Multiplication
14.00
12.00
10.00

8.00 A

Speedup

6.00 -

4.00 A

2.00 -

0.00 T T T T T T T 1

0 2 4 6 8 10 12 14 16
Number of Cores

Challenges: Irregular Input Data

16.00 1 Multiplication L’
4
d
14.00 1 - - - Jinear speedup 7
d
—e&— bivariate (32765, 63) 7
12.00 1 g variate (all 4) 7
4-variate (1023, 1, 1, 1023) .~

10.00 - R ‘
a —&— univariate (25427968) ,“
3
D 8.00 -
(7]
Q.
v

6.00 -

4.00 -

2.00 A

0.00 ; ; ; ; : ; ; \

0 2 4 6 8 10 12 14 16

Number of Cores

These unbalanced data pattern are common in symbolic computation.

Performance Analysis by VTune

No. Size of Product
Two Input Size
Polynomials

1 81918191 268402689

2 259575x258 268401067

3 63x63x63x63 260144641

4 8vars. of deg. 5 214358881
No. INST_ Clocks per L2 Cache Modified Data Time on
RETIRED. Instruction Miss Rate Sharing Ratio 8 Cores
ANY x10° Retired (x1073) (x1073) (s)
1 659.555 0.810 0.333 0.078 16.15
2 713.882 0.890 0.735 0.192 19.52
3 714.153 0.854 1.096 0.635 22.44
4 1331.340 1.418 1.177 0.576 72.99

Complexity Analysis (1/2)

» Let s = s;---5s,. The number of operations in k for
computing fg via n-D FFT is

g > (I Is)sile(si) + (n+1)s = gs lg(s) + (n+ 1)s.

i=1 j#i

» Under our 1-D FFT black box assumption, the span of Step 1 is
3 (sulg(st) + -+ sulg(sn)),
and the parallelism of Step 1 is lower bounded by
s/max(si, ..., Sn)- (1)

» Let L be the size of a cache line. For some constant ¢ > 0,

the number of cache misses of Step 1 is upper bounded by

cs 1 1
= S). 2
nT eSSt) (2)

Complexity Analysis (2/2)

> Let Q(s1,...,5sn) denotes the total number of cache misses
for the whole algorithm, for some constant ¢ we obtain

+1 1 1
T des(E+ o+ 2) ()
51 Sn

. n 1 1
> Since {; < 5+t we deduce

1

2
Q(sl,...,sn)gncs(z—i—m) (4)

when s; = s1/n holds for all i.

Remark 2: For n > 2, Expr. (4) is minimized at n = 2 and
s1 = 5, = +/s. Moreover, when n = 2, under a fixed s = s,
Expr. (1) is maximized at s; = s; = +/s.

Our Solutions

(1) Contraction to bivariate from multivariate
(2) Extension from univariate to bivariate

(3) Balanced multiplication by extension and contraction

Solution 1: Contraction to Bivariate from Multivar.
Example. Let f € k[x, y, z] where k = Z/41Z, with d, = d, =1, d, = 3,
and recursive dense representation:

* The coefficients (not monomials) are stored in a contiguous array.
* The coeff. of x*y®z% has index e; + (dx + 1)ex + (di + 1)(d, + 1)es.

Contracting f(x,y, z) to p(u, v) by x®y® s yertldte e e

Remark 3: The coefficient array is “essentially” unchanged by contraction,
which is a property of recursive dense representation.

Performance of Contraction (timing)

45

40

35

Time (second)
= N N w
w o v o

=
o

4-variate Multiplication
degrees= (1023, 1, 1, 1023)

—8—4D-TFT method, size =
2047x3x3x2047

—4&—Balanced 2D-TFT method,
size = 6141x6141

= r 3 —h

2 4 6 8 10 12 14 16

Number of Cores

Performance of Contraction (speedup)

32.00 -
30.00 -
28.00 -

4-variate Multiplication
degrees = (1023, 1, 1, 1023)

26.00 - —a—Balanced 2D-TFT method,

24.00 A size = 6141x6141
22.00 - —8—4D-TFT method, size =

20.00 - 2047x3x3x2047
=>=Net speedup
2 18.00 -

D 16.00 -

& 14.00 -
12.00 -
10.00 -
8.00 -
6.00 -
4.00 -
2.00 -
0.00 T T T T T T T "

0 2 4 6 8 10 12 14 16
Number of Cores

e

Performance of Contraction for a Large Range of
Problems

4-D TFT method on 1 core (43.5-179.9s) x
Kronecker substitution of 4-D to 1-D TFT on 1 core (35.8-s) +

Contraction of 4-D to 2-D TFT on 1 core (19.8-86.2 s)
Contraction of 4-D to 2-D TFT on 16 cores (8.2-13.2x speedup, 16-30x net gain) ¢
180
165
150
135
120
Time 105
90
75
60
45
30

Solution 2: Extension from Univariate to Bivariate

Example: Consider f, g € k[x] univariate, with deg(f) =7 and
deg(g) = 8; fg has “dense size” 16.

» We compute an integer b, such that fg can be performed via
fogp using “nearly square” 2-D FFTs, where f, := ®,(f),
8p - — q>b(g) and

(Db - oxe u rem b € duo b.

* Here b = 3 works since deg(fpgp, u) = deg(fpgp, v) = 4;
moreover the dense size of frgp is 25.

Proposition: For any non-constant f, g € k[x], one can always
compute b such that |deg(fpgp, u) — deg(fpgp, v)| < 2 and the
dense size of fpgp is at most twice that of fg.

Extension of f(x) to f,(u, v)
in Recursive Dense Representation

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Remark 4: Converting back to fg from fpgp requires only to traverse
the coefficient array once, and perform at most deg(fg, x) additions.

(seco

Tim

Performance of Extension (timing)

Univariate Mupltiplication
degree = 25427968

—0—1D-TFT method, size =
50855937

1 —#—Balanced 2D-TFT method,

J size = 10085x10085

0 2 4 6 8 10 12 14 16
Number of Cores

Speedup

Performance of Extension (speedup)

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Univariate Multiplication
degree = 25427968

—8—1D-TFT method, size =
50855937

—&—Balanced 2D-TFT method,
size = 10085x10085

=><Net speedup

2 4 6 8 10 12 14 16

Number of Cores

Time

Performance of Extension for a Large Range of
Problems

Extension of 1-D to 2-D TFT on 1 core (2.2-80.1 s)

1-D TFT method on 1 core (1.8-59.7 s)

Extension of 1-D to 2-D TFT on 2 cores (1.96-2.0x speedup, 1.5-1.7x net gain)
Extension of 1-D to 2-D TFT on 16 cores (8.0-13.9x speedup, 6.5-11.5x net gain)

80 | goo
70 | 0696?6596959 ©

50
40
30

X O + 0

Solution 3: Balanced Multiplication

Definition. A pair of bivariate polynomials p, g € k[u, v] is
balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

Algorithm. Let f, g € k[x; < ... < x,]. W.l.o.g. one can assume
di >>d;and di’ >> djfor2<i<n (up to variable re-ordering
and contraction). Then we obtain fg by

Step 1. Extending x; to {u, v}.
Step 2. Contracting {v, x2,...,x,} to v.
Remark 5: The above extension @, can be determined such that

fp, gp is (nearly) a balanced pair and f,g, has dense size at most
twice that of fg.

Performance of Balanced Mul. for a Large Range
of Problems

X
+
<
-10.3x net gain) ©

6.2

D TFT on 1 core (7.6-15.7 s)

Ext.+Contr. of 4-D to 2-
Kronecker substitution of 4-D to 1-D TFT on 1 core (6.8-14.1 s)

Ext.+Contr. of 4-D to 2-D TFT on 2 cores (1.96x speedup, 1.75x net gain)

Ext.+Contr. of 4-

D to 2-D TFT on 16 cores (7.0-11.3x speedup

=dy'=d,'=2)

dy’ (dy

Time

Cut-off Criteria Estimates:
TFT- vs FFT-based Methods

0.0004

0.00035 ¢
0.0003
0.00025 ¢
0.0002
0.00015 ¢
0.0001 ¢

5e-05 r

0

FET e

0 50

100

150 200 250 300 350
Degree

Performance Evaluation by VTune for TFT- and
FFT-based Bivar. Mult.

di d» Inst. Clocks per L2 Cache Modif. Data Time on
Ret. Inst. Ret. Miss Rate Shar. Ratio 8 Cores
(x10%) (CPI) (x1073) (x1079) (s)
TFT | 2047 2047 44 0.794 0.423 0.215 0.86
2048 2048 52 0.752 0.364 0.163 1.01
2047 4095 89 0.871 0.687 0.181 2.14
2048 4096 106 0.822 0.574 0.136 2.49
4095 4095 179 0.781 0.359 0.141 3.72
4096 4096 217 0.752 0.309 0.115 4.35
FFT | 2047 2047 38 0.751 0.448 0.106 0.74
2048 2048 145 0.652 0.378 0.073 2.87
2047 4095 79 0.849 0.745 0.122 1.94
2048 4096 305 0.765 0.698 0.094 7.64
4095 4095 160 0.751 0.418 0.074 3.15
4096 4096 622 0.665 0.353 0.060 12.42

Performance Eval. by Cilkscreen for TFT- and
FFT-based Bivar. Mult.

di d» Span/ Parallelism/ Speedup
Burdened Burdened Estimate
Span (x10°) Parallelism 4P 8P 16P
TFT | 2047 2047 0.613/0.614 74.18/74.02 3.69-4 6.77-8 11.63-16
2048 2048 0.615/0.616 86.35/86.17 3.74-4 6.96-8 12.22-16
2047 4095 0.118/0.118 92.69/92.58 3.79-4 7.09-8 12.54-16
2048 4096 1.184/1.185 105.41/105.27 3.80-4 7.19-8 12.88-16
4095 4095 2.431/2.433 79.29/79.24 3.71-4 6.86-8 11.89-16
4096 4096 2.436/2.437 91.68/91.63 3.76-4 7.03-8 12.43-16
FFT | 2047 2047 0.612/0.613 65.05/64.92 3.64-4 6.59-8 11.08-16
2048 2048 0.619/0.620 250.91/250.39 3.80-4 7.50-8 14.55-16
2047 4095 1.179/1.180 82.82/82.72 3.77-4 6.99-8 12.23-16
2048 4096 1.190/1.191 321.75/321.34 3.80-4 7.60-8 14.82-16
4095 4095 2.429/2.431 69.39/69.35 3.66-4 6.68-8 11.35-16
4096 4096 2.355/2.356 166.30/166.19 3.80-4 7.47-8 13.87-16

Cut-off Criteria Estimates

» Balanced input: di +d'y ~ d> + d'5.
» Moreover d; and d’; are quite close, for all /.

» Consequently we assume d := d; = d’'; = d» = d’5 with
€ [2K, 2k,

» We have developed a MAPLE package for polynomials in
Q[k, 2¥] targeting complexity analysis.

Cut-off Criteria Estimates

For d € [2k,2k=1) the work of FFT-based bivariate multiplication
is 48 x 4K(3k + 7).

Table: Work estimates of TFT-based bivariate multiplication

d ‘ Work
2k 302K T £ 1)2(7 + 3k)
2k 4 2k=1 81 4Kk + 270 4 + 54 2Kk + 180 2k 4 9k + 30
2k 4 ok—1 4 ok—2 4 4kk 4 75 4k 4 63 24k + 210 2K 4 9k + 30
2k pok—1 g k=24 k=3 | 2085 ghye 3315 gk 4 135 ok 4 225 2K 4 9k + 30

Cut-off Criteria Estimates
d:=2K 4+ c2k71 4 ... 4 72k where each cy,...,c; € {0,1}.

Table: Degree cut-off estimate

(¢1, ¢, €3, C4, G5, G5, C7) ‘ Range for which this is a cut-off
(1,1,1,0,0,0,0) 3<k<5
(1,1,1,0,1,0,0) 5< k<7
(1,1,1,0,1,1,0) 6<k<9
(1,1,1,0,1,1,1) 7<k<11
(1,1,1,1,0,0,0) 11< k<13
(1,1,1,1,0,1,0) 14 < k<18
(1,1,1,1,1,0,0) 19 < k <28

These results suggest that for every range [2,25~1) that occur in
practice a sharp (or minimal) degree cut-off is around
2k _|_2kfl 4 2k72 + 2k73_

Cut-off Criteria Measurements

+
X

2-D FFT method on 1 core (5.85-6.60 s)
2-D TFT method on 1 core (2.27-8.13 s)

Figure: Timing of bivariate multiplication for input degree range of

[1024,2048) on 1 core.

Cut-off Criteria Measurements

2-D FFT method on 8 cores (0.806-0.902 s, 7.2-7.3x speedup) +
2-D TFT method on 8 cores (0.309-1.08 s, 6.8-7.6x speedup) x

1.1
+rEEry x X
1F +F o F Fi+ X X
cr TREFATEAET TR b7

09 ¢ ++r¢¢¢¢¢¢f¢f¢f¢¢f@;§§§§gw;u

+ P AP+ T + ¥4+ F+
08 - mmuhﬁfuxm%@&x” *

Time(s)&7 L X&%% **N
x%gg%%xgg*x

06 %%g%%xx,‘x
05 (FEERX X

x XXX X X
0.4 .
0.3

dy+dy+l 4096 dytdy+1

Figure: Timing of bivariate multiplication for input degree range of
[1024,2048) on 8 cores.

0.8
0.7
0.6
Time(s)o'5
0.4
0.3
0.2
0.1

dy+dy'+1

Cut-off Criteria Measurements

FFT method on 16 cores (0.588-0.661 s, 9.6-10.8x speedup) +
TFT method on 16 cores (0.183-0.668 s, 7.8-14.1x speedup) X

2-D
2-D

4096 dytdy+1

Figure: Timing of bivariate multiplication for input degree range of
[1024,2048) on 16 cores.

Parallel Computation of Normal Forms

In symbolic computation, normal form computations are used for
simplification and equality test of algebraic expressions modulo a set
of relations.

Vx+yx>=1—y modx*+1,y°+x

Many algorithms (computations with algebraic numbers, Grébner
basis computation) involve intensively normal form computations.

We rely on an algorithm (Li, Moreno Maza and Schost 2007) which
extends the fast division trick (Cook 66) (Sieveking 72) (Kung 74).

The main idea is to efficiently reduce division to multiplication (via
power series inversion).

Preliminary attemp of parallelizing this algorithm (Li, Moreno Maza,
2007) reached a limited success.

Parallel Computation of Normal Forms

NormalFormy(f,{g1} C k[x1])

1 S :=Rev(g)™" mod xiee() —degla)1
2 D := Rev(A)S; mod xj () -dealer)l
3 D := g1 Rev(D)

4 return A— D

NormalForm;(f,{g1,...,&} C k[x1,...,x])

1 A := map(NormalForm;_y, Coeffs(f, x;), {g1, - -
_deg(f,x,-)—deg(g,-,x,—)-&-l

2 Si = Rev(g,-)ﬂ mod 8ly---,8i-1,%;
3 D :=Rev(A)S; mod xdee(fxi)—deg(gixi)+1

i

4 D := map(NormalForm;_y, Coeffs(D, xy, {g1, - -

5 D:

8i ReV(D)

6 D := map(NormalForm;_1, Coefls(D, x;), {g1, . - -

7 return A— D

. agifl})

. 7gi—1})

7gi71})

Parallel Computation of Normal Forms

Define 6; := deg(gi, x;) and ¢; = Hj:l lg(6;). Denote by Ww(d;)
and Sw(¢;) the work and span of a multiplication algorithm.

(1) Span estimate with serial multiplication:

Snr(9;) = 34 Snr(d;—1) +2Wm(J;) + 4;.

(2) Span estimate with parallel multiplication

Snr(9;) = 34 Snr(d;_1) +2Sm(d;) + 4i.

» Work, span and parallelism are all exponential in the number
of variables.

» Moreover, the number of joining threads per synchronization
point grows with the partial degrees of the input polynomials.

Parallel Computation of Normal Forms

Table: Span estimates of TFT-based Normal Form for §; = (2, 1,...,1).

i ‘ With serial multiplication ‘ With parallel multiplication

2 144 k 2K + 642 2K + 76 k + 321 72 k 2K 4144 2K 1 160 k + 312

4 | 4896 k 2k 4 45028 2k + 2488 k 4 22514 | 1296 k 2k 4 2592 2k 4 6304 k + 12528
8 3456576 k 2k 471229768 2 + o(2k) 209952 k 2k + 419904 2k + o(2K)

Table: Parallelism est. of TFT-based Normal Form for §; = (2%,1,...,1).

i ‘ With serial multiplication ‘ With parallel multiplication
2 13/8 ~ 2 13/4~3

4 1157/272 ~ 4 1157/72 ~ 16

8 5462197,/192032 ~ 29 5462197/11664 ~ 469

Parallel Computation of Normal Forms

16.00 A
Main degs of triset: 8191, 8191
14.00 - Partial degs of poly: 16380, 16380
—a—Wwith parallel bivariate multiplication
12.00 - =@-with serial bivariate multiplication
10.00 A
Qo
=]
$ 8.00 -
(7}
o
wv
6.00 -
4.00
2.00 - — g
1.90 1.99 2.04
0.00 1'90 T T T r r T 1

0 2 4 6 8 10 12 14 16
Number of Cores

Figure: Normal form computation of a large bivariate problem.

Parallel Computation of Normal Forms

Speedup

Figure: Normal form computation of a medium-sized 4-variate problem.

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Main degs of triset: 64, 64, 64, 64

Partial degs of poly: 126, 126, 126, 126
—a—with parallel bivariate multiplication
-@-with serial bivariate multiplication

10.37

2 4 6 8 10 12 14 16
Number of Cores

Parallel Computation of Normal Forms

16.00 A
Main degs of triset: 1024, 2,2,2,2,2,2,2
14.00 A Partial degs of poly: 2046, 2,2,2,2,2,2,2
—a—with parallel bivariate multiplication
-@—with serial bivariate multiplication
12.00 4
10.57
10.00 4 10.75
o
=]
T 8.00 A
[}
Q.
wv
6.00 -
4.00 -
2.00 =
0.00 1'0.0 T T T T T T 1
0 2 4 6 8 10 12 14 16

Number of Cores

Figure: Normal form computation of an irregular 8-variate problem.

Summary and Future work

» We have shown that (FFT-based) balanced bivariate multiplication
can be highly efficient in terms of parallelism and cache complexity.

» We have provided efficient techniques to reduce unbalanced input to
balanced bivariate multiplication.

» Not only balanced parallel multiplication can improve the
performance of parallel normal form computation, but also this
composition is necessary for parallel normal form computation to
reach peak performance on all input patterns that we have tested.

» Work-in-progress includes parallel resultant/GCD and a polynomial
solver via triangular decompositions.

Acknowledgements:

This work was supported by NSERC and MITACS NCE of Canada, and
NSF Grants 0540248, 0615215, 0541209, and 0621511. We are very
grateful for the help of Professor Charles E. Leiserson, Dr. Matteo Frigo
and all other members of SuperTech Group at MIT and Cilk Arts.

Thank Youl

