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Introduction

Let a, b, p be number-like objects (integer numbers, univariate
polynomials over a field) and such that p 6∈ {−1, 0, 1}.

More formally let a, b, p be elements in an Euclidean domain
with p not a unit.

Computing (a, b, p) 7−→ (ab) mod p is a fundamental and

challenging operation.

If a, b, p have large sizes, then FFT-based arithemtic and the
fast division trick (S. Cook, 1966) (H. T. Kung, 1974) and
(M. Sieveking, 1972) provides a practically efficient solution

If a, b, p have small sizes, say are machine integers, then enter
Peter Montgomery and his famous reduction (Math.
Computation, vol. 44, pp. 519–521, 1985) improved by Xin Li
in his PhD thesis (University of Western Ontario 2009).
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The Original Montgomery Trick (1/2)

Let x , p be integers such that p ≥ 2. In practice p is a prime.
We shall compute x mod p in an indirect way.

Consider a positive integer R ≥ p such that gcd(R, p) = 1.
Hence there exists integers R−1, p′ such that

RR−1 − p p′ = 1 and 0 < p′ < R.

Consider the following two Euclidean divisions:

x R
d c

and
dp′ R
f e

.

Hence we have:

x + fp = cR + d + (dp′ − eR)p = cR + d(1 + pp′)− epR.

Therefore x + fp writes qR and thus x
R ≡ q mod p .
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The Original Montgomery Trick (2/2)

Suppose p > 2 is a prime and R is a power of 2. Then we have
obtained a procedure computing x

R mod p for 0 ≤ x < p2,
amounting to 2 multiplications, 2 additions and 3 shifts.

Recall the three divisions:

x R
d c

and
dp′ R
f e

and
x + fp R

0 q

The result is q or q − p since x
R ≡ q mod p and we have:

0 ≤ x < p2 ⇒ 0 ≤ q < 2p.

To compute in Z/pZ, we map each a ∈ Z/pZ to aR ∈ Z/pZ.
Then the above procedure gives us aRbR

R mod p, that is, the
image of ab in this new representation.
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The Improved Montgomery Trick (1/5)

Suppose p > 2 is a Fourier prime, that is, p − 1 = c2n and
` ≤ 2n where ` = dlog2(p)e ≤ b on b-bit machine words.

Let R := 2` and 0 ≤ x ≤ (p − 1)2. We get x
R mod p by:

x R
r1 q1

and
c2nr1 R

r2 q2
and

c2nr2 R
0 q3

Using c2n ≡ −1 mod p we have:

x

R
≡ q1 +

r1
R
≡ q1 − q2 −

r2
R
≡ q1 − q2 + q3 mod p.

The last equality requires a proof. We have:

r2 = c2nr1 − q2R = c2nr1 − q22`.

Hence 2n | r2 thus 22n | c2nr2 and R | c2nr2 .
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The Improved Montgomery Trick (2/5)

Recall p > 2 is a Fourier prime, that is, p − 1 = c2n and
` ≤ 2n where ` = dlog2(p)e ≤ b on b-bit machine words.
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and
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R ≡ q1 − q2 + q3 mod p.

Moreover we have:

−(p − 1) < q1 − q2 + q3 < 2(p − 1).

Hence the desired output is either (q1 − q2 + q3) + p, or
q1 − q2 + q3 or (q1 − q2 + q3)− p

Indeed 0 ≤ x ≤ (p − 1)2 and p ≤ R imply

q1 = x quo R ≤ (p − 1)2/R < p − 1.

Next, we have: q2 = c2nr1 quo R < c2n = p − 1, since
r1 < R. Similarly, we have q3 < p − 1.
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The Improved Montgomery Trick (3/5)

We describe now the C implementation for 32-bit machine integer
assuming that we have at hand the following function:

/**
* Input : The addresses of two unsigned machine integers a, b
* Output : Store (a * b) quo 2^32 into a, and

store (a * b) mod 2^32 into b
*
**/

inline void MulHiLoUnsigned (uint32_t *a, uint32_t *b) {

uint64_t prod;
prod = (uint64_t)(*a) * (uint64_t)(*b);

*a = (uint32_t) (prod >> 32);
*b = (uint32_t) prod;

}
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The Improved Montgomery Trick (4/5)

Recall p > 2 is a Fourier prime, that is, p − 1 = c2n and
` ≤ 2n where ` = dlog2(p)e. Recall R := 2`.

Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute ab

R mod p.

q1, 232−`r1 := MulHiLoUnsigned(a, 232−`b)

q2, 232−`r2 := MulHiLoUnsigned(232−`r1, 2nc)

q3 := c r2
2`−n . The division r2

2`−n is exact and the multiplication
c r2

2`−n is correct on 32 bits.

Let A := q1 − q2 + q3. Then we execute the following code:

A += (A >> 31) & p;
A -= p;
A += (A >> 31) & p;

Finally we have performed 6 shifts, 5 additions, 2 64-bit
multiplications and 1 32-bit multiplication.
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The Improved Montgomery Trick (5/5)

Consider p = 257 = 1 + 28. Hence c = 1, n = 8, ` = 9 and
R = 29.

Take a = 131 and b = 187.

Compute 232−`b = 1568669696.

Compute q1 = 47 and 232−`r1 = 3632267264.

Compute q2 = 216 and 232−`r2 = 2147483648.

Compute q3 = c r2
2`−n = 128.

Compute A = q1 − q2 + q3 = −41.

Ajust to get ab
R ≡ 216 mod p.
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