Space vs Time, Cache vs Main Memory

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624
Plan

1. Space vs Time

2. Cache vs Main Memory
Plan

1. Space vs Time

2. Cache vs Main Memory
A computation with **input** and **output** values can be modelled in various ways: **directed acyclic graph (DAG)**, **straight-line program (SLP)**.

By computation, we mean the execution of a program, not a program itself, similarly to the **instruction stream DAG** of a Cilk++ program.

Thus, we assume that all operations (additions, multiplications) to be performed are precisely known.
Our purpose is then on how computer resources are used to realize this computation. To do so, we make use of pesbling games on DAGs.

From now on we consider a connected directed acyclic graph $G = (V, E)$:

- Each vertex represents an operation and its result.
- An edge from a vertex v_1 to a vertex v_2 indicates that the result of v_1 is needed for performing the operation of v_2.
- A vertex v of G is an input (resp. output) if it has no predecessors (resp, no successors).
- The sets of inputs and outputs are respectively denoted by $I(G)$ and $O(G)$. Note that these sets are disjoint.
The red pebble game is played on a directed and connected acyclic graph $G = (V, E)$ using four rules:

(R1) **Input rule:** A pebble can be placed on an input vertex at any time.

(R2) **Output rule:** Each output vertex must be pebbled at least once.

(R3) **Compute rule:** A pebble can be placed on or moved to any non-input vertex if all of its immediate predecessors carry pebbles.

(R4) **Delete rule:** Pebble can be removed at any time.
The red pebble game (2/2)

- A **pebbling strategy** determines sequence of rules invoked on vertices of a graph.

- A strategy uses **space** S if it uses at most S pebbles. It uses **time** T if the input rule and compute rule are invoked T times in total.

- The minimum space S_{min} to pebble the graph G is the smallest space of any strategy that pebbles G.

- We shall see that the FFT graph exhibits a tradeoff between space and time: the time required when the minimum space is used is strictly more than that required when more space is available.
What is S_{min}? What is T when $S = S_{\text{min}}$? What is T when $S = S_{\text{min}} + 1$?
We have $S_{\text{min}} = 2$. Moreover $S = 2 \implies T \geq 5$ while $S = 3 \implies T \geq 4$.
FFT graph for 4 input nodes

What is S_{min}?
We have $S_{\text{min}} = 3$.
What is S_{min}?
We have $S_{\min} = 4$. More generally, for the FFT graph on $n = 2^k$ inputs we have $S_{\min} = k + 1$.
What is S_{min}?

(Moreno Maza)
Theorem. The complete balanced binary on \(n = 2^k \) inputs has
\(S_{\text{min}} = k + 1 = \log_2(n) + 1 \). It can be pebbled in time \(T = 2n - 1 \) steps, but no fewer.
Proof (1/2).

1. Each path has $k + 1$ vertices.
2. Initially each path from an input to the output is free of pebbles.
3. Finally, a pebble is on the output and thus all paths contain a pebble.
4. Therefore, there is a last time at which a path is open.
5. When placing a pebble on last input, all paths from other inputs to vertices on the path carry 1 pebble; moreover there are k such paths.
6. Therefore, we have $S_{\text{min}} \geq k + 1$.
Proof (2/2).

1. We prove by induction that $S_{\text{min}} = k + 1$ holds and that $T = 2n - 1$ holds for $S = S_{\text{min}}$.

2. The property is true for $n = 1$, that is, for $k = 0$.

3. Assume $n \geq 1$. We do the left subtree in time $2(n/2) - 1$ using k pebbles (by induction) and leave one pebble at its root.

4. We do the right subtree in time $2(n/2) - 1$ using k pebbles too.

5. Therefore, we have: $T = 2((n/2) - 2 + 1$.

(Moreno Maza)
Pebbling the pyramid graph (1/4)

What is S_{min}?
Theorem. For the pyramid graph $P(m)$ on m inputs, we have $S_{\text{min}} = m$. With $S = S_{\text{min}}$ pebbles, the graph $P(m)$ can be pebbled in time $T = n$, where $n = m(m + 1)/2$ is the number of vertices of $P(m)$.
Proof (1/2).

1. The last open path argument can be used to show that $S_{\text{min}} \geq m$ holds.

2. To pebble $P(m)$ with m pebbles, place pebbles on all inputs.

3. Move the leftmost pebble up one level.
Proof (2/2).

1. Now all vertices one level up can be pebbled using $m - 1$ pebbles.
2. Repeat this procedure at all subsequent levels.
3. Each vertex is pebbled once.

Observe that S_{min} is about \sqrt{n}, where n is the number of vertices of $P(m)$, which is much larger than for binary trees.
Extreme Tradeoffs (1/7)

\[H_1 \quad H_2 \quad H_k \]

\[H_{k-1} \]

\[k \]

\[k+1 \]
For $k \geq 3$, the graph H_k is of a k-input tree, $T(k)$, a spine, $S(k)$, of k vertices connected to the k outputs of H_{k-1}, an open vertex, and a complete bipartite graph $BP(k)$, with k inputs and $k + 1$ outputs.
What is $S_{\text{min}}(H_1)$? $S_{\text{min}}(H_2)$? $S_{\text{min}}(H_k)$, for $k \geq 3$?
Lemma. \(S_{\min}(H_k) = k \) for all \(k \geq 1 \).

Proof.

1. Since the tree \(T(k) \) needs \(k \) pebbles, we have \(S_{\min}(H_k) \geq k \).
2. We show \(k \) pebbles suffice assuming outputs of \(H_{k-1} \) can be pebbled in succession with \(k - 1 \) pebbles.
3. Advance pebble to tree output, use \(k - 1 \) pebbles on \(H_{k-1} \) to pebble its \(k - 1 \) outputs and advance pebbles along spine.
4. Advance pebble to open vertex.
5. Put \(k \) pebbles on the \(BP(k) \) inputs and then pebble one output of \(BP(k) \).
6. Repeat the whole process for each additional output of \(BP(k) \).
Lemma. H_k has $N(k) = 2k^2 + 5k - 6$ vertices, for all $k \geq 2$.

Proof.

1. Base case: $N(2) = 12 = 8 + 10 - 6$.
2. By induction:

\[
N(k) = N(k - 1) + (k + 1) + k + 1 + (k + k + 1) \\
= N(k - 1) + 4k + 3 \\
= 2(k - 1)^2 + 5(k - 1) - 6 + 4k + 3 \\
= 2k^2 + 5k - 6
\]
Lemma. H_k requires at least $(k + 1)!$ steps to be pebbled with $S = S_{\text{min}}(H_k)$ pebbles.

Proof.

1. When $S = S_{\text{min}}(H_k)$, the subgraph H_{k-1} must be repebbled $k + 1$ times.

2. Indeed, pebbling one output of $BP(k)$, removes all pebbles from H_{k-1}.
Lemma. H_k can be pebbled in $N(k)$ steps with $k + 1$ pebbles.

Proof.

1. Inductive Hypothesis: When $k + 1$ pebbles are used, assume all outputs of H_{k-1} can be pebbled in succession using $k + 1$ pebbles without repebbling any vertices.
2. We advance k pebbles to the inputs of the $BP(k)$ without repebbling any vertices.
3. The remaining pebble is used to pebble outputs of the $BP(k)$ in succession.
Plan

1. Space vs Time

2. Cache vs Main Memory
The red-blue pebble game is played on a directed and connected acyclic graph $G = (V, E)$.

- At any point of the game, some vertices have red pebbles, others have blue, others have pebbles of both types, others have no pebbles.
- A configuration is a pair of subsets (R, B) of the vertex set V such that any vertex $v \in R$ (resp. $v \in B$) has a blue pebble (resp. red pebble).
- The initial configuration is the one given by $(\emptyset, I(G))$.
- The final configuration is the one given by $(\emptyset, O(G))$.
The rules of the red-blue pebble game are

(R_1) **Input rule:** A red pebble may be placed on any vertex that has a blue pebble.

(R_2) **Output rule:** A blue pebble may be placed on any vertex that has a red pebble.

(R_3) **Compute rule:** If all immediate predecessors of a vertex \(v \) have red pebbles then a red pebble may be placed on \(v \).

(R_4) **Delete rule:** A pebble red or blue may be removed at any time from any vertex.
The Red-Blue Pebble Game (3/3)

Key concepts:

- A **transition** is an ordered pair of configurations, the second of which follows from the first according to one of the rules \((R_1)\) to \((R_4)\).

- A **calculation** is a sequence of configurations, each successive pair of which form a transition.

- A **complete calculation** is one that begins with the initial configuration and ends with the final configuration.
A graph on which the red-blue pebble game is played can model a computation performed on a two-level memory structure, say, a fast memory (or cache) and a slow memory.

Each vertex represents an operation and its result.

An edge from a vertex v_1 to a vertex v_2 indicates that the result of v_1 is needed for performing the operation of v_2.

An operation can be performed only if all operands reside in cache (or fast memory).

The maximum allowable number of red (or blue) pebbles on the graph at any point in the game corresponds to the number of the red-blue pebble game is words available for use in the fast (or slow) memory, respectively.
Application to cache complexity (2/7)
Placing a red pebble using Rule \((R_3)\) corresponds to performing an operation and storing the result in cache.

Placing a blue pebble using Rule \((R_2)\) corresponds to storing a copy of a result (currently in the fast memory) into the slow memory.

Placing a red pebble using Rule \((R_1)\) corresponds to retrieving a copy of a result (currently in the slow memory) into the fast memory.

Removing a red or red or blue pebble using Rule \((R_4)\) means freeing a memory location in the fast or slow memory respectively.
In what follows, the fast memory can only hold S words, where S is a constant, while the slow memory is arbitrarily large.

For any given connected DAG, we are interested in the I/O time, denoted by Q, which is the minimum number of transitions according to Rules (R_1) or (R_2) required by any complete calculation.

In the original work of (J.W. Hong, H.T. Kung, 1981) a “static problem” is associated with the red-blue pebble game, the S-Partitioning Problem. Then lower bounds for the S-Partitioning Problem lead to lower bounds for the red-blue pebble game.

To establish bounds like those (but weaker) of (J.W. Hong, H.T. Kung, 1981) we will follow a simpler approach due to J.E. Savage (see his book *Models of Computations*) reducing to the red pebble game.
Theorem. Assume $S \geq 3$. For the n-point FFT graph we have $Q \log(S) \in \Omega(n \log(n))$. Moreover, there is a pebbling strategy for which $Q \log(S) \in \Theta(n \log(n))$ holds.
Decomposing the 16-point FFT graph with \(n = 16 \) and \(S = 4 \).
Theorem. For any DAG G encoding an algorithm multiplying two square matrices of order n (based on an $\Theta(n^3)$-work algorithm) and for every pebbling strategy \mathcal{P} for G in the red-blue pebble game that uses $S \geq 3$ red pebbles, the I/O-time satisfies the following lower bound:

$$Q_\mathcal{P} \in \Omega(n^3/\sqrt{S}).$$

Furthermore, for $S \geq 3$, there exists a pebbling strategy for which we have:

$$Q_\mathcal{P} \in \theta(n^3/\sqrt{S}).$$
The S-Partitioning Problem (1/6)

Let $G = (V, E)$ be a directed and connected acyclic graph. Let $X, Y \subseteq V$ be two proper subsets of V, hence $X \neq \emptyset$ and $Y \neq \emptyset$ hold.

- A subset $D \subseteq V$ is a **dominator set** for X if for every path from a vertex of $I(G)$ to a vertex of X has at least one vertex in D.

- The **minimum set** of X is the set of vertices $v \in X$ such that none of the successors of v belongs to X.

- We say that Y **depends on** X whenever there exists $(v, w) \in X \times Y$ such that $(v, w) \in E$ holds.
Let $G = (V, E)$ be a directed and connected acyclic graph and S be a positive integer. A partition $\{V_1, \ldots, V_h\}$ of V is called an S-partition of G if the following properties hold for each $i = 1 \cdots h$:

1. V_i admits a **dominator set** D_i with $|D_i| \leq S$,

2. the **minimum set** M_i of V_i satisfies $|M_i| \leq S$,

3. There is **no cyclic dependence** among V_1, \ldots, V_h.
Consider a red-blue pebble game on G using at most S red pebbles.

Denote by C a complete calculation. There exists an integer $h \geq 2$ and a sequence of h consecutive subcalculations C_1, C_2, \ldots, C_h such that the following holds:

- for each $i = 1 \cdots (h - 1)$, the subcalculation C_i has exactly S transitions using Rules (R_1) or (R_2),
- C_h has at most S transitions using Rules (R_1) or (R_2),
For each $i = 1 \cdots (h - 1)$, define V_i to be the largest subset of V with the following properties:

- During the subcalculation C_i each vertex of V_i receives a red pebble thanks to Rules (R_1) or (R_3).
- At the end of the subcalculation C_i each vertex of $v \in V_i$
 - either has red pebbles or blue pebbles that are placed on v during C_i,
 - or v has a successor in V_i.
- v does not belong to any V_j for $j = (i + 1) \cdots h$.

Lemma. The set $\{V_1, V_2, \ldots, V_h\}$ is a 2S-partition of V.
Theorem. Let $G = (V, E)$ be a directed and connected acyclic graph. Any complete calculation red-blue pebble game on G using at most S red pebbles is associated with a $2S$-partition of G such that

$$\textstyle S h \geq q \geq S (h - 1).$$

where q is the I/O time required by the calculation and h is the number of parts in the $2S$-partition.

Sketch of proof.

1. $\{V_1, V_2, \ldots, V_h\}$ (as defined before) is a $2S$-partition of V,
2. For each $i = 1 \cdots (h - 1)$, exactly S transitions with Rules (R_1) or (R_2) correspond to V_i,
3. No more than S transitions with Rules (R_1) or (R_2) correspond to V_h.
4. The inequalities follow.
The S-Partitioning Problem (6/6)

Corollary. Let $G = (V, E)$ be a directed and connected acyclic graph. Let $P(2S)$ be the minimum number of parts in a $2S$-partition of V. Then we have:

$$Q \geq S \left(P(2S) - 1 \right).$$

Using this Corollary, lower bounds for $P(2S)$ translate into lower bounds for Q.
The \textbf{S-span} of the DAG $G = (V, E)$, denoted by $\rho(S, G)$, is

- the maximum number of vertices of G that can be pebbled with S red pebbles in the \textbf{red} pebble game,
- maximized over all initial placements of S red pebbles,
- which means that the initialization rule is disallowed.

\textbf{Theorem.} We have: \[\left\lceil \frac{Q}{S} \right\rceil \rho(2S, G) \geq |V| - |l(G)|. \]
Theorem. We have: \[\left\lceil \frac{Q}{S} \right\rceil \rho(2S, G) \geq |V|. \]

Sketch of proof (1/3).

1. Let \(\mathcal{P} \) be a pebbling strategy with \(S \) pebbles.
2. Divide \(\mathcal{P} \) into consecutive sequential sub-pebblings (or calculations) \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_h \), where each sub-pebbling has \(S \) I/O operations (rules \((R_1)\) and \((R_2)\)) except possibly the last one.
3. Thus we have \(h = \left\lceil \frac{Q}{S} \right\rceil \).
4. We shall exhibit an upper bound \(R \) to the number of vertices of \(G \) pebbled with red pebbles in any sub-pebbling \(\mathcal{P}_j \).
5. This will satisfy \(h R \geq |V| \).
Reduction to the **red** pebble game (3/4)

Theorem. We have: $\lceil \frac{Q}{S} \rceil \rho(2S, G) \geq |V|$.

Sketch of proof (2/3).

1. The upper bound on R is developed by adding S new red pebbles and showing that we may use these new pebbles to move all I/O operations in each sub-pebbling P_j to either the beginning or the end of the sub-pebbling without changing the number of computation steps or I/O operations.

2. Consider a vertex v carrying a **red** pebble at some time during P_j and which is pebbled for the first time with a **blue** pebble during P_j.

3. Instead of pebbling v with a **blue** pebble, we use a **new red** pebble to keep **red** until its last output operation which is preserved and moved to the end of P_j.,
Theorem. We have: \(\lceil Q/S \rceil \rho(2S, G) \geq |V| \).

Sketch of proof (3/3).

1. Consider a vertex \(v \) carrying a blue pebble at the start of \(P_j \) and that is given a red during \(P_j \); consider the first pebbling of this kind for \(v \).
2. Then, we use a new red pebble instead.
3. This allows us to move this input operation at the beginning of \(P_j \), without violating the precedence conditions of \(G \).
4. It follows that the number of vertices that are pebbled with red pebbles during the computations of \(P_j \) is \(\rho(2S, G) \).