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The Ideal-Cache Model

The (Z , L) ideal cache model (1/4)
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The Ideal-Cache Model

The (Z , L) ideal cache model (2/4)

Computer with a two-level memory hierarchy:
an ideal (data) cache of Z words partitioned into Z/L cache lines,
where L is the number of words per cache line.
an arbitrarily large main memory.

Data moved between cache and main memory are always cache lines.
The cache is tall, that is, Z is much larger than L, say Z ∈ Ω(L2).
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The Ideal-Cache Model

The (Z , L) ideal cache model (3/4)

The processor can only reference words that reside in the cache.

If the referenced word belongs to a line already in cache, a cache hit
occurs, and the word is delivered to the processor.

Otherwise, a cache miss occurs, and the line is fetched into the
cache.
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The Ideal-Cache Model

The (Z , L) ideal cache model (4/4)

The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.
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The Ideal-Cache Model

Cache complexity

For an algorithm with an input of size n, he ideal-cache model uses
two complexity measures:

the work complexity W (n), which is its conventional running time in
a RAM model.
the cache complexity Q(n; Z , L), the number of cache misses it incurs
(as a function of the size Z and line length L of the ideal cache).
When Z and L are clear from context, we simply write Q(n) instead of
Q(n; Z , L).

An algorithm is said to be cache aware if its behavior (and thus
performances) can be tuned (and thus depend on) on the particular
cache size and line length of the targeted machine.

Otherwise the algorithm is cache oblivious.
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The Ideal-Cache Model

Cache complexity of the naive matrix multiplication

// A is stored in row-major and B in column-major
for(i =0; i < n; i++)

for(j =0; j < n; j++)
for(k=0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

Assuming Z ≥ 3L, computing each C[i][j] incurs O(1 + n/L)
caches misses.

If Z large enough, say Z ∈ Ω(n) then the row i of A will be
remembered for its entire involvement in computing C .

For a column of B to be remembered when necessary one needs
Z ∈ Ω(n2) in which case the whole computation fits in cache.
Therefore, we have

Q(n,Z , L) =

{
O(n2 + n3/L) if 3L ≤ Z < n2,
O(n + n2/L) if 3n2 ≤ Z .
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The Ideal-Cache Model

A cache-aware matrix multiplication algorithm (1/2)

// A, B and C are in row-major storage
for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)
for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

Each matrix M ∈ {A,B,C} consists of (n/s)× (n/s) submatrices Mij

(the blocks), each of which has size s × s, where s is a tuning
parameter.

Assume s divides n to keep the analysis simple.

blockMult(A,B,C,i,j,k,s) computes Cij = Aik × Bkj using the
naive algorithm
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The Ideal-Cache Model

A cache-aware matrix multiplication algorithm (2/2)

// A, B and C are in row-major storage
for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)
for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

We choose s to be the largest value such that the three s × s
submatrices simultaneously fit in cache, that is, Z ∈ Θ(s2).

An s × s submatrix is stored on Θ(s + s2/L) cache lines.

From the call cache assumption (Z ∈ Ω(L2)), we have s ∈ Θ(
√

Z ).

Thus blockMult(A,B,C,i,j,k,s) runs within Z/L ∈ Θ(s2/L)
cache misses.

Initializing the n2 elements of C amounts to Θ(1 + n2/L) caches
misses. Therefore we have

Q(n,Z , L) ∈ Θ(1+n2/L+(n/
√

Z )3(Z/L)) = Θ(1+n2/L+n3/(L
√

Z )).
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Cache Complexity of some Basic Operations

Scanning

Scanning n elements stored in a contiguous segment (= cache
lines) of memory costs at most dn/Le+ 1 cache misses. Indeed:

In the above figure N = n and B = L.
The main issue here is alignment and we focus on the worst case.
In the worst case, each of the first and the last read cache lines
contains less than L “useful” elements.
If L does not divide n, there are bn/Lc fully useful cache lines.
If L divides n, there are at most n

L − 1 fully useful cache lines.
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Cache Complexity of some Basic Operations

Array reversal

Reversing an array of n elements stored in a contiguous segment (=
cache lines) of memory costs at most dn/Le+ 1 cache misses,
provided that Z ≥ 2L holds. Exercise!
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Cache Complexity of some Basic Operations

Median and selection (1/8)

A selection algorithm is an algorithm for finding the k-th smallest
number in a list. This includes the cases of finding the minimum,
maximum, and median elements.

A worst-case linear algorithm for the general case of selecting the k-th
largest element was published by Blum, Floyd, Pratt, Rivest, and
Tarjan in their 1973 paper Time bounds for selection, sometimes
called BFPRT.

The principle is the following:

Find a pivot that allows splitting the list into two parts of nearly equal
size such that
the search can continue in one of them.
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Cache Complexity of some Basic Operations

Median and selection (2/8)

select(L,k)

{

if (L has 10 or fewer elements)

{

sort L

return the element in the kth position

}

partition L into subsets S[i] of five elements each

(there will be n/5 subsets total).

for (i = 1 to n/5) do

x[i] = select(S[i],3)

M = select({x[i]}, n/10)

partition L into L1<M, L2=M, L3>M

if (k <= length(L1))

return select(L1,k)

else if (k > length(L1)+length(L2))

return select(L3,k-length(L1)-length(L2))

else return M
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Cache Complexity of some Basic Operations

Median and selection (3/8)

For an input list of n elements, the number T (n) of comparisons satisfies

T (n) ≤ 12n/5 + T (n/5) + T (7n/10).

We always throw away either L3 (the values greater than M) or L1
(the values less than M). Suppose we throw away L3.

Among the n/5 values x[i], n/10 are larger than M, since M was
defined to be the median of these values.

For each i such that x[i] is larger than M, two other values in S[i]
are also larger than x[i]

So L3 has at least 3n/10 elements. By a symmetric argument, L1 has
at least 3n/10 elements.

Therefore the final recursive call is on a list of at most 7n/10
elements and takes time at most T (7n/10).
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Cache Complexity of some Basic Operations

Median and selection (4/8)

How to solve
T (n) ≤ 12n/5 + T (n/5) + T (7n/10)?

We “try” T (n) ≤ c n by induction. The substitution gives

T (n) ≤ n (12/5 + 9c/10).

From n(12/5 + 9c/10) ≤ c n we derive c ≤ 24.

The tree-based method also brings T (n) ≤ 24n.

The same tree-expansion method then shows that, more generally, if
T (n) ≤ cn + T (an) + T (bn), where a + b < 1, the total time is
c(1/(1− a− b))n.

With a lot of work one can reduce the number of comparisons to
2.95n [D. Dor and U. Zwick, Selecting the Median, 6th SODA, 1995].
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Cache Complexity of some Basic Operations

Median and selection (5/8)

In order to analyze its cache complexity, let us review the algorithm and
consider an array instead of a list.

Step 1: Conceptually partition the array into n/5 quintuplets of five
adjacent elements each.

Step 2: Compute the median of each quintuplet using O(1)
comparisons.

Step 3: Recursively compute the median of these medians (which is
not necessarily the median of the original array).

Step 4: Partition the elements of the array into three groups,
according to whether they equal, or strictly less or strictly
greater than this median of medians.

Step 5: Count the number of elements in each group, and recurse
into the group that contains the element of the desired rank.
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Cache Complexity of some Basic Operations

Median and selection (6/8)

To make this algorithm cache-oblivious, we specify how each step works in
terms of memory layout and scanning. We assume that Z ≥ 3L.

Step 1: Just conceptual; no work needs to be done.

Step 2: requires two parallel scans, one reading the array 5 elements
at a time, and the other writing a new array of computed
medians, incurring Θ(1 + n/L).

Step 3: Just a recursive call on size n/5.

Step 4: Can be done with three parallel scans, one reading the array,
and two others writing the partitioned arrays, incurring again
Θ(1 + n/L).

Step 5: Just a recursive call on size 7n/10.

This leads to

T (n) ≤ T (n/5) + T (7n/10) + Θ(1 + n/L).
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Cache Complexity of some Basic Operations

Median and selection (7/8)

How to solve

T (n) ≤ T (n/5) + T (7n/10) + Θ(1 + n/L)?

The unknown is what is the base-case?

Suppose the base case id T (0(1)) ∈ O(1).

Following the proof of the Master Theorem we estimate the number
of leaves L(n) = nc and obtain in
L(n) = L(n/5) + L(7n/10), L(1) = 1, which brings(

1

5

)c

+

(
7

10

)c

= 1

leading to c ' 0.8397803.

Since each leaf incurs a constant number of cache misses we have
T (n) ∈ Ω(nc).
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Cache Complexity of some Basic Operations

Median and selection (8/8)

How to solve

T (n) ≤ T (n/5) + T (7n/10) + Θ(1 + n/L)?

Fortunately, we have a better base-case: T (0(L)) ∈ O(1).

Indeed, once the problem fits into O(1) cache-lines, all five steps
incur only a constant number of cache misses.

Thus we have only (n/L)c leaves in the recursion tree.

In total, these leaves incur O((n/L)c) = o(n/L) cache misses.

In fact, the cost per level decreases geometrically from the root, so
the total cost is the cost of the root. Finally we have

T (n) ∈ Θ(1 + n/L)
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Matrix Transposition

A matrix transposition cache-oblivious algorithm (1/3)

Matrix transposition problem: Given an m× n matrix A stored in a
row-major layout, compute and store AT into an n ×m matrix B also
stored in a row-major. layout.

We describe a recursive cache-oblivious algorithm which uses Θ(mn)
work and incurs Θ(1 + mn/L) cache misses, which is optimal.

The straightforward algorithm employing doubly nested loops incurs
Θ(mn) cache misses on one of the matrices when m� Z/L and
n� Z/L.
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Matrix Transposition

A matrix transposition cache-oblivious algorithm (2/3)

If n ≥ m, the Rec-Transpose algorithm partitions

A = (A1 A2) , B =

(
B1

B2

)
and recursively executes Rec-Transpose(A1,B1) and
Rec-Transpose(A2,B2).

If m > n, the Rec-Transpose algorithm partitions

A =

(
A1

A2

)
, B = (B1 B2)

and recursively executes Rec-Transpose(A1,B1) and
Rec-Transpose(A2,B2).
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Matrix Transposition

A matrix transposition cache-oblivious algorithm (3/3)

Recall that the matrices are stored in row-major layout.

Let α be a constant sufficiently small such that

two submatrices of size m × n and n ×m, where max {m, n} ≤ αL, fit
in cache
even if each row starts at a different cache line.

We distinguish three cases:

Case I: max {m, n} ≤ αL.
Case II: m ≤ αL < n or n ≤ αL < m.
Case III: m, n > αL.
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Matrix Transposition

Case I: max {m, n} ≤ αL.

Both matrices fit in O(1) + 2mn/L lines.

From the choice of α, the number of lines required is at most Z/L

Therefore Q(m, n) ∈ O(1 + mn/L).
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Matrix Transposition

Case II: m ≤ αL < n or n ≤ αL < m.

Consider n ≤ αL < m. The Rec-Transpose algorithm divides the
greater dimension m by 2 and recurses.
At some point in the recursion, we have αL/2 ≤ m ≤ αL and the
whole problem fits in cache. At this point:

the input array resides in contiguous locations, requiring at most
Θ(1 + nm/L) cache misses
the output array consists of nm elements in n rows, where in the worst
case every row starts at a different cache line, leading to at most
Θ(n + nm/L) cache misses.

Since m ≤ αL, the total cache complexity for this base case is
Θ(1 + n), yielding the recurrence (where the resulting Q(m, n) is a
worst case estimate)

Q(m, n) =

{
Θ(1 + n) if m ∈ [αL/2, αL] ,
2Q(m/2, n) + O(1) otherwise ;

whose solution satisfies Q(m, n) = Θ(1 + mn/L).
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Matrix Transposition

Case III: m, n > αL.

As in Case II, at some point in the recursion both n and m fall into
the range [αL/2, αL].

The whole problem fits into cache and can be solved with at most
Θ(m + n + mn/L) cache misses.

The worst case cache miss estimate satisfies the recurrence

Q(m, n) =
Θ(m + n + mn/L) if m, n ∈ [αL/2, αL] ,
2Q(m/2, n) + O(1) if m ≥ n ,
2Q(m, n/2) + O(1) otherwise;

whose solution is Q(m, n) = Θ(1 + mn/L).

Therefore, the Rec-Transpose algorithm has optimal cache
complexity.

Indeed, for an m × n matrix, the algorithm must write to mn distinct
elements, which occupy at least dmn/Le cache lines.
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A Cache-Oblivious Matrix Multiplication Algorithm

A cache-oblivious matrix multiplication algorithm (1/3)

We describe and analyze a cache-oblivious algorithm for multiplying
an m × n matrix by an n × p matrix cache-obliviously using

Θ(mnp) work and incurring
Θ(m + n + p + (mn + np + mp)/L + mnp/(L

√
Z )) cache misses.

This straightforward divide-and-conquer algorithm contains no
voodoo parameters (tuning parameters) and it uses cache optimally.

Intuitively, this algorithm uses the cache effectively, because once a
subproblem fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

These results require the tall-cache assumption for matrices stored in
row-major layout format,

This assumption can be relaxed for certain other layouts, see (Frigo et
al. 1999).

The case of Strassen’s algorithm is also treated in (Frigo et al. 1999).
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A Cache-Oblivious Matrix Multiplication Algorithm

A cache-oblivious matrix multiplication algorithm (2/3)

To multiply an m × n matrix A and an n × p matrix B, the
Rec-Mult algorithm halves the largest of the three dimensions and
recurs according to one of the following three cases:(

A1

A2

)
B =

(
A1B
A2B

)
, (1)

(
A1 A2

)(B1

B2

)
= A1B1 + A2B2 , (2)

A
(
B1 B2

)
=

(
AB1 AB2

)
. (3)

In case (1), we have m ≥ max {n, p}. Matrix A is split horizontally,
and both halves are multiplied by matrix B.
In case (2), we have n ≥ max {m, p}. Both matrices are split, and the
two halves are multiplied.
In case (3), we have p ≥ max {m, n}. Matrix B is split vertically, and
each half is multiplied by A.
The base case occurs when m = n = p = 1.
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A Cache-Oblivious Matrix Multiplication Algorithm

A cache-oblivious matrix multiplication algorithm (3/3)

let α > 0 be the largest constant sufficiently small that three
submatrices of sizes m′ × n′, n′ × p′, and m′ × p′, where
max {m′, n′, p′} ≤ α

√
Z , all fit completely in the cache.

We distinguish four cases depending on the initial size of the
matrices.

Case I: m, n, p > α
√

Z .

Case II: (m ≤ α
√

Z and n, p > α
√

Z ) or (n ≤ α
√

Z and m, p > α
√

Z )
or (p ≤ α

√
Z and m, n > α

√
Z ).

Case III: (n, p ≤ α
√

Z and m > α
√

Z ) or (m, p ≤ α
√

Z and
n > α

√
Z ) or (m, n ≤ α

√
Z and p > α

√
Z ).

Case IV: m, n, p ≤ α
√

Z .

Similarly to matrix transposition, Q(m, n, p) is a worst case cache
miss estimate.
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A Cache-Oblivious Matrix Multiplication Algorithm

Case I: m, n, p > α
√

Z . (1/2)

Q(m, n, p) = (4)
Θ((mn + np + mp)/L) if m, n, p ∈ [α

√
Z/2, α

√
Z ] ,

2Q(m/2, n, p) + O(1) ow. if m ≥ n and m ≥ p ,
2Q(m, n/2, p) + O(1) ow. if n > m and n ≥ p ,
2Q(m, n, p/2) + O(1) otherwise .

The base case arises as soon as all three submatrices fit in cache:

The total number of cache lines used by the three submatrices is
Θ((mn + np + mp)/L).
The only cache misses that occur during the remainder of the recursion
are the Θ((mn + np + mp)/L) cache misses required to bring the
matrices into cache.

(Moreno Maza) Cache Complexity (March 8 version) CS 4435 - CS 9624 34 / 64



A Cache-Oblivious Matrix Multiplication Algorithm

Case I: m, n, p > α
√

Z . (2/2)

Q(m, n, p) =
Θ((mn + np + mp)/L) if m, n, p ∈ [α

√
Z/2, α

√
Z ] ,

2Q(m/2, n, p) + O(1) ow. if m ≥ n and m ≥ p ,
2Q(m, n/2, p) + O(1) ow. if n > m and n ≥ p ,
2Q(m, n, p/2) + O(1) otherwise .

In the recursive cases, when the matrices do not fit in cache, we pay
for the cache misses of the recursive calls, plus O(1) cache misses for
the overhead of manipulating submatrices.

The solution to this recurrence is

Q(m, n, p) = Θ(mnp/(L
√

Z )).

Indeed, for the base-case m,m, p ∈ Θ(α
√

Z ).
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A Cache-Oblivious Matrix Multiplication Algorithm

Case II: (m ≤ α
√

Z ) and (n, p > α
√

Z ).

Here, we shall present the case where m ≤ α
√

Z and n, p > α
√

Z .

The Rec-Mult algorithm always divides n or p by 2 according to
cases (2) and (3).

At some point in the recursion, both n and p are small enough that
the whole problem fits into cache.

The number of cache misses can be described by the recurrence

Q(m, n, p) = (5)Θ(1 + n + m + np/L) if n, p ∈ [α
√

Z/2, α
√

Z ] ,
2Q(m, n/2, p) + O(1) otherwise if n ≥ p ,
2Q(m, n, p/2) + O(1) otherwise ;

whose solution is Q(m, n, p) = Θ(np/L + mnp/(L
√

Z )).

Indeed we have here: mnp/(L
√

Z ) ≤ αnp/L.

The term Θ(1 + n + m) appears because of the row-major layout.
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A Cache-Oblivious Matrix Multiplication Algorithm

Case III: (n, p ≤ α
√

Z and m > α
√

Z )

In each of these cases, one of the matrices fits into cache, and the
others do not.

Here, we shall present the case where n, p ≤ α
√

Z and m > α
√

Z .

The Rec-Mult algorithm always divides m by 2 according to case
(1).

At some point in the recursion, m falls into the range
α
√

Z/2 ≤ m ≤ α
√

Z , and the whole problem fits in cache.

The number cache misses can be described by the recurrence

Q(m, n, p) = (6){
Θ(1 + m) if m ∈ [α

√
Z/2, α

√
Z ] ,

2Q(m/2, n, p) + O(1) otherwise ;

whose solution is Q(m, n, p) = Θ(m + mnp/(L
√

Z )).

Indeed we have here: mnp/(L
√

Z ) ≤ α
√

Zm/L; moreover Z ∈ Ω(L2)
(tall cache assumption).
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A Cache-Oblivious Matrix Multiplication Algorithm

Case IV: m, n, p ≤ α
√

Z .

From the choice of α, all three matrices fit into cache.

The matrices are stored on Θ(1 + mn/L + np/L + mp/L) cache lines.

Therefore, we have Q(m, n, p) = Θ(1 + (mn + np + mp)/L).

(Moreno Maza) Cache Complexity (March 8 version) CS 4435 - CS 9624 38 / 64



A Cache-Oblivious Matrix Multiplication Algorithm

Typical memory layouts for matrices

(Moreno Maza) Cache Complexity (March 8 version) CS 4435 - CS 9624 39 / 64



Cache Analysis in Practice
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Cache Analysis in Practice

Basic idea of a cache memory

Cache

Memory……Cache Lines

A cache is a smaller memory, faster to access

Using smaller memory to cache contents of larger memory provides
the illusion of fast larger memory

Key reason why this works: temporal locality and spatial locality.
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Cache Analysis in Practice

Levels of the Memory Hierarchy

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte
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Cache Analysis in Practice

Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.
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A simple cache example

Cache

Memory……Cache Lines

Byte addressable memory
Size of 32Kbyte with direct mapping and 64 byte lines (512 lines) so
the cache can fit 29 × 24 = 213 int.
“Therefore” successive 32Kbyte memory blocks line up in cache
A cache access costs 1 cycle while a memory access costs 100 cycles.
How addresses map into cache

Bottom 6 bits are used as offset in a cache line,
Next 9 bits determine the cache line
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Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof(int))
int A[S];
// Thus size of A is 2^(20) x 16 bytes
for (i = 0; i < S; i++) {

read A[i];
}

Memory

A

Total access time? What kind of locality? What kind of misses?
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Exercise 1 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[i];
}

S reads to A.

16 elements of A per cache line

15 of every 16 hit in cache.

Total access time: 15(S/16) + 100(S/16).

spatial locality, cold misses.
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Exercise 2 (1/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[0];
}

Memory

A

Total access time? What kind of locality? What kind of misses?
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Exercise 2 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[0];
}

S reads to A

All except the first one hit in cache.

Total access time: 100 + (S − 1).

Temporal locality

Cold misses.
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Exercise 3 (1/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[i % (1<<N)];
}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 3 (2/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[i % (1<<N)];
}

S reads to A

One miss for each accessed line, rest hit in cache.

Number of accessed lines: 2N−4.

Total access time: 2N−4100 + (S − 2N−4).

Temporal and spatial locality

Cold misses.
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Exercise 4 (1/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[i % (1<<N)];
}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 4 (2/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[i % (1<<N)];
}

S reads to A.

First access to each line misses

Rest accesses to that line hit.

Total access time: 15(S/16) + 100(S/16).

Spatial locality

Cold and capacity misses.
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Exercise 5 (1/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[(i*16) % (1<<N)];
}

Memory

A Cache

Data Fetched
But Not AccessedBut Not Accessed

Total access time? What kind of locality? What kind of misses?
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Exercise 5 (2/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[(i*16) % (1<<N)];
}

S reads to A.

First access to each line misses

One access per line.

Total access time: 100S .

No locality!

Cold and conflict misses.
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Exercise 6 (1/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[random()%S];
}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 6 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[random()%S];
}

S reads to A.

After N iterations, for some N, the cache is full.

Them the hance of hitting in cache is 32Kb/16Mb = 1/512

Estimated total access time: S(511/512)100 + S(1/512).

Almost no locality!

Cold, capacity conflict misses.
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Exercise 7 (1/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 7 (2/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

S reads to A and B.

A and B interfere in cache: indeed two cache lines whose addresses
differ by a multiple of 29 have the same way to cache.

Total access time: 200S .

Spatial locality but the cache cannot exploit it.

Cold and conflict misses.
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Exercise 8 (1/2)

#define S ((1<<19+16)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 8 (2/2)

#define S ((1<<19+16)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

S reads to A and B.

A and B almost do not interfere in cache.

Total access time: 2(15S/16 + 100S/16).

Spatial locality.

Cold misses.
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Set Associative Caches

Way 0 Way 1

…Sets

Set associative caches have sets with multiple lines per set.

Each line in a set is called a way

Each memory line maps to a specific set and can be put into any
cache line in its set

In our example, we assume a 32 Kbyte cache, with 64 byte lines,
2-way associative. Hence we have:

256 sets
Bottom six bits determine offset in cache line
Next 8 bits determine the set.
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Exercise 9 (1/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 9 (2/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

S reads to A and B.

A and B lines hit same set, but enough lines in a set.

Total access time: 2(15S/16 + 100S/16).

Spatial locality.

Cold misses.
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