
Issues in Parallelization

Matteo Frigo

Cilk Arts

June 9, 2009



Outline

Goal: highlight common performance problems in parallel
programs.

Wrong grain size in cilk_for loops.

Too little parallelism.

Memory bandwidth limitations.

Too little burdened parallelism.

How:

Run microbenchmarks.

Explain why they do or do not work as intended.



Example 1: a small loop with grain size = 1

Code:

const int N = 100 * 1000 * 1000;

void cilk_for_grainsize_1()

{

#pragma cilk_grainsize = 1

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Expectations:

Parallelism should be large, perhaps Θ(N) or Θ(N/ log N).

We should see great speedup.



Speedup is indeed great. . .

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



. . . but performance is lousy

Number of Processors

S
p
ee

d
u
p

ve
rs

u
s

se
ri
al

co
d
e

1614121086420

16

14

12

10

8

6

4

2

0



How cilk for is implemented

Source:

cilk_for (int i = A; i < B; ++i)

BODY(i)

Implementation:

void recur(int lo, int hi) {

if ((hi - lo) > GRAINSIZE) {

int mid = lo + (hi - lo) / 2;

cilk_spawn recur(lo, mid);

cilk_spawn recur(mid, hi);

} else

for (int i = lo; i < hi; ++i)

BODY(i);

}

recur(A, B);



Default grain size

Cilk++ chooses a grain size if you don’t specify one.

void cilk_for_default_grainsize()

{

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Cilk++’s heuristic for the grain size:

grain size = min

{
N

8P
, 512

}
.

Generates about 8P parallel leaves.

Works well if the loop iterations are not too unbalanced.



Speedup with default grain size

Number of Processors

S
p
ee

d
u
p

ve
rs

u
s

se
ri
al

co
d
e

1614121086420

16

14

12

10

8

6

4

2

0



Large grain size

A large grain size should be even faster, right?

void cilk_for_large_grainsize()

{

#pragma cilk_grainsize = N

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Actually, no (except for noise):

Grain size Runtime

1 8.55 s
default (= 512) 2.44 s

N (= 108) 2.42 s



Speedup with grain size = N

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



Tradeoff between grain size and parallelism

Use the PPA to understand the tradeoff:

Grain size Parallelism

1 6,951,154
default (= 512) 248,784

N (= 108) 1

In the PPA, P = 1:

default grain size = min

{
N

8P
, 512

}
= min

{
N

8
, 512

}
.



Lessons learned

Measure overhead before measuring speedup.

Compare 1-processor Cilk++ versus serial code.

Small grain size ⇒ higher work overhead.

Large grain size ⇒ less parallelism.

The default grain size is designed for small loops that are
reasonably balanced.

You may want to use a smaller grain size for unbalanced loops
or loops with large bodies.

Use the PPA to measure the parallelism of your program.



Example 2: A for loop that spawns

Code:

const int N = 10 * 1000 * 1000;

/* empty test function */

void f() { }

void for_spawn()

{

for (int i = 0; i < N; ++i)

cilk_spawn f();

}

Expectations:

I am spawning N parallel things.

Parallelism should be Θ(N), right?



“Speedup” of for spawn()

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



Insufficient parallelism

PPA analysis:

PPA says that both work and span are Θ(N).

Parallelism is ≈ 1.62, independent of N.

Too little parallelism: no speedup.

Why is the span Θ(N)?

for (int i = 0; i < N; ++i)

cilk_spawn f();

++i

f()

i < N ++ispawn... ...

...



Alternative: a cilk for loop.

Code:

/* empty test function */

void f() { }

void test_cilk_for()

{

cilk_for (int i = 0; i < N; ++i)

f();

}

PPA analysis:

The parallelism is about 2000 (with default grain size).

The parallelism is high.

As we saw earlier, this kind of loop yields good performance
and speedup.



Lessons learned

cilk_for() is different from for(...) cilk_spawn.

The span of for(...) cilk_spawn is Ω(N).

For simple flat loops, cilk_for() is generally preferable
because it has higher parallelism.

(However, for(...) cilk_spawn might be better for
recursively nested loops.)

Use the PPA to measure the parallelism of your program.



Example 3: Vector addition

Code:

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i)

A[i] = B[i] + C[i];

}

Expectations:

The PPA says that the parallelism is 68,377.

This will work great!



Speedup of vector add()

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level daxpy bandwidth

L1 19.6 GB/s per core
L2 18.3 GB/s per core
L3 13.8 GB/s shared
DRAM 7.1 GB/s shared

daxpy: x[i] = a*x[i] + y[i], double precision.

The memory bottleneck:

A single core can generally saturate most of the memory
hierarchy.

Multiple cores that access memory will conflict and slow each
other down.



How do you determine if memory is a bottleneck?

Hard problem:

No general solution.

Requires guesswork.

Two useful techniques:

Use a profiler such as the Intel VTune.

Interpreting the output is nontrivial.
No sensitivity analysis.

Perturb the environment to understand the effect of the CPU
and memory speeds upon the program speed.



How to perturb the environment

Overclock/underclock the processor, e.g. using the power
controls.

If the program runs at the same speed on a slower processor,
then the memory is (probably) a bottleneck.

Overclock/underclock the DRAM from the BIOS.

If the program runs at the same speed on a slower DRAM,
then the memory is not a bottleneck.

Add spurious work to your program while keeping the memory
accesses constant.

Run P independent copies of the serial program concurrently.

If they slow each other down then memory is probably a
bottleneck.



Perturbing vector add()

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

fib(5); // waste time

}

}



Speedup of perturbed vector add()

fib(10)
fib(5)

original

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



Interpreting the perturbed results

The memory is a bottleneck:

A little extra work (fib(5)) keeps 8 cores busy. A little more
extra work (fib(10)) keeps 16 cores busy.

Thus, we have enough parallelism.

The memory is probably a bottleneck. (If the machine had a
shared FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?

vector_add cannot be fixed in isolation.

You must generally restructure your program to increase the
reuse of cached data. Compare the iterative and recursive
matrix multiplication from yesterday.

(Or you can buy a newer CPU and faster memory.)



Lessons learned

Memory is a common bottleneck.

One way to diagnose bottlenecks is to perturb the program or
the environment.

Fixing memory bottlenecks usually requires algorithmic
changes.



Example 4: Nested loops

Code:

const int N = 1000 * 1000;

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Expectations:

The inner loop does 4 things in parallel. The parallelism
should be about 4.

The PPA says that the parallelism is 3.6.

We should see some speedup.



“Speedup” of inner parallel()

PPA estimate
test run

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



Interchanging loops

Code:

const int N = 1000 * 1000;

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Expectations:

The outer loop does 4 things in parallel. The parallelism
should be about 4.

The PPA says that the parallelism is 4.

Same as the previous program, which didn’t work.



Speedup of outer parallel()

PPA estimate
test run

Number of Processors

S
p
ee

d
u
p

1614121086420

16

14

12

10

8

6

4

2

0



Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:

Parallelism after accounting for the unavoidable migration
overheads.

Depends upon:

How well we implement the Cilk++ scheduler.

How you express the parallelism in your program.

The PPA prints the burdened parallelism:

0.29 for inner_parallel(), 4.0 for outer_parallel().

In a good program, parallelism and burdened parallelism are
about equal.



What is the burdened parallelism?

Code:

A();

cilk_spawn B();

C();

D();

cilk_sync;

E();

Burdened critical path:

A() D() E()

B()

C() syncspawn

The burden is Θ(10000) cycles (locks, malloc, cache warmup,
reducers, etc.)



The burden in our examples

Θ(N) spawns/syncs on the critical path (large burden):

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Θ(1) spawns/syncs on the critical path (small burden):

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}



Lessons learned

Insufficient parallelism yields no speedup; high burden yields
slowdown.

Many spawns but small parallelism: suspect large burden.

The PPA helps by printing the burdened span and parallelism.

The burden can be interpreted as the number of spawns/syncs
on the critical path.

If the burdened parallelism and the parallelism are
approximately equal, your program is ok.



Conclusion

We have learned to identify and address these problems:

High overhead due to small grain size in cilk_for loops.

Insufficient parallelism.

Insufficient memory bandwidth.

Insufficient burdened parallelism.


