
Parallel Algorithms for Arrangements

Richard Anderson* Paul Beame*
Erik Brisson’

Department of Computer Science and Engineering, FR-35
University of Washington

Seattle, Washington 98195

Abstract

We give the first efficient parallel algorithms for
solving the arrangement problem. We give a de-
terministic algorithm for the CREW PRAM which
runs in nearly optimal bounds of O(log n log* n)
time and n2/ log n processors. We generalize this
to obtain an O(logn log* n) time algorithm using
nd/logn processors for solving the problem in d
dimensions. We also give a randomized algorithm
for the EREW PRAM that constructs an arrange-
ment of n lines on-line, in which each insertion is
done in optimal O(logn) time using n/ log n pro-
cessors. Our algorithms develop new parallel data
structures and new methods for traversing an ar-
rangement .

1 Introduction

The problem of determining the geometric struc-
ture of the intersections of curves and surfaces has
a long history in mathematics ([3], [5],[14]). For the
purposes of computational geometry, a very impor-
tant special case is that of determining this struc-
ture when the curves and surfaces being intersected
are lines in IR2 or, more generally, hyperplanes in
IRd for d 1 2. In this context the problem is known
as the arrangement problem.

A simple and elegant sequential algorithm for
computing arrangements in lR2 was found by [7]
and [lo]; the latter also shows how the algorithm

‘This work was supported by the National Science
Foundation, under grants CCR-8657562 and CCR-8858799,
NSF/DARPA under grant CCR-8907960, and Digital Equip
ment Corporation.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

can be generalized to Rd. In lR2 this algorithm has
worst case running time O(n2), which is obtained
by inserting the lines o’ne after another into the ar-
rangement produced so far. In lRd the algorithm
runs in O(nd) time. Since the problem generally re-
quires that Q(nd) values be produced, the output
requirements alone show that this is optimal.

Computing arrangements is an important build-
ing block in several computational geometry al-
gorithms. In two dimensions, arrangements are
used during a pre-processing step in algorithms
for computing visibility graphs. They are also
used by algorithms for finding shortest paths that
avoid polygonal obstacles. Furthermore, the worst-
case optimal hidden surface removal algorithm of
McKenna [12] first projects the 3-dimensional prob-
lem (involving planes) onto a two-dimensional im-
age plane, then computes the 2-dimensional ar-
rangement produced in the image plane, and finally
simplifies it to produce the viewed image.

There is a substantial body of work on the sub-
ject of parallel algorithms for computational geom-
etry (e.g. [I], [4], [ll], [13]). Included in this work
are parallel algorithms for some problems related
to finding arrangements, such as computing visi-
bility from a point in 2 dimensions [4] and hidden
surface removal in restricted 3-dimensional scenes
[13]. However, finding an optimal parallel algo-
rithm for computing arrangements has remained
an open problem ([2], [ll]).

A fairly straightforward parallel algorithm for
computing arrangements can be constructed us-
ing n2/ logn processors, requiring @(log2 n) time.
Goodrich in [ll], which was the starting point for
this research, gives an output-sensitive algorithm
for computing the intersections of line segments;
however when used to find arrangements of lines,
its running time is no better than that of the
straightforward algorithm.

0 1990 ACM 089791-370-1/90/0007/0298 $1 SO 298

We present two algorithms for the arrangement
problem. The first is a deterministic algorithm
for the CREW PRAM which runs in near-optimal
O(logn log* n) time using O(n2/ log n) processors
for computing arrangements in R2. We also show
how this generalizes to an O(log n log* n) time al-
gorithm using O(nd/ log n) processors in IRd. The
second solves the on-line version of the arrangement
problem, in which lines are only available as input
one after another. It is a randomized algorithm for
the EREW PRAM that constructs an arrangement
of n lines on-line, so that each insertion is done
in optimal O(log n) time using n/ log n processors.
Both of our algorithms develop new methods for
traversing an arrangement efficiently in parallel.

Perhaps because of their perceived sequential na-
ture, very little study has been made of parallel al-
gorithms for on-line problems. However, efficient
on-line parallel algorithms can be useful in a con-
text where extremely fast response times are re-
quired in a dynamic environment. On-line prob-
lems place unique demands on parallel algorithms
because, unlike static problems, they can require ef-
ficient maintenance of data structures significantly
larger than the number of processors available. In
our on-line algorithm for computing arrangements
we encountered ,a problem requiring sophisticated
data structures developed for sequential computa-
tion.

2 Background

2.1 Problem Statement

Given a set H of n hyperplanes in IRd, where d > 2,
their arrangement A(H) is the subdivision of IRd
they create. That is, if A = {hl, . . . , h,}, and
h; and hr are the open half-spaces defined by
h;, then the faces of A(H) are {n;f=,& : & =
h;, h;, or hf}. A d escription of an arrangement
must include an enumeration of the faces, along
with their topological relationships, for instance an
incidence graph. If the input hyperplanes are in
general position, so that the intersection of any k
hyperplanes is a (d-k)-dimensional face, then A(H)
is simple. The number of k-faces in a general ar-
rangement is O(nd), and the number of k-faces in a
simple arrangement is o(nd). In the 2:dimensiona.l
case, the points, edges and regions of A(H) will be
denoted by P(H), E(H) and R(H), respectively.

We will assume that the input set of hyper-
planes forms a simple arrangement, and in the 2-
dimensional case contains no horizontal or vertical
lines. The latter assumption may be eliminated by
making a small rotation of coordinates if the input
includes horizontal or vertical lines.

For output we need to give a description of the
arrangement. In the 2-dimensional case we will
produce, for each line in H, a sorted list of its inter-
sections with the other lines of A. The incidence
graph may be produced within the same processor
and time bounds. In higher dimensions, the inci-
dence graph will be produced as output.

2.2 The Sequential Algorithm

In lR2 the arrangement problem can be solved by
brute force in O(n2 logn) time by computing all
the intersections along each line and then sorting
these n lists independently. The optimal sequential
algorithm for the arrangement problem in IR2 given
in [7] and [lo] removes the logn factor, using an
on-line algorithm which inserts each line e into the
existing arrangement of up to n lines in time O(n),
to achieve its running time.

For the purposes of illustration, view the line 1
to be inserted as being horizontal. The leftmost in-
tersection of e with the arrangement is found and
e is inserted in the list of the line that it intersects.
Then a left-to-right traversal of the arrangement is
made along I! which discovers and adds each inter-
section point involving e. Given any intersection
point p on I!, let R be the region which fZ intersects
immediately to the right of p. The next intersection
is found by traversing the portion of the boundary
of R lying above e by following the chain of edges
incident to the boundary in clockwise order (this
ordering is extended to infinite faces in the obvious
way). Figure 1 gives an illustration of the traversal.
Although it is not immediately obvious, it can be
shown that such a traversal never encounters .more
than 3n segments along the way and thus the time
for the insertion is O(n).

299

Figure 1: Traversal during sequential line insertion

3 Deterministic Algorithm for
Arrangements

3.1 Overview

There are two key elements to the deterministic
parallel algorithm. The first is the fast insertion of
a single line into an arrangement, and the second
is the fast merging of arrangements. The insert is
a parallelization of the sequential insert, which re-
quires doing the inserts in a particular order and
maintaining two extra data structures, to allow an
even distribution of processors and to speed up the
traversal of region boundaries. The merge of a set
of arrangements is done by simultaneously insert-
ing every line into every arrangement other than
its own, and then merging the results of these sepa-
rate inserts independently for each line. Somewhat
surprisingly, to obtain the most efficient algorithm,
we must slow down the ‘rate at which geometric
information is produced, as the bottleneck in our
algorithm is the standard merging of sorted lists.

The set of input lines will be denoted by Hi,.
Let H C Hi,. To insert a line e into H wiI1 mean
to create a sorted list of the intersection points be-
tween ! and the lines in H (excluding 1, if! E H).
If every line in H has been inserted into H, then
H taken with its lines’ sorted lists will be called a
sub-arrangement of A(Hi,).

The algorithm is a divide-and-conquer algorithm
which first performs a ‘setup step’ followed by
log*n ‘phases’. (Figure 2 gives a visual presentation
of the algorithm.) The setup step orders the input
lines by their slopes, and then organizes them into

log n groups of n/ log n consecutive lines (taken in
this slope ordering). Each line is then inserted into
the group which contains it. Thus the setup step
provides log n disjoint sub-arrangements, each of
size n/ log n.

Each phase takes as input a partition of Hi, into
k disjoint sub-arrangements of size n/k (in this sec-
tion, it will always be the case that k 5 logn). A
phase runs in three steps. The first step divides
the input into groups of k/ log k consecutive sub-
arrangements (in the ordering of the lines they con-
tain). It also computes two auxiliary data struc-
tures, ‘splitters’ and ‘levels’ (which will be defined
later) for each of the input sub-arrangements.

Each line appears within exactly one sub-
arrangement, and so appears in exactly one group,
which we will call the line’s group. The second step
inserts every line into each of the sub-arrangements
within the line’s group. Thus k/log k sorted lists
are created for every line.

In the third step the sorted lists for each line
are merged into one sorted list. By creating this
merged list, the line has now been inserted into its
group. Thus the output is a partition of Hi, into
log Ic disjoint sub-arrangements of size n/log Ic.

We will prove, in four lemmas, that the
setup step and each of a merge phase’s steps can
be performed in time O(log n) using n2/ logn pro-
cessors on a CREW PRAM, thus proving the main
theorem of this section:

Theorem 3.1 Giwn a set H of n lines in the
plane, the deterministic algorithm outlined above
constructs A(H) i7z time O(logn log%) using
n2 / log n processors.

3.2 Levels and Slope Ordering

The key to the insertion of a line into a sub-
arrangement is the parallelization of the sequential
traversal described earlier. This is accomplished by
distributing the available processors evenly along
the line being inserted, in particular by assigning a
processor to every log n’th intersection point, which
can be done after making an observation about the
levels of an arrangement: given a set of lines of
‘consecutive’ slope, the level structure of their ar-
rangement is the same for all lines whose slope lies
‘outside’ of their set of slopes. The first step of a
phase builds ‘vertical’ and ‘horizontal’ levels. Then

300

1 group: n lines

log log n groups: n/ log log n lines each

log ?z groups: n/ logn lines each . .-

Figure 2: Overview of deterministic algorithm, in two dimensions

the intersection of a line with the logn’th level, in
one of these two directions, can be computed, which
gives the logn’th intersection point. This will be
described in further detail below.

If e is an edge in E(H), choose a vertical line
through e which does not contain any points of
P(H). Define the vertical level of e in A(H)
to be to be the number of edges of E(H) this line
intersects below e. It is easy to check that this
is well-defined (in particular, is independent of the
choice of vertical line), given the fact that there are
no vertical lines in the input. The set of all edges
in E(H) whose level is k will be called the k-level
of A(H). Given any line e, define the intersection
of .! with level k to be the edge in level k which
intersects e. Horizontal levels are defined simiIarly.
(See figure 3.)

Each input line J! of Hi, has a slope -co <
me < 00. If H is a sub-arrangement, define
mH = minpCHnae and rn; = maxeCHme. Let 1
be a line of Bin such that me @ [mH,mj$]. If
Imel > lrnH\ we will say that 1 is vertically in-
sertable into H, and if lmel < jrnhl we will say
that C is horizontally insertable into H.

Figure 3: Example of vertical levels

301

Observation 3.2 If! is vertically insertable into
H then, with increasing y, it intersects the vertical
levels in strictly increasing order.

Proof For any region of A(H), classify its edges as
bottom edges if they lie below it, and top edges if
they lie above it. Observe that all bottom edges of
a region are of the same level k, for some k, and au
top edges of that region have the same level k+l.
By the definition of insertability, if e intersects a
region, then it intersects the bottom of the region
and the top of the region exactly once each. I

Observation 3.3 Given an arrangement A(H) of
n lines, a data structure can be built in O(logn)
time by n2/ log n processors, which allows finding
the intersection of a vertically insertable line with
any level of A(H) in time O(log n) by a single pro-
cessor.

Proof An ordering is defined on all edges in the
arrangement, first by level, then within levels from
left to right. A binary tree is built, with the edges
as leaves, in time O(log n) time using n2/ log n pro-
cessors. n

The similar observations holds for horizontally
insertable lines for increasing 2 and horizontal lev-
els.

3.3 The Algorithm

3.3.1 Setup Step

Ordering the n input lines by the their slopes is
done as a sort of n scalars in time O(log n) by n pro-
cessors. Breaking the lines into groups of n/ logn
lines can be done in constant time by n proces-
sors. Each line must now be inserted into a group
of n/ log n lines. Assign n/ log n processors to each
line. For a specific line 4!, each of its processors
finds the intersection of e with a different line in e’s
group. To sort these intersection points is done as
a sort of n/ logn scalars by n/ log n processors in
time O(log n). This gives the following lemma:

Lemma 3.4 The setup step .can be done in time
O(log n) using n2 f log n processors.

3.3.2 Auxiliary Data Structures

We now define splitters, which will facilitate the
fast traversal of large regions (those with many

Figure 4: Pointers to (downward) vertical splitter

edges). The use of splitters first appears in [6]; it
was also used in [ll]. If e is an edge of A(EI), let R
be the region below e. The splitter for e in A(H)
is the rightmost edge among the bottom edges of R.
(See figure 4.) If R has no bottom edges, then the
splitter is undefined for the edges of R. This occurs
only for the ‘bottom-most’ region, which will not
be traversed.

We will describe how to attach a pointer from ev-
ery edge to its splitter, in a sub-arrangement of n/k
lines, in time O(log n) using n2/(k logn) proces-
sors. Note that such a sub-arrangement has (n/k)2
edges, so there are logn/k edges per processor. To
begin, every edge (except one) sets a pointer to
its clockwise neighbor in the region below itself.
The exception is the right-hand infinite edge of the
bottom-most region, which points to itself. Thus
there is at most one tree for every region, whose
root is that region’s splitter (except in the case of
the bottom-most region). The goal is to have ev-
ery edge point to the root of its tree. By using
a variation of list ranking, we can set each edge’s
pointer to the root of its tree within the desired
time bounds. Note t,hat the edges of the bottom-
most region will all be pointing at that region’s
right- hand infinite edge.

To calculate levels, observe that the level of any
edge is one greater than that of its splitter, ex-
cept in the case of edges of the bottom-most region,
which all have level 0. The right-hand infinite edge
of the bottom-most edge will be the root edge

302

for the purposes of this step. The starting config-
uration for making levels is just the result of the
construction of splitters. These pointers are now
labeled with 1, unless they point at the root edge,
in which case they are labeled with 0. This gives
a tree whose root is the root edge. Again using a
variation of list-ranking, we can compute the cost
of the path from each edge along these pointers to
the root edge in the desired time bounds, which is
exactly the level of the edge,

Lemma 3.5 Given a sub-arrangement of n/k
lines, where k 5 logn, its splitters and levels can
be produced in O(log n) time using n2/(k log n) pro-
cessors.

3.3.3 Inserting a Line into a
Sub-arrangement

As a result of the ordering done in the setup step
and by merging of consecutive sub-arrangements,
whenever we do an insert the line will be either
vertically or horizontally insertable. A vertical in-
sert or a horizontal insert will be done in each
case, respectively. We will describe the vertical in-
sert of a line e into a sub-arrangement A(H) of n/k
lines, using n/(k log n) processors; the horizontal
insert is similar.

A vertical insert is done in two passes, called
traversals, the first downward and the second up-
ward; we will describe the downward pass. A sub-
arrangement of n/k lines has n/k levels. Assign a
processor to every logn’th level, and also to level
n/k. Subscript the processors by successive pos-
itive integers in order of the levels to which they
are assigned. Each processor P; first finds the in-
tersection e; of f? with its level, and computes the
intersection pi of 1 and the line containing ei. Let R
be the region below ei. The processor now begins
a clockwise traversal of the boundary of R. This
cannot actually be done edge-by-edge, as it would
take too long for large regions. Instead, the pro-
cessor immediately jumps to its splitter, and then
the clockwise search proceeds as it would in the se-
quential case. If this traversal reaches an edge e’
which intersects e, the process is started over, and
so on. The processor stops when it reaches pi-1 or
encounters an edge whose containing line intersects
! below pi-l. (See figure 5.)

The upward pass is now done, traversing bound-
aries counterclockwise, using the appropriate re-

Figure 5: Example of downward traversal

definition of splitters, etc. What needs to be proven
is that this takes time O(logn), and that each in-
tersection point of e with the lines of H is found
by either the downward or upward pass. This is
enough to give the sorted order of the intersection
points.

Lemma 3.6 The above algorithm inserts a line
into a sub-arrangement of size n/k, in time
O(log n) using n/(k log n) processors.

Proof The argument mimics that of Goodrich [11].
I

3.3.4 Merging Sorted Lists

In the third step of each phase, every line must
merge k/ log k sorted lists using the processors as-
signed to it:

Lemma 3.7 k/log k sorted lists of length n/k can
be merged in time O(logn) using n/log n proces-
sors.

Proof A balanced binary tree is formed with the
lists at the leaves. The lists are merged in rounds,
so that each round reduces the depth of the tree by
one. Thus there are log k rounds, each requiring
n/log k work, or total linear work. I

303

3.4 Generalization to Higher Dimen-
sions

Given a set H of n hyperplanes in lRd, the d-
dimensional arrangement A(H) is the subdivision
of lRd generated by H. An optimal worst case se-
quential algorithm for constructing A(H) is given
in [lo], which runs in O(nd) time. Our paral-
lel algorithm for constructing arrangements in the
plane may be used to give a near optimal al-
gorithm for d-dimensional arrangements; it runs
in time O(log n log*n), using nd/ log n processors
(note that the constant in the time bound, in both
the existing sequential algorithm and our parallel
algorithm, depends on d).

We will only give a brief sketch of the algorithm
here. Assign n d-1 / log n processors to each input
hyperplane. Processing is done independently for
each hyperplane h. First the intersection of h is
taken with every other input plane. This gives a set
Hh of n-l (d-2)-dimensional hyperplanes within
h. ‘By induction’, the set of processors assigned
to h can produce the arrangement A(Hh) in time
O(log n log*n). The resulting arrangements can be
merged in constant time per vertex.

Theorem 3.8 Given a set H of n hyperplanes
in IRd, the algorithm sketched above constructs
A(H) deterministically in time O(logn log%) us-
ing nd / log n processors.

Proof Proof by induction on dimension d. I

4 The Randomized On-line Al-
gorit hm

In this section we sketch an optimal randomized
solution to the 2-dimensional on-line version of the
problem. The on-line problem is to construct the
arrangement by inserting n lines, one at a time, in
the order that they are given. We give a random-
ized EREW PRAM algorithm which inserts each
line in O(log n) time using n/ log n processors. The
algorithm always succeeds, and succeeds within the
given time bound with high probability. Our result
shows that it is possible to achieve full speed-up for
inserting a line into an arrangement.

One reason we were interested in studying the
problem is that it is on-line. On-line problems have
not received much attention from people studying

parallel algorithms. This is surprising, since on-
line problems provide a domain where there can be
tight time constraints which motivates using a high
degree of parallelism.

An interesting aspect of our solution is that data
structures play a very important role. In the major-
ity of parallel algorithms that have been developed,
it is not necessary to use sophisticated data struc-
tures; arrays and lists have usually been sufficient.
However, for this problem we require complicated
data structures. The study of on-line parallel al-
gorithms has the potential to raise numerous inter-
esting data structure problems.

In this paper we give only a high level sketch of
the algorithm. It is a complicated algorithm and
the proof that it achieves the desired run-time is
involved. The algorithm attempts to mimic the se-
quential algorithm by performing a traversal of the
line that is being inserted. As in the previous algo-
rithm, we attempt to find a favorable distribution
of starting points along the line being added, allow-
ing independent sub-traversals. The hardest part
of the algorithm is the load balancing that is done
to make sure the traversals are all of roughly the
same length.

4.1 Load Balancing

Suppose we with to insert the line e into an ar-
rangement A(H) of n lines. We begin by selecting
a random subarrangement of A(H) that consists of
n/ log n lines. We can insert ! into the subarrange-
ment in O(logn) time by a brute force method us-
ing sorting, giving a set of intersections along the
line J?. We would like to perform a search start-
ing from each of these intersections. There will be
some variance in the lengths of these searches, aris-
ing both from the stochastic variation from picking
the lines at random, and from the size of the faces

’ that must be traversed. We look at the problem
of doing these traversals as having a set of tasks

t1 3 -* t -9 mr with xi ti 5 cn for some constant c. A
substantial number of these tasks may have run-
time much greater than log n. Our idea is to as-
sign p processors to each task, and view each of
these groups of p processors as a single ‘pseudo-
processor’. By showing that a task can be sped up
by a factor of p by assigning p processors to it, we
show that the run-time of each task can be reduced
by a factor of p at the cost of reducing the number

Figure 6: Example traversal in on-line algorithm

of available processors by a factor of p. Thus we
have a set of smaller jobs to ‘pack into a smaller
number of bins’ of the same size. We are able to
perform some load balancing so as to achieve a bet-
ter packing. Using the Cole-Vishkin [8] algorithm
we are able to execute all of the tasks with run-time
(on original processors) at most plogn.

We now turn our attention to the problem of
performing a task by a set of p processors. Each
task consists of traversing a series of segments to
detect the next intersection of 1 with the arrange-
ment. This process appears very sequential in na-
ture, since at each intersection (point of P(H) en-
countered in a traversal) we move to a different
line. We modify the traversal to get one that we .
can speed up with a collection of processors. In-
stead of changing lines at each intersection, the set
of processors looks at a collection of intersections
along a line. One of these intersections is chosen,
and the traversal proceeds along the corresponding
line. If p processors look at intersections in collec-
tions of size p2, it is easy to speed the search up
by a factor of p. Figure 6 illustrates the type of
traversal that the algorithm performs. An impor-
tant fact that must be established is that the total
length of the new traversal (summed over all tasks)
is 0(n); this requires a complicated technical argu-
ment. We do not have the space in this paper to
give this argument, or to go into the details of the
traversal.

The modified traversal does not find all of the
intersections with !. However, we can detect where
each line intersects the traversal. It follows from
the definition of the traversal that with high prob-
ability the line i intersects the traversal very close
to where 2 intersects !. This allows us to quickly
detect where these intersections occur. There are a
number of other details that we are not addressing
in this discussion. In particular, we cannot guar-
antee that we can finish all of the tasks, just most
of them. It is then necessary to have a clean-up
phase where we find the rest of the intersections.

4.2 Data Structures

One of the interesting aspects of this problem is
that the data structures that arise are non-trivial.
Data structures have not played a major role in
the development of parallel algorithms; a review of
parallel algorithms shows that in most cases lists
and arrays have been sufficient. An explanation of
why the data structures are more complicated in
this problem is that it is an on-line problem, hence
the number of processors (n/ log n) is much smaller
than the number of data items that must be kept
track of (n(n”)).

The key to our data structure is to maintain for
each line a sorted list of intersections. (Our data
structure also maintains some geometric informa-
tion, but this is not a source of difficulty.) For ev-
ery insertion of a line, we must add one intersection
to each list in O(log n) time using n/ log n proces-
sors. If we only had to worry about the insertion,
this would not be a difficult, since the on-line al-
gorithm supplies us with an adjacent intersection
to each intersection that we add. The difficulty is
that we must be able to perform binary searches
on these lists of intersections. The natural solution
is to use some form of balanced tree to represent
the list; however, that leads to Q(logn) worst case
time for an insert. In addition to being able to
perform binary search, we have additional require-
ments on the data structure: binary search between
elements separated by distance k in the list needs
to be done in time O(log k); and it must be possi-
ble to access j consecutive items in the list in time
O(j) for j Z log’i2 n.

The type of data structure that we need is a tree-
like structure that supports constant vlorst case
time insertion. The persistent data structures of

305

Driscoll et al. [9] can be modified to achieve the
desired bounds. We have also developed a sim-
pler data structure (since we do not require the full
power of persistence, and since we can make some
simplifying assumptions about the operations) that
achieves the same performance. The data struc-
ture is a balanced binary tree except that its three
bottom levels have degree O(logn) instead of two.
These levels with higher degree allow us to restrict
the amount of balancing that is performed during
the insertion of each line, so as to stay within our
resource bounds.

References

PI

PI

PI

PI

PI

WI

PI

A. Aggarwal, B. Chazelle, L. Guibas,
C. O’Dunlaing, and C. K. Yap. Parallel com-
putational geometry. Algorithmica, 3:293-326,
1988.

A. Aggarwal and J. Wein. Computational
geometry: Lecture notes for 18.409, spring
1988. Technical report, MIT Laboratory for
Computer Science, 1988. Technical Report
MIT/LCS/RSS 3.

D. Arnon, G. Collins, and S. McCallum.
Cylindrical algebraic decomposition i and ii.
SIAM Journal on Computing, 13(4):865-889,
1984.

M. J. Atallah, R. Cole, and M. T. Goodrich.
Cascading divide-and-conquer: A technique
for designing parallel algorithms. In 28th Sym-
posium on Foundations of Computer Science,
pages 151-160, 1987.

J. Canny. A new algebraic method for robot
motion planning and real geometry. In 28th
Symposium on Foundations of Computer Sci-
ence, pages 29-38, 1987.

B. Chazelle. Intersecting is easier than sorting.
In Proceedings of the 16th ACM Symposium on
Theory of Computation, pages 125-134, 1984.

B. Chazelle, L. J. Guibas, and D. T. Lee. The
power of geometric duality. In 24th Symposium
on Foundations of Computer Science, pages
217-225, 1983.

PI

PI

PO1

Pll

WI

WI

PI

306

R. Cole and U. V’ishkin. Approximate schedul-
ing, exact scheduling, and applications to par-
allel algorithms. In 27th Symposium on Foun-
dations of Computer Science, pages 478-491,
1986. Part I to appear in SIAM Journal of
Computing.

J. Driscoll, N. Sarnak, D. Sleator, and R. Tar-
jan. Making data structures persistent. Jour-
nal of Computer and System Sciences, 38:86-
124, February 1989.

H. Edelsbrunner, J. O’Rourke, and R. Seidel.
Constructing arrangements of lines and hyper-
planes with applications. SIAM Journal on
Computing, 15(2):341-363, 1986.

M. T. Goodrich. Intersecting line segments
in parallel with an output-sensitive number
of processors. In 90th Symposium on Foun-
dations of Computer Science, pages 127-136,
1989.

M. McKenna. Worst-case optimal hidden-
surface removal. ACM Tmnsactions on Graph-
ics, 6(1):19-28, 3.987.

J. H. Reif and S. Sen. Polling: A new random-
ized sampling technique for computational ge-
ometry. In Proceedings of the dlst ACM Sym-
posium on Theory of Computation, pages 394-
404, 1989.

A. Tarski. A decision method for elementary
algebra and geometry. University of California
Press, Berkeley, 1951.

