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Abstract 

We give the first efficient parallel algorithms for 
solving the arrangement problem. We give a de- 
terministic algorithm for the CREW PRAM which 
runs in nearly optimal bounds of O(log n log* n) 
time and n2/ log n processors. We generalize this 
to obtain an O(logn log* n) time algorithm using 
nd/logn processors for solving the problem in d 
dimensions. We also give a randomized algorithm 
for the EREW PRAM that constructs an arrange- 
ment of n lines on-line, in which each insertion is 
done in optimal O(logn) time using n/ log n pro- 
cessors. Our algorithms develop new parallel data 
structures and new methods for traversing an ar- 
rangement . 

1 Introduction 

The problem of determining the geometric struc- 
ture of the intersections of curves and surfaces has 
a long history in mathematics ([3], [5],[14]). For the 
purposes of computational geometry, a very impor- 
tant special case is that of determining this struc- 
ture when the curves and surfaces being intersected 
are lines in IR2 or, more generally, hyperplanes in 
IRd for d 1 2. In this context the problem is known 
as the arrangement problem. 

A simple and elegant sequential algorithm for 
computing arrangements in lR2 was found by [7] 
and [lo]; the latter also shows how the algorithm 
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can be generalized to Rd. In lR2 this algorithm has 
worst case running time O(n2), which is obtained 
by inserting the lines o’ne after another into the ar- 
rangement produced so far. In lRd the algorithm 
runs in O(nd) time. Since the problem generally re- 
quires that Q(nd) values be produced, the output 
requirements alone show that this is optimal. 

Computing arrangements is an important build- 
ing block in several computational geometry al- 
gorithms. In two dimensions, arrangements are 
used during a pre-processing step in algorithms 
for computing visibility graphs. They are also 
used by algorithms for finding shortest paths that 
avoid polygonal obstacles. Furthermore, the worst- 
case optimal hidden surface removal algorithm of 
McKenna [12] first projects the 3-dimensional prob- 
lem (involving planes) onto a two-dimensional im- 
age plane, then computes the 2-dimensional ar- 
rangement produced in the image plane, and finally 
simplifies it to produce the viewed image. 

There is a substantial body of work on the sub- 
ject of parallel algorithms for computational geom- 
etry (e.g. [I], [4], [ll], [13]). Included in this work 
are parallel algorithms for some problems related 
to finding arrangements, such as computing visi- 
bility from a point in 2 dimensions [4] and hidden 
surface removal in restricted 3-dimensional scenes 
[13]. However, finding an optimal parallel algo- 
rithm for computing arrangements has remained 
an open problem ([2], [ll]). 

A fairly straightforward parallel algorithm for 
computing arrangements can be constructed us- 
ing n2/ logn processors, requiring @(log2 n) time. 
Goodrich in [ll], which was the starting point for 
this research, gives an output-sensitive algorithm 
for computing the intersections of line segments; 
however when used to find arrangements of lines, 
its running time is no better than that of the 
straightforward algorithm. 
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We present two algorithms for the arrangement 
problem. The first is a deterministic algorithm 
for the CREW PRAM which runs in near-optimal 
O(logn log* n) time using O(n2/ log n) processors 
for computing arrangements in R2. We also show 
how this generalizes to an O(log n log* n) time al- 
gorithm using O(nd/ log n) processors in IRd. The 
second solves the on-line version of the arrangement 
problem, in which lines are only available as input 
one after another. It is a randomized algorithm for 
the EREW PRAM that constructs an arrangement 
of n lines on-line, so that each insertion is done 
in optimal O(log n) time using n/ log n processors. 
Both of our algorithms develop new methods for 
traversing an arrangement efficiently in parallel. 

Perhaps because of their perceived sequential na- 
ture, very little study has been made of parallel al- 
gorithms for on-line problems. However, efficient 
on-line parallel algorithms can be useful in a con- 
text where extremely fast response times are re- 
quired in a dynamic environment. On-line prob- 
lems place unique demands on parallel algorithms 
because, unlike static problems, they can require ef- 
ficient maintenance of data structures significantly 
larger than the number of processors available. In 
our on-line algorithm for computing arrangements 
we encountered ,a problem requiring sophisticated 
data structures developed for sequential computa- 
tion. 

2 Background 

2.1 Problem Statement 

Given a set H of n hyperplanes in IRd, where d > 2, 
their arrangement A(H) is the subdivision of IRd 
they create. That is, if A = {hl, . . . , h,}, and 
h; and hr are the open half-spaces defined by 
h;, then the faces of A(H) are {n;f=,& : & = 
h;, h;, or hf}. A d escription of an arrangement 
must include an enumeration of the faces, along 
with their topological relationships, for instance an 
incidence graph. If the input hyperplanes are in 
general position, so that the intersection of any k 
hyperplanes is a (d-k)-dimensional face, then A(H) 
is simple. The number of k-faces in a general ar- 
rangement is O(nd), and the number of k-faces in a 
simple arrangement is o(nd). In the 2:dimensiona.l 
case, the points, edges and regions of A(H) will be 
denoted by P(H), E(H) and R(H), respectively. 

We will assume that the input set of hyper- 
planes forms a simple arrangement, and in the 2- 
dimensional case contains no horizontal or vertical 
lines. The latter assumption may be eliminated by 
making a small rotation of coordinates if the input 
includes horizontal or vertical lines. 

For output we need to give a description of the 
arrangement. In the 2-dimensional case we will 
produce, for each line in H, a sorted list of its inter- 
sections with the other lines of A. The incidence 
graph may be produced within the same processor 
and time bounds. In higher dimensions, the inci- 
dence graph will be produced as output. 

2.2 The Sequential Algorithm 

In lR2 the arrangement problem can be solved by 
brute force in O(n2 logn) time by computing all 
the intersections along each line and then sorting 
these n lists independently. The optimal sequential 
algorithm for the arrangement problem in IR2 given 
in [7] and [lo] removes the logn factor, using an 
on-line algorithm which inserts each line e into the 
existing arrangement of up to n lines in time O(n), 
to achieve its running time. 

For the purposes of illustration, view the line 1 
to be inserted as being horizontal. The leftmost in- 
tersection of e with the arrangement is found and 
e is inserted in the list of the line that it intersects. 
Then a left-to-right traversal of the arrangement is 
made along I! which discovers and adds each inter- 
section point involving e. Given any intersection 
point p on I!, let R be the region which fZ intersects 
immediately to the right of p. The next intersection 
is found by traversing the portion of the boundary 
of R lying above e by following the chain of edges 
incident to the boundary in clockwise order (this 
ordering is extended to infinite faces in the obvious 
way). Figure 1 gives an illustration of the traversal. 
Although it is not immediately obvious, it can be 
shown that such a traversal never encounters .more 
than 3n segments along the way and thus the time 
for the insertion is O(n). 
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Figure 1: Traversal during sequential line insertion 

3 Deterministic Algorithm for 
Arrangements 

3.1 Overview 

There are two key elements to the deterministic 
parallel algorithm. The first is the fast insertion of 
a single line into an arrangement, and the second 
is the fast merging of arrangements. The insert is 
a parallelization of the sequential insert, which re- 
quires doing the inserts in a particular order and 
maintaining two extra data structures, to allow an 
even distribution of processors and to speed up the 
traversal of region boundaries. The merge of a set 
of arrangements is done by simultaneously insert- 
ing every line into every arrangement other than 
its own, and then merging the results of these sepa- 
rate inserts independently for each line. Somewhat 
surprisingly, to obtain the most efficient algorithm, 
we must slow down the ‘rate at which geometric 
information is produced, as the bottleneck in our 
algorithm is the standard merging of sorted lists. 

The set of input lines will be denoted by Hi,. 
Let H C Hi,. To insert a line e into H wiI1 mean 
to create a sorted list of the intersection points be- 
tween ! and the lines in H (excluding 1, if! E H). 
If every line in H has been inserted into H, then 
H taken with its lines’ sorted lists will be called a 
sub-arrangement of A( Hi,). 

The algorithm is a divide-and-conquer algorithm 
which first performs a ‘setup step’ followed by 
log*n ‘phases’. (Figure 2 gives a visual presentation 
of the algorithm.) The setup step orders the input 
lines by their slopes, and then organizes them into 

log n groups of n/ log n consecutive lines (taken in 
this slope ordering). Each line is then inserted into 
the group which contains it. Thus the setup step 
provides log n disjoint sub-arrangements, each of 
size n/ log n. 

Each phase takes as input a partition of Hi, into 
k disjoint sub-arrangements of size n/k (in this sec- 
tion, it will always be the case that k 5 logn). A 
phase runs in three steps. The first step divides 
the input into groups of k/ log k consecutive sub- 
arrangements (in the ordering of the lines they con- 
tain). It also computes two auxiliary data struc- 
tures, ‘splitters’ and ‘levels’ (which will be defined 
later) for each of the input sub-arrangements. 

Each line appears within exactly one sub- 
arrangement, and so appears in exactly one group, 
which we will call the line’s group. The second step 
inserts every line into each of the sub-arrangements 
within the line’s group. Thus k/log k sorted lists 
are created for every line. 

In the third step the sorted lists for each line 
are merged into one sorted list. By creating this 
merged list, the line has now been inserted into its 
group. Thus the output is a partition of Hi, into 
log Ic disjoint sub-arrangements of size n/log Ic. 

We will prove, in four lemmas, that the 
setup step and each of a merge phase’s steps can 
be performed in time O(log n) using n2/ logn pro- 
cessors on a CREW PRAM, thus proving the main 
theorem of this section: 

Theorem 3.1 Giwn a set H of n lines in the 
plane, the deterministic algorithm outlined above 
constructs A(H) i7z time O(logn log%) using 
n2 / log n processors. 

3.2 Levels and Slope Ordering 

The key to the insertion of a line into a sub- 
arrangement is the parallelization of the sequential 
traversal described earlier. This is accomplished by 
distributing the available processors evenly along 
the line being inserted, in particular by assigning a 
processor to every log n’th intersection point, which 
can be done after making an observation about the 
levels of an arrangement: given a set of lines of 
‘consecutive’ slope, the level structure of their ar- 
rangement is the same for all lines whose slope lies 
‘outside’ of their set of slopes. The first step of a 
phase builds ‘vertical’ and ‘horizontal’ levels. Then 
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1 group: n lines 

log log n groups: n/ log log n lines each 

log ?z groups: n/ logn lines each . .- 

Figure 2: Overview of deterministic algorithm, in two dimensions 

the intersection of a line with the logn’th level, in 
one of these two directions, can be computed, which 
gives the logn’th intersection point. This will be 
described in further detail below. 

If e is an edge in E(H), choose a vertical line 
through e which does not contain any points of 
P(H). Define the vertical level of e in A(H) 
to be to be the number of edges of E(H) this line 
intersects below e. It is easy to check that this 
is well-defined (in particular, is independent of the 
choice of vertical line), given the fact that there are 
no vertical lines in the input. The set of all edges 
in E(H) whose level is k will be called the k-level 
of A(H). Given any line e, define the intersection 
of .! with level k to be the edge in level k which 
intersects e. Horizontal levels are defined simiIarly. 
(See figure 3.) 

Each input line J! of Hi, has a slope -co < 
me < 00. If H is a sub-arrangement, define 
mH = minpCHnae and rn; = maxeCHme. Let 1 
be a line of Bin such that me @ [mH,mj$]. If 
Imel > lrnH\ we will say that 1 is vertically in- 
sertable into H, and if lmel < jrnhl we will say 
that C is horizontally insertable into H. 

Figure 3: Example of vertical levels 
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Observation 3.2 If! is vertically insertable into 
H then, with increasing y, it intersects the vertical 
levels in strictly increasing order. 

Proof For any region of A(H), classify its edges as 
bottom edges if they lie below it, and top edges if 
they lie above it. Observe that all bottom edges of 
a region are of the same level k, for some k, and au 
top edges of that region have the same level k+l. 
By the definition of insertability, if e intersects a 
region, then it intersects the bottom of the region 
and the top of the region exactly once each. I 

Observation 3.3 Given an arrangement A(H) of 
n lines, a data structure can be built in O(logn) 
time by n2/ log n processors, which allows finding 
the intersection of a vertically insertable line with 
any level of A(H) in time O(log n) by a single pro- 
cessor. 

Proof An ordering is defined on all edges in the 
arrangement, first by level, then within levels from 
left to right. A binary tree is built, with the edges 
as leaves, in time O(log n) time using n2/ log n pro- 
cessors. n 

The similar observations holds for horizontally 
insertable lines for increasing 2 and horizontal lev- 
els. 

3.3 The Algorithm 

3.3.1 Setup Step 

Ordering the n input lines by the their slopes is 
done as a sort of n scalars in time O(log n) by n pro- 
cessors. Breaking the lines into groups of n/ logn 
lines can be done in constant time by n proces- 
sors. Each line must now be inserted into a group 
of n/ log n lines. Assign n/ log n processors to each 
line. For a specific line 4!, each of its processors 
finds the intersection of e with a different line in e’s 
group. To sort these intersection points is done as 
a sort of n/ logn scalars by n/ log n processors in 
time O(log n). This gives the following lemma: 

Lemma 3.4 The setup step .can be done in time 
O(log n) using n2 f log n processors. 

3.3.2 Auxiliary Data Structures 

We now define splitters, which will facilitate the 
fast traversal of large regions (those with many 

Figure 4: Pointers to (downward) vertical splitter 

edges). The use of splitters first appears in [6]; it 
was also used in [ll]. If e is an edge of A(EI), let R 
be the region below e. The splitter for e in A(H) 
is the rightmost edge among the bottom edges of R. 
(See figure 4.) If R has no bottom edges, then the 
splitter is undefined for the edges of R. This occurs 
only for the ‘bottom-most’ region, which will not 
be traversed. 

We will describe how to attach a pointer from ev- 
ery edge to its splitter, in a sub-arrangement of n/k 
lines, in time O(log n) using n2/(k logn) proces- 
sors. Note that such a sub-arrangement has (n/k)2 
edges, so there are logn/k edges per processor. To 
begin, every edge (except one) sets a pointer to 
its clockwise neighbor in the region below itself. 
The exception is the right-hand infinite edge of the 
bottom-most region, which points to itself. Thus 
there is at most one tree for every region, whose 
root is that region’s splitter (except in the case of 
the bottom-most region). The goal is to have ev- 
ery edge point to the root of its tree. By using 
a variation of list ranking, we can set each edge’s 
pointer to the root of its tree within the desired 
time bounds. Note t,hat the edges of the bottom- 
most region will all be pointing at that region’s 
right- hand infinite edge. 

To calculate levels, observe that the level of any 
edge is one greater than that of its splitter, ex- 
cept in the case of edges of the bottom-most region, 
which all have level 0. The right-hand infinite edge 
of the bottom-most edge will be the root edge 
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for the purposes of this step. The starting config- 
uration for making levels is just the result of the 
construction of splitters. These pointers are now 
labeled with 1, unless they point at the root edge, 
in which case they are labeled with 0. This gives 
a tree whose root is the root edge. Again using a 
variation of list-ranking, we can compute the cost 
of the path from each edge along these pointers to 
the root edge in the desired time bounds, which is 
exactly the level of the edge, 

Lemma 3.5 Given a sub-arrangement of n/k 
lines, where k 5 logn, its splitters and levels can 
be produced in O(log n) time using n2/(k log n) pro- 
cessors. 

3.3.3 Inserting a Line into a 
Sub-arrangement 

As a result of the ordering done in the setup step 
and by merging of consecutive sub-arrangements, 
whenever we do an insert the line will be either 
vertically or horizontally insertable. A vertical in- 
sert or a horizontal insert will be done in each 
case, respectively. We will describe the vertical in- 
sert of a line e into a sub-arrangement A(H) of n/k 
lines, using n/( k log n) processors; the horizontal 
insert is similar. 

A vertical insert is done in two passes, called 
traversals, the first downward and the second up- 
ward; we will describe the downward pass. A sub- 
arrangement of n/k lines has n/k levels. Assign a 
processor to every logn’th level, and also to level 
n/k. Subscript the processors by successive pos- 
itive integers in order of the levels to which they 
are assigned. Each processor P; first finds the in- 
tersection e; of f? with its level, and computes the 
intersection pi of 1 and the line containing ei. Let R 
be the region below ei. The processor now begins 
a clockwise traversal of the boundary of R. This 
cannot actually be done edge-by-edge, as it would 
take too long for large regions. Instead, the pro- 
cessor immediately jumps to its splitter, and then 
the clockwise search proceeds as it would in the se- 
quential case. If this traversal reaches an edge e’ 
which intersects e, the process is started over, and 
so on. The processor stops when it reaches pi-1 or 
encounters an edge whose containing line intersects 
! below pi-l. (See figure 5.) 

The upward pass is now done, traversing bound- 
aries counterclockwise, using the appropriate re- 

Figure 5: Example of downward traversal 

definition of splitters, etc. What needs to be proven 
is that this takes time O(logn), and that each in- 
tersection point of e with the lines of H is found 
by either the downward or upward pass. This is 
enough to give the sorted order of the intersection 
points. 

Lemma 3.6 The above algorithm inserts a line 
into a sub-arrangement of size n/k, in time 
O(log n) using n/(k log n) processors. 

Proof The argument mimics that of Goodrich [11]. 
I 

3.3.4 Merging Sorted Lists 

In the third step of each phase, every line must 
merge k/ log k sorted lists using the processors as- 
signed to it: 

Lemma 3.7 k/log k sorted lists of length n/k can 
be merged in time O(logn) using n/log n proces- 
sors. 

Proof A balanced binary tree is formed with the 
lists at the leaves. The lists are merged in rounds, 
so that each round reduces the depth of the tree by 
one. Thus there are log k rounds, each requiring 
n/log k work, or total linear work. I 
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3.4 Generalization to Higher Dimen- 
sions 

Given a set H of n hyperplanes in lRd, the d- 
dimensional arrangement A(H) is the subdivision 
of lRd generated by H. An optimal worst case se- 
quential algorithm for constructing A(H) is given 
in [lo], which runs in O(nd) time. Our paral- 
lel algorithm for constructing arrangements in the 
plane may be used to give a near optimal al- 
gorithm for d-dimensional arrangements; it runs 
in time O(log n log*n), using nd/ log n processors 
(note that the constant in the time bound, in both 
the existing sequential algorithm and our parallel 
algorithm, depends on d). 

We will only give a brief sketch of the algorithm 
here. Assign n d-1 / log n processors to each input 
hyperplane. Processing is done independently for 
each hyperplane h. First the intersection of h is 
taken with every other input plane. This gives a set 
Hh of n-l (d-2)-dimensional hyperplanes within 
h. ‘By induction’, the set of processors assigned 
to h can produce the arrangement A(Hh) in time 
O(log n log*n). The resulting arrangements can be 
merged in constant time per vertex. 

Theorem 3.8 Given a set H of n hyperplanes 
in IRd, the algorithm sketched above constructs 
A(H) deterministically in time O(logn log%) us- 
ing nd / log n processors. 

Proof Proof by induction on dimension d. I 

4 The Randomized On-line Al- 
gorit hm 

In this section we sketch an optimal randomized 
solution to the 2-dimensional on-line version of the 
problem. The on-line problem is to construct the 
arrangement by inserting n lines, one at a time, in 
the order that they are given. We give a random- 
ized EREW PRAM algorithm which inserts each 
line in O(log n) time using n/ log n processors. The 
algorithm always succeeds, and succeeds within the 
given time bound with high probability. Our result 
shows that it is possible to achieve full speed-up for 
inserting a line into an arrangement. 

One reason we were interested in studying the 
problem is that it is on-line. On-line problems have 
not received much attention from people studying 

parallel algorithms. This is surprising, since on- 
line problems provide a domain where there can be 
tight time constraints which motivates using a high 
degree of parallelism. 

An interesting aspect of our solution is that data 
structures play a very important role. In the major- 
ity of parallel algorithms that have been developed, 
it is not necessary to use sophisticated data struc- 
tures; arrays and lists have usually been sufficient. 
However, for this problem we require complicated 
data structures. The study of on-line parallel al- 
gorithms has the potential to raise numerous inter- 
esting data structure problems. 

In this paper we give only a high level sketch of 
the algorithm. It is a complicated algorithm and 
the proof that it achieves the desired run-time is 
involved. The algorithm attempts to mimic the se- 
quential algorithm by performing a traversal of the 
line that is being inserted. As in the previous algo- 
rithm, we attempt to find a favorable distribution 
of starting points along the line being added, allow- 
ing independent sub-traversals. The hardest part 
of the algorithm is the load balancing that is done 
to make sure the traversals are all of roughly the 
same length. 

4.1 Load Balancing 

Suppose we with to insert the line e into an ar- 
rangement A(H) of n lines. We begin by selecting 
a random subarrangement of A(H) that consists of 
n/ log n lines. We can insert ! into the subarrange- 
ment in O(logn) time by a brute force method us- 
ing sorting, giving a set of intersections along the 
line J?. We would like to perform a search start- 
ing from each of these intersections. There will be 
some variance in the lengths of these searches, aris- 
ing both from the stochastic variation from picking 
the lines at random, and from the size of the faces 

’ that must be traversed. We look at the problem 
of doing these traversals as having a set of tasks 

t1 3 -* t -9 mr with xi ti 5 cn for some constant c. A 
substantial number of these tasks may have run- 
time much greater than log n. Our idea is to as- 
sign p processors to each task, and view each of 
these groups of p processors as a single ‘pseudo- 
processor’. By showing that a task can be sped up 
by a factor of p by assigning p processors to it, we 
show that the run-time of each task can be reduced 
by a factor of p at the cost of reducing the number 



Figure 6: Example traversal in on-line algorithm 

of available processors by a factor of p. Thus we 
have a set of smaller jobs to ‘pack into a smaller 
number of bins’ of the same size. We are able to 
perform some load balancing so as to achieve a bet- 
ter packing. Using the Cole-Vishkin [8] algorithm 
we are able to execute all of the tasks with run-time 
(on original processors) at most plogn. 

We now turn our attention to the problem of 
performing a task by a set of p processors. Each 
task consists of traversing a series of segments to 
detect the next intersection of 1 with the arrange- 
ment. This process appears very sequential in na- 
ture, since at each intersection (point of P(H) en- 
countered in a traversal) we move to a different 
line. We modify the traversal to get one that we . 
can speed up with a collection of processors. In- 
stead of changing lines at each intersection, the set 
of processors looks at a collection of intersections 
along a line. One of these intersections is chosen, 
and the traversal proceeds along the corresponding 
line. If p processors look at intersections in collec- 
tions of size p2, it is easy to speed the search up 
by a factor of p. Figure 6 illustrates the type of 
traversal that the algorithm performs. An impor- 
tant fact that must be established is that the total 
length of the new traversal (summed over all tasks) 
is 0(n); this requires a complicated technical argu- 
ment. We do not have the space in this paper to 
give this argument, or to go into the details of the 
traversal. 

The modified traversal does not find all of the 
intersections with !. However, we can detect where 
each line intersects the traversal. It follows from 
the definition of the traversal that with high prob- 
ability the line i intersects the traversal very close 
to where 2 intersects !. This allows us to quickly 
detect where these intersections occur. There are a 
number of other details that we are not addressing 
in this discussion. In particular, we cannot guar- 
antee that we can finish all of the tasks, just most 
of them. It is then necessary to have a clean-up 
phase where we find the rest of the intersections. 

4.2 Data Structures 

One of the interesting aspects of this problem is 
that the data structures that arise are non-trivial. 
Data structures have not played a major role in 
the development of parallel algorithms; a review of 
parallel algorithms shows that in most cases lists 
and arrays have been sufficient. An explanation of 
why the data structures are more complicated in 
this problem is that it is an on-line problem, hence 
the number of processors (n/ log n) is much smaller 
than the number of data items that must be kept 
track of (n(n”)). 

The key to our data structure is to maintain for 
each line a sorted list of intersections. (Our data 
structure also maintains some geometric informa- 
tion, but this is not a source of difficulty.) For ev- 
ery insertion of a line, we must add one intersection 
to each list in O(log n) time using n/ log n proces- 
sors. If we only had to worry about the insertion, 
this would not be a difficult, since the on-line al- 
gorithm supplies us with an adjacent intersection 
to each intersection that we add. The difficulty is 
that we must be able to perform binary searches 
on these lists of intersections. The natural solution 
is to use some form of balanced tree to represent 
the list; however, that leads to Q(logn) worst case 
time for an insert. In addition to being able to 
perform binary search, we have additional require- 
ments on the data structure: binary search between 
elements separated by distance k in the list needs 
to be done in time O(log k); and it must be possi- 
ble to access j consecutive items in the list in time 
O(j) for j Z log’i2 n. 

The type of data structure that we need is a tree- 
like structure that supports constant vlorst case 
time insertion. The persistent data structures of 
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Driscoll et al. [9] can be modified to achieve the 
desired bounds. We have also developed a sim- 
pler data structure (since we do not require the full 
power of persistence, and since we can make some 
simplifying assumptions about the operations) that 
achieves the same performance. The data struc- 
ture is a balanced binary tree except that its three 
bottom levels have degree O(logn) instead of two. 
These levels with higher degree allow us to restrict 
the amount of balancing that is performed during 
the insertion of each line, so as to stay within our 
resource bounds. 
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