Around Montgomery's trick: A taste of a bit hack

Marc Moreno Maza (after Wei Pan's notes)
University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624

Around Montgomery's trick: A taste of a bit hack

Introduction

@ Let a, b, p be number-like objects (integer numbers, univariate
polynomials over a field) and such that p ¢ {—1,0,1}.

Around Montgomery's trick: A taste of a bit hack

Introduction

@ Let a, b, p be number-like objects (integer numbers, univariate
polynomials over a field) and such that p ¢ {—1,0,1}.

@ More formally let a, b, p be elements in an Euclidean domain
with p not a unit.

Around Montgomery's trick: A taste of a bit hack

Introduction

@ Let a, b, p be number-like objects (integer numbers, univariate
polynomials over a field) and such that p ¢ {—1,0,1}.

@ More formally let a, b, p be elements in an Euclidean domain
with p not a unit.

° Computing’ (a, b, p) — (ab) mod p‘ is a fundamental and
challenging operation.

Around Montgomery's trick: A taste of a bit hack

Introduction

@ Let a, b, p be number-like objects (integer numbers, univariate
polynomials over a field) and such that p ¢ {—1,0,1}.

@ More formally let a, b, p be elements in an Euclidean domain
with p not a unit.

° Computing’ (a, b, p) — (ab) mod p‘ is a fundamental and

challenging operation.

o If a, b, p have large sizes, then FFT-based arithemtic and the
fast division trick (S. Cook, 1966) (H. T. Kung, 1974) and
(M. Sieveking, 1972) provides a practically efficient solution

Around Montgomery's trick: A taste of a bit hack

Introduction

@ Let a, b, p be number-like objects (integer numbers, univariate
polynomials over a field) and such that p ¢ {—1,0,1}.

@ More formally let a, b, p be elements in an Euclidean domain
with p not a unit.

° Computing’ (a, b, p) — (ab) mod p‘ is a fundamental and

challenging operation.

o If a, b, p have large sizes, then FFT-based arithemtic and the
fast division trick (S. Cook, 1966) (H. T. Kung, 1974) and
(M. Sieveking, 1972) provides a practically efficient solution

e If a, b, p have small sizes, say are machine integers, then enter
Peter Montgomery and his famous reduction (Math.
Computation, vol. 44, pp. 519-521, 1985) improved by Xin Li
in his PhD thesis (University of Western Ontario 2009).

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (1/2)

@ Let x, p be integers such that p > 2. In practice p is a prime.
We shall compute x mod p in an indirect way.

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (1/2)

@ Let x, p be integers such that p > 2. In practice p is a prime.
We shall compute x mod p in an indirect way.

e Consider a positive integer R > p such that gcd(R, p) = 1.
Hence there exists integers R™1, p’ such that

RRY—pp'=1 and 0<p <R.

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (1/2)

@ Let x, p be integers such that p > 2. In practice p is a prime.
We shall compute x mod p in an indirect way.

e Consider a positive integer R > p such that gcd(R, p) = 1.
Hence there exists integers R™1, p’ such that

RRY—pp'=1 and 0<p <R.

@ Consider the following two Euclidean divisions:

x| R dp’ | R
d%and f }T

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (1/2)

@ Let x, p be integers such that p > 2. In practice p is a prime.
We shall compute x mod p in an indirect way.

e Consider a positive integer R > p such that gcd(R, p) = 1.
Hence there exists integers R™1, p’ such that

RRY—pp'=1 and 0<p <R.

@ Consider the following two Euclidean divisions:
x| R dp’ | R
d % and }T

x+fp = cR+d+(dp' —eR)p = cR+d(1+ pp’) — epR.

@ Hence we have:

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (1/2)

@ Let x, p be integers such that p > 2. In practice p is a prime.
We shall compute x mod p in an indirect way.

e Consider a positive integer R > p such that gcd(R, p) = 1.
Hence there exists integers R™1, p’ such that

RRY—pp'=1 and 0<p <R.

@ Consider the following two Euclidean divisions:
x| R dp’ | R
d % and }T

x+fp = cR+d+(dp' —eR)p = cR+d(1+ pp’) — epR.

@ Hence we have:

H X —
@ Therefore ’ X + fp writes qR‘ and thus| 7 =g mod p|

The Original Montgomery Trick (2/2)

@ Suppose p > 2 is a prime and R is a power of 2. Then we have
obtained a procedure computing 5 mod p for 0 < x < P2,
amounting to 2 multiplications, 2 additions and 3 shifts.

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (2/2)

@ Suppose p > 2 is a prime and R is a power of 2. Then we have
obtained a procedure computing 5 mod p for 0 < x < P2,
amounting to 2 multiplications, 2 additions and 3 shifts.

@ Recall the three divisions:

x| R do' | R x+f|R
d}T and f }Tand 0 }T

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (2/2)

@ Suppose p > 2 is a prime and R is a power of 2. Then we have
obtained a procedure computing 5 mod p for 0 < x < P2,
amounting to 2 multiplications, 2 additions and 3 shifts.

@ Recall the three divisions:

x| R do' | R x+f|R
d}T and f }Tand 0 }T

@ The result is g or g — p since

% =g mod p|and we have:

0<x<p> = 0<q<2p

Around Montgomery's trick: A taste of a bit hack

The Original Montgomery Trick (2/2)

@ Suppose p > 2 is a prime and R is a power of 2. Then we have
obtained a procedure computing 5 mod p for 0 < x < P2,
amounting to 2 multiplications, 2 additions and 3 shifts.

@ Recall the three divisions:

x| R do' | R x+f|R
d}T and f }Tand 0 }T

@ The result is g or g — p since| % =g mod p|and we have:

0<x<p> = 0<q<2p

e To compute in Z/pZ, we map each a € Z/pZ to aR € Z/pZ.
Then the above procedure gives us % mod p, that is, the

image of ab in this new representation.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (1/5)

@ Suppose p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (1/5)

@ Suppose p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.

o let R:=2and 0 < x < (p—1)% We get 5 mod p by:

x| R c2"n | R c2"n | R
and and
rniq R g 0 g3

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (1/5)

@ Suppose p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.

o let R:=2and 0 < x < (p—1)% We get 5 mod p by:

x| R c2"n | R c2"n | R
and and
rniq R g 0 g3

@ Using c2" = —1 mod p we have:
X r r od
—=q+t==q1—R—-—==q1— ¢+ m .
R qi R q1 — Q2 R g1 — g2 7T q3 P

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (1/5)

@ Suppose p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.

o let R:=2and 0 < x < (p—1)% We get 5 mod p by:

x| R c2"n | R c2"n | R
and and
nlq | q 0 |gs
@ Using 2" = —1 mod p we have:

x + 1 2 + od
— = =1 —g— - =q — m .
R qi R q1 — Q2 R g1 — g2 7T q3 P
@ The last equality requires a proof. We have:
rn=c2"n— @R =:c2"n — q2".

Hence |2 | ry|thus |22 | c2"r|and |[R | c2"n |

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (2/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.
@ Recall R:=2%and 0 < x < (p — 1)%. We get % mod p by:

x| R c2"n | R c2"n | R
and and
n|q r (o)) 0 gs

leading to 5 = g1 — g2 + g3 mod p.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (2/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.
@ Recall R:=2%and 0 < x < (p — 1)%. We get % mod p by:

x| R c2"n | R c2"n | R
and and
n|q r (o)) 0 gs
leading to 5 = g1 — g2 + g3 mod p.
@ Moreover we have:

—(p—1)<q—q+g <2(p-1).

Hence the desired output is either (g1 — g2 + g3) + p, or
g —G2+agzor(q1—qa+q3)—p

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (2/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)] < b on b-bit machine words.
@ Recall R:=2%and 0 < x < (p — 1)%. We get % mod p by:

x| R c2"n | R c2"n | R
}— and and
naq rn 92 0 gs
leading to 5 = g1 — g2 + g3 mod p.
@ Moreover we have:
—(p—1)<q—q+g <2(p-1).
Hence the desired output is either (g1 — g2 + g3) + p, or

n—q@tgor(q—q+g)—p
e Indeed 0 < x < (p—1)? and p < R imply

g =xquoR<(p—1)?/R<p—1.

Next, we have: g» = c2"np quo R < ¢2" = p — 1, since
ri < R. Similarly, we have g3 < p — 1.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (3/5)

We describe now the C implementation for 32-bit machine integer
assuming that we have at hand the following function:

/%%
* Input : The addresses of two unsigned machine integers a, b
* Qutput : Store (a * b) quo 2732 into a, and

store (a * b) mod 2732 into b
*

*x/

inline void MulHiLoUnsigned (uint32_t *a, uint32_t *b) {

uint64_t prod;
prod = (uint64_t) (*a) * (uint64_t) (xb);

xa = (uint32_t) (prod >> 32);
*b (uint32_t) prod;

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (4/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)]. Recall R :=2°.

@ Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute a—RL,’ mod p.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (4/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)]. Recall R :=2°.

@ Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute a—RL,’ mod p.

° Q1,2324r1 := MulHiLoUnsigned(a, 232*%)

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (4/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)]. Recall R :=2°.

@ Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute a—RL,’ mod p.

° Q1,2324r1 := MulHiLoUnsigned(a, 232*%)
o qo, 232*£r2 = MulHiLOUnSigned(232*er1’ 2nC)

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (4/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)]. Recall R :=2°.

@ Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute a—RL,’ mod p.

o q1,2%‘r; := MulHiLoUnsigned(a,23°7‘b)

o q2,2%‘ry := MulHiLoUnsigned(232~‘r,2"c)

® g3 := Cy%;. The division 572 is exact and the multiplication
Co725 is correct on 32 bits.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (4/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)]. Recall R :=2°.

@ Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute a—RL,’ mod p.

o q1,2%‘r; := MulHiLoUnsigned(a,23°7‘b)

o q2,2%‘ry := MulHiLoUnsigned(232~‘r,2"c)

® g3 := Cy%;. The division 572 is exact and the multiplication
Co725 is correct on 32 bits.

@ Let A:= g1 — g2 + g3. Then we execute the following code:

A += (A >> 31) & p;
A -= p;
A += (A > 31) & p;

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (4/5)

@ Recall p > 2 is a Fourier prime, that is, p — 1 = ¢2" and
¢ < 2n where ¢ = [log,(p)]. Recall R :=2°.

@ Let a, b be non-negative 32-bit machine integers less than p.
We show how to compute a—RL,’ mod p.

o q1,2%‘r; := MulHiLoUnsigned(a,23°7‘b)

o q2,2%‘ry := MulHiLoUnsigned(232~‘r,2"c)

® g3 := Cy%;. The division 572 is exact and the multiplication
Co725 is correct on 32 bits.

@ Let A:= g1 — g2 + g3. Then we execute the following code:

A += (A >> 31) & p;
A -= p;
A += (A > 31) & p;

e Finally we have performed 6 shifts, 5 additions, 2 64-bit
multiplications and 1 32-bit multiplication.

Around Montgomery's trick: A taste of a bit hack

The Improved Montgomery Trick (5/5)

Consider p =257 =1+2% Hencec=1,n=28, /=9 and
R =29

Take a =131 and b = 187.

Compute 232 = 1568669696.

Compute g1 = 47 and 232t = 3632267264.

Compute gp = 216 and 232, = 2147483648.

Compute g3 = c5%; = 128.

Compute A=q1 — g0 + g3 = —41.

Ajust to get a—,{,’ =216 mod p.

Around Montgomery's trick: A taste of a bit hack

