Cache Complexity
(March 8 version)

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624
Plan

1. The Ideal-Cache Model
2. Cache Complexity of some Basic Operations
3. Matrix Transposition
4. A Cache-Oblivious Matrix Multiplication Algorithm
5. Cache Analysis in Practice
Plan

1. The Ideal-Cache Model
2. Cache Complexity of some Basic Operations
3. Matrix Transposition
4. A Cache-Oblivious Matrix Multiplication Algorithm
5. Cache Analysis in Practice
The (Z, L) ideal cache model (1/4)
The Ideal-Cache Model

The \((Z, L)\) ideal cache model (2/4)

- Computer with a **two-level memory hierarchy**:
 - an ideal (data) cache of \(Z\) words partitioned into \(Z/L\) cache lines, where \(L\) is the number of words per cache line.
 - an arbitrarily large main memory.
- Data moved between cache and main memory are always cache lines.
- The cache is **tall**, that is, \(Z\) is much larger than \(L\), say \(Z \in \Omega(L^2)\).

Figure 1: The ideal-cache model
The (Z, L) ideal cache model (3/4)

- The processor can only reference words that reside in the cache.
- If the referenced word belongs to a line already in cache, a **cache hit** occurs, and the word is delivered to the processor.
- Otherwise, a **cache miss** occurs, and the line is fetched into the cache.

Figure 1: The ideal-cache model
The \((Z, L)\) ideal cache model (4/4)

- The ideal cache is **fully associative**: cache lines can be stored anywhere in the cache.
- The ideal cache uses the **optimal off-line strategy of replacing** the cache line whose next access is furthest in the future, and thus it exploits temporal locality perfectly.

![Diagram of the ideal-cache model](image-url)
Cache complexity

- For an algorithm with an input of size n, the ideal-cache model uses two complexity measures:
 - the **work complexity** $W(n)$, which is its conventional running time in a RAM model.
 - the **cache complexity** $Q(n; Z, L)$, the number of cache misses it incurs (as a function of the size Z and line length L of the ideal cache).
- When Z and L are clear from context, we simply write $Q(n)$ instead of $Q(n; Z, L)$.

- An algorithm is said to be **cache aware** if its behavior (and thus performances) can be tuned (and thus depend on) on the particular cache size and line length of the targeted machine.
- Otherwise the algorithm is **cache oblivious**.
Cache complexity of the naive matrix multiplication

```c
// A is stored in row-major and B in column-major
for(i =0; i < n; i++)
    for(j =0; j < n; j++)
        for(k=0; k < n; k++)
            C[i][j] += A[i][k] * B[k][j];
```

- Assuming \(Z \geq 3L \), computing each \(C[i][j] \) incurs \(O(1 + n/L) \) cache misses.
- If \(Z \) large enough, say \(Z \in \Omega(n) \) then the row \(i \) of \(A \) will be remembered for its entire involvement in computing \(C \).
- For a column of \(B \) to be remembered when necessary one needs \(Z \in \Omega(n^2) \) in which case the whole computation fits in cache.

Therefore, we have

\[
Q(n, Z, L) = \begin{cases}
O(n^2 + n^3/L) & \text{if } 3L \leq Z < n^2, \\
O(n + n^2/L) & \text{if } 3n^2 \leq Z.
\end{cases}
\]
// A, B and C are in row-major storage
for(i =0; i < n/s; i++)
 for(j =0; j < n/s; j++)
 for(k=0; k < n/s; k++)
 blockMult(A,B,C,i,j,k,s);

- Each matrix $M \in \{A, B, C\}$ consists of $(n/s) \times (n/s)$ submatrices M_{ij} (the blocks), each of which has size $s \times s$, where s is a tuning parameter.
- Assume s divides n to keep the analysis simple.
- $\text{blockMult}(A,B,C,i,j,k,s)$ computes $C_{ij} = A_{ik} \times B_{kj}$ using the naive algorithm.
A cache-aware matrix multiplication algorithm (2/2)

// A, B and C are in row-major storage
for (i = 0; i < n/s; i++)
 for (j = 0; j < n/s; j++)
 for (k = 0; k < n/s; k++)
 blockMult(A,B,C,i,j,k,s);

- We choose s to be the largest value such that the three $s \times s$ submatrices simultaneously fit in cache, that is, $Z \in \Theta(s^2)$.
- An $s \times s$ submatrix is stored on $\Theta(s + s^2/L)$ cache lines.
- From the call cache assumption ($Z \in \Omega(L^2)$), we have $s \in \Theta(\sqrt{Z})$.
- Thus blockMult(A,B,C,i,j,k,s) runs within $Z/L \in \Theta(s^2/L)$ cache misses.
- Initializing the n^2 elements of C amounts to $\Theta(1 + n^2/L)$ caches misses. Therefore we have

$$Q(n, Z, L) \in \Theta(1 + n^2/L + (n/\sqrt{Z})^3(Z/L)) = \Theta(1 + n^2/L + n^3/(L\sqrt{Z})).$$
Plan

1. The Ideal-Cache Model
2. Cache Complexity of some Basic Operations
3. Matrix Transposition
4. A Cache-Oblivious Matrix Multiplication Algorithm
5. Cache Analysis in Practice
Scanning

Figure 2. Scanning an array of N elements arbitrarily aligned with blocks may cost one more memory transfer than $\lceil N/B \rceil$.

Scanning n elements stored in a contiguous segment (= cache lines) of memory costs at most $\lceil n/L \rceil + 1$ cache misses. Indeed:

- In the above figure $N = n$ and $B = L$.
- The main issue here is alignment and we focus on the worst case.
- In the worst case, each of the first and the last read cache lines contains less than L “useful” elements.
- If L does not divide n, there are $\lfloor n/L \rfloor$ fully useful cache lines.
- If L divides n, there are at most $n/L - 1$ fully useful cache lines.
Array reversal

Reversing an array of \(n \) elements stored in a contiguous segment (= cache lines) of memory costs at most \(\lceil n/L \rceil + 1 \) cache misses, provided that \(Z \geq 2L \) holds. Exercise!
A selection algorithm is an algorithm for finding the k-th smallest number in a list. This includes the cases of finding the minimum, maximum, and median elements.

A worst-case linear algorithm for the general case of selecting the k-th largest element was published by Blum, Floyd, Pratt, Rivest, and Tarjan in their 1973 paper *Time bounds for selection*, sometimes called BFPRT.

The principle is the following:
- Find a pivot that allows splitting the list into two parts of nearly equal size such that
- the search can continue in one of them.
select(L, k)
{
if (L has 10 or fewer elements)
{
 sort L
 return the element in the kth position
}

partition L into subsets S[i] of five elements each
 (there will be n/5 subsets total).

for (i = 1 to n/5) do
 x[i] = select(S[i], 3)

M = select({x[i]}, n/10)

partition L into L1<M, L2=M, L3>M
if (k <= length(L1))
 return select(L1, k)
else if (k > length(L1)+length(L2))
 return select(L3, k-length(L1)-length(L2))
else return M
Median and selection (3/8)

For an input list of \(n \) elements, the number \(T(n) \) of comparisons satisfies

\[
T(n) \leq 12n/5 + T(n/5) + T(7n/10).
\]

- We always throw away either \(L_3 \) (the values greater than \(M \)) or \(L_1 \) (the values less than \(M \)). Suppose we throw away \(L_3 \).
- Among the \(n/5 \) values \(x[i] \), \(n/10 \) are larger than \(M \), since \(M \) was defined to be the median of these values.
- For each \(i \) such that \(x[i] \) is larger than \(M \), two other values in \(S[i] \) are also larger than \(x[i] \).
- So \(L_3 \) has at least \(3n/10 \) elements. By a symmetric argument, \(L_1 \) has at least \(3n/10 \) elements.
- Therefore the final recursive call is on a list of at most \(7n/10 \) elements and takes time at most \(T(7n/10) \).
Median and selection (4/8)

How to solve

\[T(n) \leq 12n/5 + T(n/5) + T(7n/10) \]?

- We “try” \(T(n) \leq c \, n \) by induction. The substitution gives

 \[T(n) \leq n \, (12/5 + 9c/10). \]

 From \(n(12/5 + 9c/10) \leq c \, n \) we derive \(c \leq 24 \).

- The tree-based method also brings \(T(n) \leq 24n \).

- The same tree-expansion method then shows that, more generally, if

 \[T(n) \leq cn + T(an) + T(bn), \text{ where } a + b < 1, \]

the total time is \(c(1/(1 - a - b))n \).

- With a lot of work one can reduce the number of comparisons to

 \(2.95n \) [D. Dor and U. Zwick, Selecting the Median, 6th SODA, 1995].
In order to analyze its cache complexity, let us review the algorithm and consider an array instead of a list.

Step 1: Conceptually partition the array into $n/5$ quintuplets of five adjacent elements each.

Step 2: Compute the median of each quintuplet using $O(1)$ comparisons.

Step 3: Recursively compute the median of these medians (which is not necessarily the median of the original array).

Step 4: Partition the elements of the array into three groups, according to whether they equal, or strictly less or strictly greater than this median of medians.

Step 5: Count the number of elements in each group, and recurse into the group that contains the element of the desired rank.
Median and selection (6/8)

To make this algorithm cache-oblivious, we specify how each step works in terms of memory layout and scanning. We assume that $Z \geq 3L$.

Step 1: Just conceptual; no work needs to be done.

Step 2: requires two parallel scans, one reading the array 5 elements at a time, and the other writing a new array of computed medians, incurring $\Theta(1 + n/L)$.

Step 3: Just a recursive call on size $n/5$.

Step 4: Can be done with three parallel scans, one reading the array, and two others writing the partitioned arrays, incurring again $\Theta(1 + n/L)$.

Step 5: Just a recursive call on size $7n/10$.

This leads to

$$T(n) \leq T(n/5) + T(7n/10) + \Theta(1 + n/L).$$
Median and selection (7/8)

How to solve

\[T(n) \leq T(n/5) + T(7n/10) + \Theta(1 + n/L)? \]

The unknown is what is the base-case?

- Suppose the base case id \(T(0(1)) \in O(1) \).
- Following the proof of the Master Theorem we estimate the number of leaves \(L(n) = n^c \) and obtain in

\[
L(n) = L(n/5) + L(7n/10), \quad L(1) = 1,
\]

which brings

\[
\left(\frac{1}{5} \right)^c + \left(\frac{7}{10} \right)^c = 1
\]

leading to \(c \approx 0.8397803 \).

- Since each leaf incurs a constant number of cache misses we have \(T(n) \in \Omega(n^c) \).
Median and selection (8/8)

How to solve

\[T(n) \leq T(n/5) + T(7n/10) + \Theta(1 + n/L)? \]

- Fortunately, we have a better **base-case**: \(T(0(L)) \in O(1) \).
- Indeed, once the problem fits into \(O(1) \) cache-lines, all five steps incur only a constant number of cache misses.
- Thus we have only \((n/L)^c\) leaves in the recursion tree.
- In total, these leaves incur \(O((n/L)^c) = o(n/L) \) cache misses.
- In fact, the cost per level decreases geometrically from the root, so the total cost is the cost of the root. Finally we have

\[T(n) \in \Theta(1 + n/L) \]
Plan

1. The Ideal-Cache Model
2. Cache Complexity of some Basic Operations
3. Matrix Transposition
4. A Cache-Oblivious Matrix Multiplication Algorithm
5. Cache Analysis in Practice
Matrix transposition problem: Given an $m \times n$ matrix A stored in a row-major layout, compute and store A^T into an $n \times m$ matrix B also stored in a row-major layout.

We describe a recursive cache-oblivious algorithm which uses $\Theta(mn)$ work and incurs $\Theta(1 + mn/L)$ cache misses, which is optimal.

The straightforward algorithm employing doubly nested loops incurs $\Theta(mn)$ cache misses on one of the matrices when $m \gg Z/L$ and $n \gg Z/L$.
A matrix transposition cache-oblivious algorithm (2/3)

- If $n \geq m$, the **Rec-Transpose** algorithm partitions

 \[A = (A_1 \ A_2) \ , \ B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} \]

 and recursively executes **Rec-Transpose**(A_1, B_1) and **Rec-Transpose**(A_2, B_2).

- If $m > n$, the **Rec-Transpose** algorithm partitions

 \[A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \ , \ B = (B_1 \ B_2) \]

 and recursively executes **Rec-Transpose**(A_1, B_1) and **Rec-Transpose**(A_2, B_2).
A matrix transposition cache-oblivious algorithm (3/3)

- Recall that the matrices are stored in row-major layout.

- Let α be a constant sufficiently small such that
 - two submatrices of size $m \times n$ and $n \times m$, where $\max\{m, n\} \leq \alpha L$, fit in cache
 - even if each row starts at a different cache line.

- We distinguish three cases:
 - Case I: $\max\{m, n\} \leq \alpha L$.
 - Case II: $m \leq \alpha L < n$ or $n \leq \alpha L < m$.
 - Case III: $m, n > \alpha L$.

(Moreno Maza)
Case I: $\max\{m, n\} \leq \alpha L$.

- Both matrices fit in $O(1) + 2mn/L$ lines.
- From the choice of α, the number of lines required is at most Z/L.
- Therefore $Q(m, n) \in O(1 + mn/L)$.
Case II: $m \leq \alpha L < n$ or $n \leq \alpha L < m$.

- Consider $n \leq \alpha L < m$. The **Rec-Transpose** algorithm divides the greater dimension m by 2 and recurses.
- At some point in the recursion, we have $\alpha L/2 \leq m \leq \alpha L$ and the whole problem fits in cache. At this point:
 - the input array resides in contiguous locations, requiring at most $\Theta(1 + nm/L)$ cache misses
 - the output array consists of nm elements in n rows, where in the **worst case** every row starts at a different cache line, leading to at most $\Theta(n + nm/L)$ cache misses.
- Since $m \leq \alpha L$, the **total** cache complexity for this base case is $\Theta(1 + n)$, yielding the recurrence (where the resulting $Q(m, n)$ is a **worst case estimate**)

$$Q(m, n) = \begin{cases}
\Theta(1 + n) & \text{if } m \in [\alpha L/2, \alpha L], \\
2Q(m/2, n) + O(1) & \text{otherwise};
\end{cases}$$

whose solution satisfies $Q(m, n) = \Theta(1 + mn/L)$.
Case III: \(m, n > \alpha L \).

- As in Case II, at some point in the recursion both \(n \) and \(m \) fall into the range \([\alpha L/2, \alpha L]\).
- The whole problem fits into cache and can be solved with at most \(\Theta(m + n + mn/L) \) cache misses.
- The **worst case cache miss estimate** satisfies the recurrence

\[
Q(m, n) = \begin{cases}
\Theta(m + n + mn/L) & \text{if } m, n \in [\alpha L/2, \alpha L], \\
2Q(m/2, n) + O(1) & \text{if } m \geq n , \\
2Q(m, n/2) + O(1) & \text{otherwise};
\end{cases}
\]

whose solution is \(Q(m, n) = \Theta(1 + mn/L) \).
- **Therefore, the Rec-Transpose algorithm has optimal cache complexity.**
- Indeed, for an \(m \times n \) matrix, the algorithm must write to \(mn \) distinct elements, which occupy at least \(\lceil mn/L \rceil \) cache lines.
Plan

1. The Ideal-Cache Model
2. Cache Complexity of some Basic Operations
3. Matrix Transposition
4. A Cache-Oblivious Matrix Multiplication Algorithm
5. Cache Analysis in Practice
We describe and analyze a cache-oblivious algorithm for multiplying an \(m \times n \) matrix by an \(n \times p \) matrix cache-obliviously using

- \(\Theta(mnp) \) work and incurring
 - \(\Theta(m + n + p + (mn + np + mp)/L + mnp/(L\sqrt{Z})) \) cache misses.

This straightforward divide-and-conquer algorithm contains no voodoo parameters (tuning parameters) and it uses cache optimally.

Intuitively, this algorithm uses the cache effectively, because once a subproblem fits into the cache, its smaller subproblems can be solved in cache with no further cache misses.

These results require the tall-cache assumption for matrices stored in row-major layout format,

This assumption can be relaxed for certain other layouts, see (Frigo et al. 1999).

The case of Strassen’s algorithm is also treated in (Frigo et al. 1999).
A cache-oblivious matrix multiplication algorithm (2/3)

- To multiply an $m \times n$ matrix A and an $n \times p$ matrix B, the Rec-Mult algorithm halves the largest of the three dimensions and recurs according to one of the following three cases:

$$
\begin{align*}
\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} B &= \begin{pmatrix} A_1 B \\ A_2 B \end{pmatrix}, \\
\begin{pmatrix} A_1 & A_2 \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} &= A_1 B_1 + A_2 B_2, \\
A \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} &= (AB_1 \ AB_2).
\end{align*}
$$

In case (1), we have $m \geq \max \{n, p\}$. Matrix A is split horizontally, and both halves are multiplied by matrix B.

In case (2), we have $n \geq \max \{m, p\}$. Both matrices are split, and the two halves are multiplied.

In case (3), we have $p \geq \max \{m, n\}$. Matrix B is split vertically, and each half is multiplied by A.

The base case occurs when $m = n = p = 1$.

(Moreno Maza)
A cache-oblivious matrix multiplication algorithm (3/3)

- Let $\alpha > 0$ be the largest constant sufficiently small that three submatrices of sizes $m' \times n'$, $n' \times p'$, and $m' \times p'$, where $\max \{m', n', p'\} \leq \alpha \sqrt{Z}$, all fit completely in the cache.

- We distinguish four cases depending on the initial size of the matrices.
 - Case I: $m, n, p > \alpha \sqrt{Z}$.
 - Case II: $(m \leq \alpha \sqrt{Z}$ and $n, p > \alpha \sqrt{Z})$ or $(n \leq \alpha \sqrt{Z}$ and $m, p > \alpha \sqrt{Z})$ or $(p \leq \alpha \sqrt{Z} \text{ and } m, n > \alpha \sqrt{Z})$.
 - Case III: $(n, p \leq \alpha \sqrt{Z}$ and $m > \alpha \sqrt{Z})$ or $(m, p \leq \alpha \sqrt{Z}$ and $n > \alpha \sqrt{Z})$ or $(m, n \leq \alpha \sqrt{Z}$ and $p > \alpha \sqrt{Z})$.
 - Case IV: $m, n, p \leq \alpha \sqrt{Z}$.

- Similarly to matrix transposition, $Q(m, n, p)$ is a worst case cache miss estimate.
Case I: $m, n, p > \alpha \sqrt{Z}$. (1/2)

\[
Q(m, n, p) =
\begin{cases}
\Theta((mn + np + mp)/L) & \text{if } m, n, p \in [\alpha \sqrt{Z}/2, \alpha \sqrt{Z}], \\
2Q(m/2, n, p) + O(1) & \text{ow. if } m \geq n \text{ and } m \geq p, \\
2Q(m, n/2, p) + O(1) & \text{ow. if } n > m \text{ and } n \geq p, \\
2Q(m, n, p/2) + O(1) & \text{otherwise}.
\end{cases}
\]

The base case arises as soon as all three submatrices fit in cache:

- The total number of cache lines used by the three submatrices is $\Theta((mn + np + mp)/L)$.
- The only cache misses that occur during the remainder of the recursion are the $\Theta((mn + np + mp)/L)$ cache misses required to bring the matrices into cache.
Case I: $m, n, p > \alpha \sqrt{Z}$. (2/2)

$$Q(m, n, p) =$$
\[
\begin{cases}
\Theta((mn + np + mp)/L) & \text{if } m, n, p \in [\alpha \sqrt{Z}/2, \alpha \sqrt{Z}], \\
2Q(m/2, n, p) + O(1) & \text{ow. if } m \geq n \text{ and } m \geq p, \\
2Q(m, n/2, p) + O(1) & \text{ow. if } n > m \text{ and } n \geq p, \\
2Q(m, n, p/2) + O(1) & \text{otherwise}.
\end{cases}
\]

- In the recursive cases, when the matrices do not fit in cache, we pay for the cache misses of the recursive calls, plus $O(1)$ cache misses for the overhead of manipulating submatrices.
- The solution to this recurrence is

$$Q(m, n, p) = \Theta(mnp/(L\sqrt{Z})).$$

- Indeed, for the base-case $m, m, p \in \Theta(\alpha \sqrt{Z})$.

(Moreno Maza)

Cache Complexity (March 8 version) CS 4435 - CS 9624 35 / 64
Case II: \((m \leq \alpha \sqrt{Z})\) and \((n, p > \alpha \sqrt{Z})\).

- Here, we shall present the case where \(m \leq \alpha \sqrt{Z}\) and \(n, p > \alpha \sqrt{Z}\).
- The \texttt{Rec-Mult} algorithm always divides \(n\) or \(p\) by 2 according to cases (2) and (3).
- At some point in the recursion, both \(n\) and \(p\) are small enough that the whole problem fits into cache.
- The number of cache misses can be described by the recurrence

\[
Q(m, n, p) = \begin{cases}
\Theta(1 + n + m + np/L) & \text{if } n, p \in [\alpha \sqrt{Z}/2, \alpha \sqrt{Z}], \\
2Q(m, n/2, p) + O(1) & \text{otherwise if } n \geq p, \\
2Q(m, n, p/2) + O(1) & \text{otherwise};
\end{cases}
\]

whose solution is \(Q(m, n, p) = \Theta(np/L + mnp/(L\sqrt{Z}))\).

- Indeed we have here: \(mnp/(L\sqrt{Z}) \leq \alpha np/L\).
- The term \(\Theta(1 + n + m)\) appears because of the row-major layout.
Case III: \((n, p \leq \alpha \sqrt{Z} \text{ and } m > \alpha \sqrt{Z})\)

- In each of these cases, one of the matrices fits into cache, and the others do not.
- Here, we shall present the case where \(n, p \leq \alpha \sqrt{Z} \text{ and } m > \alpha \sqrt{Z}\).
- The \texttt{Rec-Mult} algorithm always divides \(m\) by 2 according to case (1).
- At some point in the recursion, \(m\) falls into the range
 \(\alpha \sqrt{Z}/2 \leq m \leq \alpha \sqrt{Z}\), and the whole problem fits in cache.
- The number cache misses can be described by the recurrence

 \[
 Q(m, n, p) = \begin{cases}
 \Theta(1 + m) & \text{if } m \in [\alpha \sqrt{Z}/2, \alpha \sqrt{Z}], \\
 2Q(m/2, n, p) + O(1) & \text{otherwise};
 \end{cases}
 \]

 whose solution is \(Q(m, n, p) = \Theta(m + mnp/(L\sqrt{Z}))\).
- Indeed we have here: \(mnp/(L\sqrt{Z}) \leq \alpha \sqrt{Z} m/L; \text{ moreover } Z \in \Omega(L^2)\)
 (tall cache assumption).
Case IV: $m, n, p \leq \alpha \sqrt{Z}$.

- From the choice of α, all three matrices fit into cache.
- The matrices are stored on $\Theta(1 + mn/L + np/L + mp/L)$ cache lines.
- Therefore, we have $Q(m, n, p) = \Theta(1 + (mn + np + mp)/L)$.
Typical memory layouts for matrices

(a) 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31
 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47
 48 49 50 51 52 53 54 55
 56 57 58 59 60 61 62 63

(b) 0 8 16 24 32 40 48 56
 1 9 17 25 33 41 49 57
 2 10 18 26 34 42 50 58
 3 11 19 27 35 43 51 59
 4 12 20 28 36 44 52 60
 5 13 21 29 37 45 53 61
 6 14 22 30 38 46 54 62

(c) 0 1 2 3 16 17 18 19
 4 5 6 7 20 21 22 23
 8 9 10 11 24 25 26 27
 12 13 14 15 28 29 30 31
 32 33 34 35 48 49 50 51
 36 37 38 39 52 53 54 55
 40 41 42 43 56 57 58 59
 44 45 46 47 60 61 62 63

(d) 0 1 4 5 16 17 20 21
 2 3 6 7 18 19 22 23
 8 9 12 13 24 25 28 29
 10 11 14 15 26 27 30 31
 32 33 36 37 48 49 52 53
 34 35 38 39 50 51 54 55
 40 41 44 45 56 57 60 61
 42 43 46 47 58 59 62 63

Figure 2: Layout of a 16 × 16 matrix in (a) row major, (b) column major, (c) 4 × 4-blocked, and (d) bit-interleaved layouts.
Plan

1. The Ideal-Cache Model
2. Cache Complexity of some Basic Operations
3. Matrix Transposition
4. A Cache-Oblivious Matrix Multiplication Algorithm
5. Cache Analysis in Practice
Basic idea of a cache memory

A cache is a smaller memory, faster to access.

Using smaller memory to cache contents of larger memory provides the illusion of fast larger memory.

Key reason why this works: **temporal locality** and **spatial locality**.
Levels of the Memory Hierarchy

- **CPU Registers**
 - 100s Bytes
 - 300 – 500 ps (0.3-0.5 ns)

- **L1 and L2 Cache**
 - 10s-100s K Bytes
 - ~1 ns - ~10 ns
 - $1000s/ GByte

- **Main Memory**
 - G Bytes
 - 80ns- 200ns
 - ~ $100/ GByte

- **Disk**
 - 10s T Bytes, 10 ms (10,000,000 ns)
 - ~ $1 / GByte

- **Tape**
 - infinite sec-min
 - ~$1 / GByte

Upper Level
- **Registers**
 - Instr. Operands
 - Blocks

L1 Cache
- Blocks

L2 Cache
- Blocks

Memory
- Pages

Disk
- Files

Tape
- Files

Staging Xfer Unit
- prog./compiler 1-8 bytes
 - cache cntl 32-64 bytes
 - cache cntl 64-128 bytes

Lower Level
- OS
 - 4K-8K bytes
 - user/operator Mbytes

- **Upper Level**
 - faster

- **Lower Level**
 - Larger

(Moreno Maza)
Cache issues

- **Cold miss:** The first time the data is available. Cure: Prefetching may be able to reduce this type of cost.

- **Capacity miss:** The previous access has been evicted because too much data touched in between, since the *working data set* is too large. Cure: Reorganize the data access such that *reuse* occurs before eviction.

- **Conflict miss:** Multiple data items mapped to the same location with eviction before cache is full. Cure: Rearrange data and/or pad arrays.

- **True sharing miss:** Occurs when a thread in another processor wants the same data. Cure: Minimize sharing.

- **False sharing miss:** Occurs when another processor uses different data in the same cache line. Cure: Pad data.
A simple cache example

- Byte addressable memory
- Size of 32Kbyte with direct mapping and 64 byte lines (512 lines) so the cache can fit $2^9 \times 2^4 = 2^{13}$ int.
- “Therefore” successive 32Kbyte memory blocks line up in cache
- A cache access costs 1 cycle while a memory access costs 100 cycles.
- How addresses map into cache
 - Bottom 6 bits are used as offset in a cache line,
 - Next 9 bits determine the cache line
Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof(int))
int A[S];
// Thus size of A is 2^(20) x 16 bytes
for (i = 0; i < S; i++) {
 read A[i];
}

Total access time? What kind of locality? What kind of misses?
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[i];
}

- S reads to A.
- 16 elements of A per cache line
- 15 of every 16 hit in cache.
- Total access time: 15(S/16) + 100(S/16).
- spatial locality, cold misses.
Exercise 2 (1/2)

```c
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
    read A[0];
}
```

Total access time? What kind of locality? What kind of misses?
Exercise 2 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[0];
}

- S reads to A
- All except the first one hit in cache.
- Total access time: 100 + (S – 1).
- Temporal locality
- Cold misses.
Exercise 3 (1/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[i % (1<<N)];
}

Total access time? What kind of locality? What kind of misses?

(Moreno Maza)
// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[i % (1<<N)];
}

- S reads to A
- One miss for each accessed line, rest hit in cache.
- Number of accessed lines: 2^{N-4}.
- Total access time: $2^{N-4}100 + (S - 2^{N-4})$.
- Temporal and spatial locality
- Cold misses.
// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[i % (1<<N)];
}

Total access time? What kind of locality? What kind of misses?
// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[i % (1<<N)];
}

- S reads to A.
- First access to each line misses
- Rest accesses to that line hit.
- Total access time: $15(S/16) + 100(S/16)$.
- Spatial locality
- Cold and capacity misses.
/ Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[(i*16) % (1<<N)];
}

Total access time? What kind of locality? What kind of misses?
// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
 read A[(i*16) % (1<<N)];
}

- S reads to A.
- First access to each line misses
- One access per line.
- Total access time: 100S.
- No locality!
- Cold and conflict misses.
Exercise 6 (1/2)

```c
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
    read A[random()%S];
}
```

Total access time? What kind of locality? What kind of misses?
Exercise 6 (2/2)

```c
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
    read A[random()%S];
}
```

- S reads to A.
- After N iterations, for some N, the cache is full.
- Then the chance of hitting in cache is $32Kb/16Mb = 1/512$.
- Estimated total access time: $S(511/512)100 + S(1/512)$.
- Almost no locality!
- Cold, capacity conflict misses.
```c
#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
    read A[i], B[i];
}
```

Total access time? What kind of **locality?** What kind of **misses?**
Exercise 7 (2/2)

```c
#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
    read A[i], B[i];
}
```

- S reads to A and B.
- A and B interfere in cache: indeed two cache lines whose addresses differ by a multiple of 2^9 have the same way to cache.
- Total access time: $200S$.
- Spatial locality but the cache cannot exploit it.
- Cold and conflict misses.
Exercise 8 (1/2)

```c
#define S ((1<<19+16)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
    read A[i], B[i];
}
```

Total access time? What kind of locality? What kind of misses?

(Moreno Maza)
#define S ((1<<19+16)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
 read A[i], B[i];
}

- S reads to A and B.
- A and B almost do not interfere in cache.
- Total access time: $2(15S/16 + 100S/16)$.
- Spatial locality.
- Cold misses.
Set Associative Caches

- **Set associative caches** have sets with multiple lines per set.
- Each line in a set is called a way.
- Each memory line maps to a specific set and can be put into any cache line in its set.
- In our example, we assume a 32 Kbyte cache, with 64 byte lines, 2-way associative. Hence we have:
 - 256 sets
 - Bottom six bits determine offset in cache line
 - Next 8 bits determine the set.
Exercise 9 (1/2)

```c
#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
    read A[i], B[i];
}
```

Total access time? What kind of locality? What kind of misses?
#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

- S reads to A and B.
- A and B lines hit same set, but enough lines in a set.
- Total access time: 2(15S/16 + 100S/16).
- Spatial locality.
- Cold misses.
Acknowledgements and references

Acknowledgements.

- Charles E. Leiserson (MIT) and Matteo Frigo (Intel) for providing me with the sources of their article *Cache-Oblivious Algorithms*.
- Charles E. Leiserson (MIT) and Saman P. Amarasinghe (MIT) for sharing with me the sources of their course notes and other documents.

References.

- *Cache-Oblivious Algorithms and Data Structures* by Erik D. Demaine.