Space vs Time, Cache vs Main Memory

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624

Plan

Space vs Time

Cache vs Main Memory

Plan

Space vs Time

Cache vs Main Memory

Pebbling games and computing (1/2)

- A computation with input and output values can be modelled in various ways: directed acyclic graph (DAG), straight-line program (SLP).
- By computation, we mean the execution of a program, not a program itself, similarly to the instruction stream DAG of a Cilk++ program.
- Thus, we assume that all operations (additions, multiplications) to be performed are precisely known.

Pebbling games and computing (2/2)

- Our purpose is then on how computer resources are used to realize this computation. To do so, we make use of pebbling games on DAGs.
- From now on we consider a connected directed acyclic graph G = (V, E):
 - Each vertex represents an operation and its result.
 - An edge from a vertex v_1 to a vertex v_2 indicates that the result of v_1 is needed for performing the operation of v_2 .
 - A vertex v of G is an input (resp. output) if it has no predecessors (resp, no successors).
 - The sets of inputs and outputs are respectively denoted by I(G) and O(G). Note that these sets are disjoint.

The red pebble game (1/2)

The **red** pebble game is played on a directed and connected acyclic graph G = (V, E) using four rules:

- (R_1) Input rule: A pebble can be placed on an input vertex at any time.
- (R_2) Output rule: Each output vertex must be pebbled at least once.
- (R₃) Compute rule: A pebble can be placed on or moved to any non-input vertex if all of its immediate predecessors carry pebbles.
- (R_4) Delete rule: pebble can be removed at any time.

The red pebble game (2/2)

- A pebbling strategy determines sequence of rules invoked on vertices of a graph.
- A strategy uses space S if it uses at most S pebbles. It uses time T
 if the input rule and compute rule are invoked T times in total.
- The minimum space S_{\min} to pebble the graph G is the smallest space of any strategy that pebbles G.
- We shall see that the FFT graph exhibits a tradeoff between space and time: the time required when the minimum space is used is strictly more than that required when more space is available.

FFT graph for 2 input nodes

What is S_{\min} ? What is T when $S = S_{\min}$? What is T when $S = S_{\min} + 1$?

FFT graph for 2 input nodes

We have $S_{\min}=2$. Moreover $S=2 \implies T \ge 5$ while $S=3 \implies T \ge 4$.

→ロト→□ト→ミト→ミト ミ めへ(

FFT graph for 4 input nodes

What is S_{\min} ?

FFT graph for 4 input nodes

We have $S_{\min} = 3$.

FFT graph for 8 input nodes

FFT graph for 8 input nodes

We have $S_{\min}=4$. More generally, for the FFT graph on $n=2^k$ inputs we have $S_{\min}=k+1$.

Pebbling a complete binary tree (1/4)

Pebbling a complete binary tree (2/4)

Theorem. The complete balanced binary on $n=2^k$ inputs has $S_{\min}=k+1=\log_2(n)+1$. It can be pebbled in time T=2n-1 steps, but no fewer.

Pebbling a complete binary tree (3/4)

Proof (1/2).

- Each path has k+1 vertices.
- ② Initially each path from an input to the output is free of pebbles.
- Sinally, a pebble is on the output and thus all paths contain a pebble.
- **1** Therefore, there is a last time at which a path is open.
- When placing a pebble on last input, all paths from other inputs to vertices on the path carry 1 pebble; moreover there are k such paths.

Space vs Time, Cache vs Main Memory

Therefore, we have $S_{\min} \ge k + 1$.

Pebbling a complete binary tree (4/4)

Proof (2/2).

- We prove by induction that $S_{\min} = k + 1$ holds and that T = 2n 1 holds for $S = S_{\min}$.
- ② The property is true for n = 1, that is, for k = 0.
- **3** Assume $n \ge 1$. We do the left subtree in time 2(n/2) 1 using k pebbles (by induction) and leave one pebble at its root.
- We do the rigth subtree in time 2(n/2) 1 using k pebbles too.
- **Therefore**, we have: T = 2((n/2) 2 + 1.

Pebbling the pyramid graph (1/4)

Pebbling the pyramid graph (2/4)

Theorem. For the pyramid graph P(m) on m inputs, we have $S_{\min} = m$. With $S = S_{\min}$ pebbles, the graph P(m) can be pebbled in time T = n, where n = m(m+1)/2 is the number of vertices of P(m).

Pebbling the pyramid graph (3/4)

Proof (1/2).

- **1** The last open path argument can be used to show that $S_{\min} \geq m$ holds.
- ② To pebble P(m) with m pebbles, place pebbles on all inputs.
- Move the leftmost pebble up one level.

Pebbling the pyramid graph (4/4)

Proof (2/2).

- **1** Now all vertices one level up can be pebbled using m-1 pebbles.
- Repeat this procedure at all subsequent levels.
- Each vertex is pebbled once.

Observe that S_{\min} is about \sqrt{n} , where n is the number of vertices of P(m), which is much larger than for binary trees.

Extreme Tradeoffs (1/7)

Extreme Tradeoffs (2/7)

For $k \ge 3$, the grap H_k is of a k- input tree, T(k), a **spine**, S(k), of k vertices connected to the k outputs of H_{k-1} , an **open** vertex, and a complete bipartite graph BP(k), with k inputs and k+1 outputs.

Extreme Tradeoffs (3/7)

What is $S_{\min}(H_1)$? $S_{\min}(H_2)$? $S_{\min}(H_k)$, for $k \geq 3$?

Extreme Tradeoffs (4/7)

Lemma. $S_{\min}(H_k) = k$ for all k > 1. Proof.

- ① Since the tree T(k) needs k pebbles, we have $S_{\min}(H_k) > k$.
- 2 We show k pebbles suffice assuming outputs of H_{k-1} can be pebbled in succession with k-1 pebbles.
- 3 Advance pebble to tree output, use k-1 pebbles on H_{k-1} to pebble its k-1 outputs and advance pebbles along spine.
- Advance pebble to open vertex.
- **5** Put k pebbles on the BP(k) inputs and then pebble one output of BP(k).
 - Repeat the whole process for each additional output of BP(k).

Extreme Tradeoffs (5/7)

Lemma. H_k has $N(k) = 2k^2 + 5k - 6$ vertices, for all $k \ge 2$. **Proof**.

- **1** Base case: N(2) = 12 = 8 + 10 6.
- ② By induction:

$$N(k) = N(k-1) + (k+1) + k + 1 + (k+k+1)$$

= $N(k-1) + 4k + 3$
= $2(k-1)^2 + 5(k-1) - 6 + 4k + 3$
= $2k^2 + 5k - 6$

Extreme Tradeoffs (6/7)

Lemma. H_k requires at least (k+1)! steps to be pebbled with $S = S_{\min}(H_k)$ pebbles.

Proof.

- When $S = S_{\min}(H_k)$, the subgraph H_{k-1} must be repebbled k+1 times.
- ② Indeed, pebbling one output of BP(k), removes all pebbles from H_{k-1} .

Extreme Tradeoffs (7/7)

Lemma. H_k can be pebbled in N(k) steps with k+1 pebbles. **Proof**

- **1** Inductive Hypothesis: When k+1 pebbles are used, assume all outputs of H_{k-1} can be pebbled in succession using k+1 pebbles without repebbling any vertices.
- ② We advance k pebbles to the inputs of the BP(k) without repebbling any vertices.
- **3** The remaining pebble is used to pebble outputs of the BP(k) in succession.

Plan

Space vs Time

Cache vs Main Memory

The Red-Blue Pebble Game (1/3)

The **red-blue** pebble game is played on a directed and connected acyclic graph G = (V, E).

- At any point of the game, some vertices have red pebbles, others have blue, others have pebbles of both types, others have no pebbles.
- A configuration is a pair of subsets (R, B) of the vertex set V such that any vertex $v \in R$ (resp. $v \in B$) has a blue pebble (resp. red pebble).
- The initial configuration is the one given by $(\emptyset, I(G))$.
- The final configuration is the one given by $(\emptyset, O(G))$.

The Red-Blue Pebble Game (2/3)

The rules of the **red-blue** pebble game are

- (R_1) Input rule: A red pebble may be placed on any vertex that has a blue pebble.
- (R_2) Output rule: A blue pebble may be placed on any vertex that has a red pebble.
- (R_3) Compute rule: If all immediate predecessors of a vertex v have red pebbles then a red pebble may be placed on v.
- (R₄) Delete rule: A pebble red or blue may be removed at any time from any vertex.

The Red-Blue Pebble Game (3/3)

Key concepts:

- A transition is an ordered pair of configurations, the second of which follows from the first according to one of the rules (R_1) to (R_4) .
- A caculation is a sequence of configurations, each successive pair of which form a transition.
- A complete caculation is one that begins with the initial configuration and ends with the final configuration.

Application to cache complexity (1/7)

- A graph on which the red-blue pebble game is played can model a computation performed on a two-level memory structure, say, a fast memory (or cache) and a slow memory.
- Each vertex represents an operation and its result.
- An edge from a vertex v_1 to a vertex v_2 indicates that the result of v_1 is needed for performing the operation of v_2 .
- An operation can be performed only if all operands reside in cache (or fast memory).
- The maximum allowable number of red (or blue) pebbles on the graph at any point in the game corresponds to the number of the red-blue pebble game is words available for use in the fast (or slow) memory, respectively.

Application to cache complexity (2/7)

Application to cache complexity (3/7)

- Placing a **red** pebble using Rule (R_3) corresponds to performing an operation and storing the result in cache
- Placing a **blue** pebble using Rule (R_2) corresponds to storing a copy of a result (currently in the fast memory) into the slow memory.
- Placing a **red** pebble using Rule (R_1) corresponds to retrieving a copy of a result (currently in the slow memory) into the fast memory.
- Removing a red or **red** or **blue** pebble using Rule (R_4) means freeing a memory location in the fast or slow memory respectively.

Application to cache complexity (4/7)

- In what follows, the fast memory can only hold *S* words, where *S* is a constant, while the slow memory is arbitrarily large.
- For any given connected DAG, we are interested in the I/O time, denoted by Q, which is the minimum number of transitions according to Rules (R_1) or (R_2) required by any complete calculation.
- In the original work of (J.W. Hong, H.T. Kung, 1981) a "static problem" is associated with the red-blue pebble game, the S-Partitioning Problem. Then lower bounds for the S-Partitioning Problem lead to lower bounds for the red-blue pebble game.
- To establish bounds like those (but weaker) of (J.W. Hong, H.T. Kung, 1981) we will follow a simpler approach due to J.E. Savage (see his book *Models of Computations*) reducing to the red pebble game.

Application to cache complexity (5/7)

Theorem. Assume $S \ge 3$. For the n-point FFT graph we have $Q \log(S) \in \Omega(n \log(n))$. Moreover, there is a pebbling strategy for which $Q \log(S) \in \Theta(n \log(n))$ holds.

Application to cache complexity (6/7)

Decomposing the 16-point FFT graph with n = 16 and S = 4.

Application to cache complexity (7/7)

Theorem. For any DAG G encoding an algorithm multiplying two square matrices of order n (based on an $\Theta(n^3)$ -work algorithm) and for every pebbling strategy $\mathcal P$ for G in the **red-blue** pebble game that uses $S \geq 3$ **red** pebbles, the I/O-time satisfies the following lower bound:

$$Q_{\mathcal{P}} \in \Omega(n^3/\sqrt{S}).$$

Furthermore, for $S \ge 3$, there exists a pebbling strategy for which we have:

$$Q_{\mathcal{P}} \in \theta(n^3/\sqrt{S}).$$

The S-Partitioning Problem (1/6)

Let G = (V, E) be a directed and connected acyclic graph. Let $X, Y \subset V$ be two proper subsets of V, hence $X \neq \emptyset$ and $Y \neq \emptyset$ hold.

- A subset D ⊂ V is a dominator set for X if for every path from a vectex of I(G) to a vertex of X has at least one vertex in D.
- The minimum set of X is the set of vertices $v \in X$ such that none of the successors of v belongs to X.
- We say that Y depends on X whenever there exists $(v, w) \in X \times Y$ such that $(v, w) \in E$ holds.

The S-Partitioning Problem (2/6)

Let G = (V, E) be a directed and connected acyclic graph and S be a positive integer. A partition $\{V_1, \ldots, V_h\}$ of V is called an S-partition of G if the following properties hold for each $i = 1 \cdots h$:

- **1** V_i admits a **dominator set** D_i with $|D_i| \leq S$,
- 2 the minimum set M_i of V_i satisfies $|M_i| \leq S$,
- **3** There is no cyclic dependence among V_1, \ldots, V_h .

The S-Partitioning Problem (3/6)

Consider a red-blue pebble game on G using at most S red pebbles.

Denote by C a complete calculation. There exists an integer $h \ge 2$ and a sequence of h consecutive subcalculations C_1, C_2, \ldots, C_h such that the following holds:

- for each $i = 1 \cdots (h-1)$, the subcalculation C_i has exactly S transitions using Rules (R_1) or (R_2) ,
- C_h has at most S transitions using Rules (R_1) or (R_2) ,

The S-Partitioning Problem (4/6)

For each $i = 1 \cdots (h-1)$, define V_i to be the largest subset of V with the following properties:

- During the subcalculation C_i each vertex of V_i receives a **red** pebble thanks to Rules (R_1) or (R_3) .
- At the end of the subcalculation C_i each vertex of $v \in V_i$
 - either has red pebbles or blue pebbles that are placed on v during C_i ,
 - or v has a successor in V_i
- v does not belong to any V_j for $j = (i+1) \cdots h$.

Lemma. The set $\{V_1, V_2, \dots, V_h\}$ is a 2*S*-partition of *V*.

The S-Partitioning Problem (5/6)

Theorem. Let G = (V, E) be a directed and connected acyclic graph. Any complete calculation **red-blue** pebble game on G using at most S **red** pebbles is associated with a 2S- partition of G such that

$$S h \geq q \geq S (h-1).$$

where q is the I/O time required by the calculation and h is the number of parts in the 2S- partition.

Sketch of proof.

- $\{V_1, V_2, \dots, V_h\}$ (as defined before) is a 2*S*-partition of V,
- ② For each $i = 1 \cdots (h-1)$, exactly S transitions with Rules (R_1) or (R_2) correspond to V_i ,
- **3** No more than S transitions with Rules (R_1) or (R_2) correspond to V_h .
- The inequalities follow.

The S-Partitioning Problem (6/6)

Corollary. Let G = (V, E) be a directed and connected acyclic graph. Let P(2S) be the minimum number of parts in a 2S-partition of V. Then we have:

$$Q \geq S(P(2S)-1).$$

Using this Corollary, lower bounds for P(2S) translate into lower bounds for Q.

Reduction to the **red** pebble game (1/4)

The S-span of the DAG G = (V, E), denoted by $\rho(S, G)$, is

- the maximum number of vertices of G that can be pebbled with S red pebbles in the red pebble game,
- maximized over all initial placements of S red pebbles,
- which means that the initialization rule is disallowed.

Theorem. We have: $\lceil Q/S \rceil \rho(2S,G) \geq |V| - |I(G)|$.

Reduction to the **red** pebble game (2/4)

Theorem. We have: $\lceil Q/S \rceil \rho(2S,G) \geq |V|$.

Sketch of proof (1/3).

- **1** Let \mathcal{P} be a pebbling strategy with S pebbles.
- ② Divide \mathcal{P} into consecutive sequential sub-pebblings (or calculations) $\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_h$, where each sub-pebbling has S I/O operations (rules (R_1) and (R_2)) except possibly the last one.
- **3** Thus we have $h = \lceil Q/S \rceil$.
- We shall exhibit an upper bound R to the number of vertices of G pebbled with **red** pebbles in any sub-pebbling \mathcal{P}_i
- **5** This will satisfy $hR \ge |V|$.

Reduction to the **red** pebble game (3/4)

Theorem. We have: $\lceil Q/S \rceil \ \rho(2S,G) \ \geq \ |V|$.

Sketch of proof (2/3).

- **1** The upper bound on R is developed by adding S new red pebbles and showing that we may use these new pebbles to move all I/O operations in each sub-pebbling \mathcal{P}_j to either the beginning or the end of the sub-pebbling without changing the number of computation steps or I/O operations.
- ② Consider a vertex v carrying a red pebble at some time during \mathcal{P}_j and which is pebbled for the first time with a blue pebble during \mathcal{P}_j .
- Instead of pebbling v with a blue pebble, we use a new red pebble to keep red until its last output operation which is preserved and moved to the end of P_i.

Reduction to the **red** pebble game (4/4)

Theorem. We have: $\lceil Q/S \rceil \rho(2S,G) \geq |V|$.

Sketch of proof (3/3).

- Consider a vertex v carrying a **blue** pebble at the start of \mathcal{P}_j and that is given a **red** during \mathcal{P}_j ; consider the first pebbling of this kind for v.
- 2 Then, we use a **new red** pebble instead.
- **3** This allows us to move this input operation at the beginning of \mathcal{P}_j , without violating the precedence conditions of G.
- **1** It follows that that the number of vertices that are pebbled with **red** pebbles during the **computations** of \mathcal{P}_i is $\rho(2S, G)$.