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A b s t r a c t .  We present the design and implementation of a parallel algorithm for computing 
Gr5bner bases on distributed memory multiprocessors. The parallel algorithm is irregular both in 
space and time: the data structures are dynamic pointer-based structures and the computations on 
the structures have unpredictable duration. The algorithm is presented as a series of refinements 
on a transition rule program, in which computation proceeds by nondeterministic invocations 
of guarded commands. Two key data structures, a set and a priority queue, are distributed 
across processors in the parallel algorithm. The data structures are designed for high throughput 
and latency tolerance, as appropriate for distributed memory machines. The programming style 
represents a compromise between shared-memory and message-passing models. The distributed 
nature of the data structures shows through their interface in that the semantics are weaker 
than with shared atomic objects, but they still provide a shared abstraction that can be used 
for reasoning about program correctness. In the data structure design there is a classic trade-off 
between locality and load balance. We argue that this is best solved by designing scheduling 
structures in tandem with the state data structures, since the decision to replicate or partition 
state affects the overhead of dynamically moving tasks. 

Keywords :  Parallel computing, distributed data structures, GrSbner basis, software caching, 
relaxed consistency, load balancing. 

1. I n t r o d u c t i o n  

Symbol i c  a lgebra  app l i ca t ions  are  chal lenging t a rge t s  for para l le l i sm,  because  t h e y  
have i r regu la r  d a t a  s t ruc tures ,  unp red i c t ab l e  c o m p u t a t i o n  t imes ,  and  asynchronous ,  
i r r egu la r  communica t ion .  In  th is  pape r  we descr ibe  t he  design and  i m p l e m e n t a t i o n  
of  one such app l i ca t ion ,  t he  GrSbner  basis  c o m p u t a t i o n ,  on c o n t e m p o r a r y  message-  
pass ing  mul t ip rocessors .  The  i m p l e m e n t a t i o n  relies on two g loba l ly  sha red  d a t a  
s t ruc tu re s  t h a t  are  des igned to  provide  high t h r o u g h p u t  and  l a t ency  to le rance .  
High t h r o u g h p u t ,  m e a s u r e d  by  the  number  of ope ra t ions  t h a t  can be  c o m p l e t e d  in 
un i t  t ime ,  is of ten more  va luab le  t h a n  low execut ion  t ime  of i nd iv idua l  opera t ions ,  
because  t h e r e  is enough para l l e l i sm to keep m a n y  ope ra t ions  runn ing  in para l l e l  [16]. 
L a t e n c y  to l e rance  is a more  real is t ic  goal  t h a n  low latency,  s ince some ope ra t i ons  
requi re  commun ica t i on  and  r emo te  computa t ion ;  l a t ency  to le rance  is o b t a i n e d  b y  
m a k i n g  the  ope ra t i ons  sp l i t -phase ,  so t h a t  a single processor  m a y  have mul t ip l e  
ope ra t i ons  ou t s t and ing .  
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Research Initiation Award (number CCR-9210260). The information presented here does not necessarily 
reflect the position or the policy of the Government and no official endorsement should be inferred. 
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The GrSbner basis application is used to solve a system of multivariate non-linear 
polynomial equations, i.e., to find the roots of a set of such polynomials. Given a set 
of polynomials, we compute another set called their GrSbner basis, which has the 
same roots, but for which the roots may be computed more easily [8]. Computing 
the GrSbner basis is analogous to doing Gaussian elimination on a linear system, 
with the GrSbner basis playing the role of the triangularized system. The Gr6bner 
basis computation is entirely symbolic; it computes on a set of polynomials rather 
than vectors and matrices. Systems of non-linear equations arise in a large number 
of problem domains, and the applicability of the GrSbner basis computation is 
limited only by its performance. 

To expose the parallelism in the GrSbner basis algorithm, we recast the sequential 
algorithm as a nondeterministic procedure defined by a set of guarded commands, 
called rules. The execution proceeds by repeatedly firing rules whose guards are 
enabled. This eliminates unnecessary serialization that  is present in a determin- 
istic description of the algorithm. The program is refined until the rules can be 
executed concurrently with only small amounts of synchronization, and the shared 
data  structures can be replaced by distributed ones. 

Not surprisingly, one of the hardest problems in the data  structure design is to 
address the trade-off between locality and load balance. Load balance demands 
that  computation (and therefore data) be spread out across the machines, while 
locality requires that  each computation is done on the processor tha t  owns its data, 
typically the processor that  created the computation. The two data  structures in 
our design address these issues in a synergistic manner: a set of polynomials is 
dynamically cached on multiple processors, giving good locality to the tasks that  
use the polynomials, and a randomized scheduling queue is used to provide good 
dynamic load balance. Had we chosen to partit ion the polynomial set, a randomized 
scheduler would have performed quite poorly, since the chance that  a task would 
be scheduled on a processor that  owned the necessary data  would be small. 

The  paper is organized as follows. In Section 2 we describe the basic structure of 
the GrSbner basis computation and outline an approach for parallelization. This 
approach leads to the design of two distributed data  structures, which are presented 
in Section 3 using an application-independent point of view. Incorporating the 
data  structures back into the GrSbner basis algorithm changes the algorithm, as 
described in Section 4, since the data structures provide weaker semantics than 
assumed in the earlier algorithm. Our design is sufficiently formal tha t  a proof of 
correctness can be constructed simultaneously. In this paper, we only state the 
main results needed for correctness, and omit the proofs. A detailed correctness 
proof can be found in [13]. Details of implementation and performance are given 
in Section 5. A review of related work is presented in Section 6 and concluding 
remarks are made in Section 7. 

2. GrSbner Basis  C o m p u t a t i o n  

In this section we introduce the notion of a GrSbner basis, review Buchberger's 
sequential algorithm, and formulate it as a set of transition rules. The underlying 
assumption is that  the operations on these data structures are atomic. From this 
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parallel algorithm, the main data structures are identified and some of their usage 
characteristics obtained. For example, the data structure implementations will be 
quite different for structures that  are frequently written than for those that  are 
mostly read. This lays the groundwork for the design of distributed data  structures 
in Section 3, which are incorporated into the GrSbner basis algorithm in Section 4. 

The first sequential algorithm for finding GrSbner bases was given by Buch- 
berger [8]. Given a set of polynomials, it produces another set of polynomials 
with the same roots and additional properties that  make it easier to compute those 
roots. The new set, called the GrSbner basis, is analogous to a triangular set of 
linear equations, which can be solved by substitution. The two basic operations in 
computing a GrSbner basis are to take two polynomials and combine them into a 
scaled sum, and to simplify a polynomial by subtracting multiples of other polyno- 
mials. 

Polynomials are defined by a set of coefficients and a set of variables. In general, 
the coefficients may be taken from an arbitrary field, and there are applications 
of GrSbner basis in which the coefficients are not simply numbers, but, for exam- 
ple, are themselves ratios of polynomials. Although our implementation supports 
only rational coefficients, our algorithm may be used with coefficients from an arbi- 
t ra ry  field, so we use this general formulation in stating the problem. However, the 
reader may safely consider the special case in which coefficients are rational num- 
bers on which exact arithmetic is performed. Our examples will use only rational 
coefficients. 

2.1. N o t a t i o n  

We introduce some notation to define the problem. Let K be a field and xl ,  ..., Xn 
be variables, arbitrarily ordered as Xl > x2 > . . .  > xn. Then K[xl ,  ..., Xn] defines 
a ring of polynomials under standard polynomial arithmetic. A polynomial is a 
sum of monomials scaled by coefficients. Monomials are of the form x~. . .xni~,  
and coefficients are elements in K.  A total order ~- on monomials is admissible 
if for all monomials a,p,q it satisfies (1) p _ 1 (note that  1 = x °. . .x°n) and 
(2) p ~ q  ~ a p ~ a q ,  w h e r e p ~ q i f p ~ - q o r p = q .  

Example: A monomial p looks like x~ 1 - . . x ~  ~, where Q > 0, 1 _< g < n. One .-:- 
c o m m o n l y  used admissible ordering is the lexieographie ordering: p = x~ 1 . . .  x~ ' is 
greater t h a n q = x ~  1 . . - x~  n iff3g, l < ~ < n : Q > j ~ , a n d V £  t : l < ~ < g , Q ,  = j~ , .  
Thus, with x > y > z, we have xy 2 > yl°z.  [] 

Assume that  an admissible ordering ~- is specified on monomials. By conven- 
tion, polynomials are written with their monomials in decreasing order of ~-, with 
at most one instance of a given monomial. TERM(p, i) denotes the i-th term of 
polynomial p. A term contains the coefficient and the monomial: TERM(p, i) = 
COEF(p,i) X MoNo(p, i ) .  The  head term of a polynomial p is the leading term: 
HTERM(p) = TERM(p, 1). Similarly, HCOEF(p) = COEF(p, 1) and HMONO(p) = 
MONO(p, 1). HMONO, HCOEF and HTERM are naturally extended to sets of poly- 
nomials: HMONO(S) = {HMONO(p) : p C S}, etc. The admissible ordering ~- is 
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extended to polynomials by defining p ~- q iff HMONO(p) ~ HMONO(q), and p ~ q 
iff HMONO(p) __ HMONO(q). 

Example: Given variables x > y > z and lexicographic ordering on monomials, 
polynomial p = 2x2yz 3 - 7xy 1° + z is in canonical form with HTERM(p) = 2x2yz 3, 
HMONO(p) = x2yz 3 and HCOEF(p) = 2. [] 

The ideal of a given set S of polynomials is the set of all polynomials that  can be 
expressed as polynomial multiples of the elements in S, i.e., 

I D E A L ( S ) = { s ~ E s p s : p c K [ x l , . . . , X n ] } .  (1) 

In Gaussian elimination, we use the property that  scaling the equations and adding 
them does not affect the solution (as long as we use non-singular transformations); 
the analog is t rue of GrSbner basis computation. We define two operations, REDUCE 
and S P O L ,  each of which scales its two argument polynomials by two terms and 
computes their scaled sum. As in Gaussian elimination, the motive is to cancel 
terms and get a simpler set of equations. 

The first operation is polynomial reduction. Given polynomials p and r such that  
HMONO(r) divides MONO(p, i) for some i, r is said to reduce p to p', given by: 

TERM(p, i) 
p' = REDUCE(p,{r}) = p HTERM(r) x r. (2) 

Note that  TERM(p, i) does not exist in p~, and therefore p ~ p~. Reduction is used to 
eliminate redundant polynomials in Gr6bner basis computation, much like scaling 
and summing rows zeros out linearly dependent rows in Gaussian elimination. 

Example: If p = 2x2yz a - 7xy 1° + z and r = 5xyz - 3 then r reduces p to p~ = 

p - [ ~ x z 2  I. r = -7xy  1° + 6xz2 + z. [] 

Reduction by a set S of polynomials is done by repeatedly reducing p by some 
element of S. When no element of S can reduce p, it is irreducible or in normal 
form, in which case NORMAL?(/), ~q) is true. The collection of all possible normal 
forms of p when reduced by S is denoted NFs(p).  The zero polynomial, 0, is in 
normal form with respect to any S. 

The second operation is s-polynomial computation. For this, we will need to 
define the highest common factor of two monomials: 

HCF(x~ i~ x j l  ' min( i l , j l )  . xmin( in , jn )  
= X l  - -  • ( 3 )  

Given polynomials Pl and P2, with head terms klml  and k2m2 respectively, their 
s-polynomial is given by 

k2m2 klml  
SPOL(pl,p2) ---- Pl HCF(ml, m2) P2 HCF(ml, m2)" (4) 
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Example: Given polynomials p = x - 13y 2 - 12z 3 and q = x 2 - xy  + 92z under 
lexicographic ordering x > y > z, their s-polynomial is given by SPOL(p, q) ----- 
- 1 3 x y  2 - 12xz 3 + xy - 92z. [] 

Given a set F of polynomials, a Gr6bner basis of F is a set G of polynomials 
satisfying the following: 
• IDEAL(G) = IDEAL(F) and 
® For each p E IDEAL(F), NFc(p) = {0}. 

An extensive survey of the theory and applications can be found in Mishra [24]. 

2.2. Sequential Algorithm 

Buehberger's sequential algorithm, which we call GB-seq, is shown in figure i. It 
proceeds by computing s-polynomials, reducing them, and adding any non-zero 
polynomials to the basis. The two main data structures are G (the basis) and gpq 

(the priority queue of pairs for SPOL computation). In this version, polynomials 
entering G are completely reduced with respect to all previous elements in G, but 
old basis elements are not checked for reducibility by new entrants. The effect is 
that polynomials that have entered the basis once are never modified or deleted. 
Correctness of GB-seq was established by Buchberger; we refer to the version in 
Mishra and Yap [24] (Theorem 5.8). 

THEOREM 1 (BUCHBERGER) 
® G is a GrSbner basis i f fVf ,  g E G,O E NFc(SPOL(f ,g) ) .  
® Algorithm GB-seq terminates with G being a GrSbner basis of F.  

Algebraic optimizations to the basic algorithm have been developed that  test s- 
polynom-ials to quickly detect reduction to zero, without actually performing the 
reduction [9]. Although our implementation includes such improvements, we omit 
them from the presentation for simplicity. 

2.3. S o u r c e s  o f  P a r a l l e l i s m  

There is parallelism at various levels in the algorithm. At the smallest grain, poly- 
nomial arithmetic (including arithmetic operations on the coefficients, which are 
infinite precision integers in our implementation) can be parallelized. Medium grain 
parallelism can be exploited by permitting many reducers to reduce a polynomial 
simultaneously - -  they work on different monomials. Coarser grain parallelism 
exists in computing and reducing several s-polynomials independently in parallel. 
Reduction has many degrees of freedom, since the choice of a reducer is not spec- 
ified. Also, although REDUCE denotes reduction to normal form, it need not be 
done all at once; any number of reduction steps will do. Finally, the choice of a 
pair from gpq to compute the SPOL is not specified. Although selection heuristics 
affect performance, one can work on several pairs simultaneously. 

Even for shared memory machines, parallel coefficient or polynomial arithmetic 
appears to be too fine-grained. Medium grain parallelism has been a t tempted 
by Clarke et aI [15] without any significant benefit on an Encore, a bus-based 
shared memory machine, probably because the overhead is too high. Our algorithm 
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Input :  F, a finite set of polynomials. 
Initially: 

G = F  
gpq--  { { f ,g}  : f ,  g e G} 

while gpq ¢ 0 { 
let {f, g} be any pair in gpq 
gpq = gpq \ { ( f , g ) ) 
h = SPOL(f, g) 
h ~ = REDUCE(h, G) 
if h' ¢ 0 { 

gpq--  gpqU ( ( f ,  hl) : f C G} 
G = G U h '  

) 

Figure 1. Sequential Algorithm GB-seq [Buchberger]. G is initialized to the input set F and 
grows to become a GrSbner basis. Elements in G are never modified, gpq is the set of pairs of 
polynomials. The function REDUCE(h, G) returns some element h / E NFG(h), i.e., it reduces h 
completely to normal form. 

was planned for the CM-5, a multiprocessor where a hardware message carries at 
most  5 words and takes at least 5-6#s to transfer (about 200 cycles). Thus, fine 
and medium grain parallelism were ruled out, as was distributing an individual 
polynomial across multiple processors. 

2.4. T r a n s i t i o n  R u l e  F o r m u l a t i o n  

Transition rules are a means for exploiting nondeterminism in a sequential algorithm 
description. Inspired by guarded command languages [14], [17], and augmented by 
linearizable da ta  types [35], this style was used to implement a shared-memory 
Knuth-Bendix procedure [37]. Transition rules help break the computat ion into 
independently schedulable chunks, so the scheduling decisions are deferred until 
late in the design process. The rules are written in the form C ~ A, where C is the 
enabling condition (a guard predicate) and A is the action. An execution proceeds 
by repeatedly f iring enabled rules nondeterministically. Termination occurs when 
none of the rules can be fired. Parallelism results from being able to overlap rule 
executions in t ime on multiple processors. 

Our approach is to s tar t  with a transition rule description of the sequential al- 
gorithm, then refine it to use distributed data  structures instead of shared ones. 
Ideally, switching from shared to distributed data  structures should not entail any 
change in the algorithm or proof of correctness. However, a relaxed da ta  s tructure 
semantics will allow for a more efficient implementat ion on distributed memory, 
but  will require a new algorithm and correctness argument.  

2.4 .1 .  T r a n s i t l o n  R u l e s  w l t h  a S i n g l e  S h a r e d  B a s i s  

Our first version, algorithm GB-share, is a simple t ransformation of algorithm GB- 
seq, the purpose being only to replace the sequential control structure by a tran- 
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Inpu t :  F, a finite set of polynomials. 
Initially: 

grq = O, G = F,  
g p q = { { f , g } :  f, g E G } .  

S-Polynomial 
B{p, q} e gpq 

gpq = gpq \ {p, q}  
grq = 9rq U { (p, q, SPOL(p, q)}} 

_Augmentation 
3(p, q, r) E grq : NORMAL.7(r, G), r 7~ 0 =~ 

grq = grq \ {(p, q,r)} 
g p q = g p q U {  {s , r} ,  s C G } 
c = a u {r}  

Reduction 
, B(p,q,r)  C grq : ~NoaMAL?(r,G) 

r = REDUCE(r, G) 

[nterReduction 
3p, q E G : q reduces p 

p' = REDucE(p, {q}) 
a = (G \ {p}) U {p'} 
g p q = g p q U {  {p',g}: g e G ,  gT£p'}  

(a) (b) 

Figure 2. (a) GB-share: Transition rule formulation using a single shared basis. Data structures G 
and 9Pq are as before. Unlike in Algorithm GB-seq, REDUCE(r, G) need not return a normal form; a 
partially reduced form will do. (b) Algorithm GB-share is augmented with the rule InterReduction 
to give an algorithm with interreduction with a shared basis. InterReduction might reduce a basis 
element to zero; we assume for simplicity that zero elements are left around in G but are never 
considered as reducers. 

sition rule oriented formulation. Later, we shall refine and augment this basic 
skeleton. Algorithm GB-share is shown in figure 2. There are three data struc- 
tures: G is the growing basis, 9Pq is the pair set as before and grq is a temporary 
set of polynomials in some stage of being reduced. The 9 denotes that  they are 
global, being shared by all processors. The r stands for reducts, and p stands for 
pairs. The q stands for (priority) queue, and reflects the importance of heuris- 
tic ordering for good performance. The grq data structure exposes parallelism in 
reduction operations; we keep it partitioned among processors, without transfers 
from one partition to another. 

The correctness of GB-share follows from Buchberger's proof of correctness of 
GB-seq. We omit the proof, but sketch the main properties that  lead to the result. 
Partial correctness depends on the invariance of IDEAL(G) (after each rule invoca- 
tion, IDEAL(G) = IDEAL(F) holds), and the observation that Vp, q E G, {p, q} ¢ 
gpq ~ 0 c N F a  (SPOL(p, q)). The proof of termination depends on the observa- 
tions that  REDUCE, NORMAL? and SPOL are all terminating for any argument, 
that  IDEAL(HMONO(G)) grows each time G is augmented and never shrinks during 
any other operation, and that  there cannot be an infinite sequence of invocations of 
Reduc t ion .  Because IDEAL 
(HMONO(G)) grows monotonically over time, termination follows from Hilbert 's 
basis theorem ([26], pages 420-425). 
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2.4.2.  I n t e r r e d u c t l o n  w i t h  a Single  S h a r e d  Bas i s  

When a new polynomial is added to the basis, existing polynomials may become 
reducible by it. Although this is somewhat controversial [19], Buchberger and 
others believe that  performing these "reverse" reductions, and thus keeping the 
basis reduced with respect to itself, is essential for good performance. Buchberger 
describes an elaborate way of keeping track of polynomials that  become reducible 
each time the basis grows, so that  after each addition the basis is interreduced, i.e., 
basis polynomials are reduced by each other until nothing more can be reduced [8]. 

Adding interreduction increases the difficulty of parallelization, because the ba- 
sis is no longer a "grow-only" data structure. We know of no earlier a t tempts  to 
parallelize interreduction, probably because Buchberger's formulation makes exten- 
sive changes to the basis during interreduction, and s-polynomial computation and 
reduction operations cannot go on concurrently with interreduction. 

We augment our transition rule system by a rule for interreduction. Figure 2 
shows the new rule InterReduction. While the extent of reduction done in Reduction 
is not specified, we can assume, for the correctness argument, that  only a single 
reduction step occurs in InterReduction. It follows that  correctness is preserved if 
InterReduction were to reduce multiple steps, which is done in the implementation. 

Informally, correctness of the modified program can be proved if the partial cor- 
rectness and termination properties are preserved by the modified version. This can 
be shown in two parts. If an invocation of InterReduction modifies the basis from 
G1 to G2, it can be shown [13] that  any polynomial p which can be reduced to zero 
using G1 can also be reduced to zero using G2 (i.e., 0 e NFcl  (p) ~ 0 E NFc2(p)),  
and that  IDEAL(HMONO(G1)) C IDEAL(HMONO(G2)). Working from these obser- 
vations, we can establish the following. 

LEMMA 1 Algorithm GB-share terminates with G being a GrSbner basis of F. 

As in algorithm GB-seq, the key data structures in algorithm GB-share are gpq 
and G. In GB-share, they are still central resources, which can lead to significant 
bottlenecks in a parallel program. In Section 3, we shall address the design of 
efficient distributed memory representations of basis G and pair queue gpq. 

3. D i s t r i b u t e d  D a t a  S t r u c t u r e s  

In this section we describe the distributed data structures for locality and paral- 
lelism. Informally, our design methodology is to exploit the theoretical elegance 
and expressibility of shared memory programs, then adapt it for efficient execution 
on distributed memory multiprocessors using a runtime library of data  structures. 
These distributed data  structures are part of a library project called Multipol [36]. 

For example, randomly assigning tasks to processors works well for applications 
like ours running on a shared memory multiprocessor. Hence our data  structure for 
parallelism incorporates randomized load balancing. To ensure good performance in 
a distributed memory setting, we design a data structure for enhancing locality tha t  
implements shared memory by caching objects and running consistency protocols 
on collections of objects. 
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In Section 3.1 we describe the multiset data  structure with relaxed consistency. 
This is built on top of the data  structure tha t  supports replicated cached objects, 
described in Section 3.2. The task queue for dynamic load balancing is described 
in Section 3.3. 

3.1. Se t  w i t h  R e l a x e d  C o n s i s t e n c y  

Replication, rather than partitioning, is often chosen as the strategy for distributing 
data  structures that  are accessed frequently. However, mutation of data  introduces 
complications regarding consistency of copies. Designers of large scale multipro- 
cessors with logically shared, but physically distributed, memory (like DASH and 
KSR-1) have already recognized the importance of weakening the memory consis- 
tency model [1], [18] to escape the overheads of keeping multiple caches coherent. 
This is more important  when caching and consistency management is done in soft- 
ware, since the overheads are even higher. 

Hardware solutions to caching are easier to use and provide faster individual 
operations, but  they suffer some drawbacks. First, the coherency units are of fixed 
size, which can lead to performance problems such as object fragmentation and 
false sharing. Second, the consistency protocol is rigid and therefore not adaptable 
to different application needs. In particular, consistency is defined on the semantics 
of low level read-write operations, which may be stronger than necessary. In a set, 
for example, the order in which elements are inserted leads to different memory 
representations, but the same set. 

In the parallel GrSbner basis computation, one of the important  shared data  
structures is a set G of polynomials that  is frequently read and seldom written; the 
set contains a relatively small subset of all the polynomials that  are computed and 
examined during the course of the algorithm. We therefore wish to replicate the set 
across processors. With interreduction, not only is the set modified by insertion, its 
elements may be modified or deleted. Polynomials are the unit of caching, simply 
called objects, and the set of input polynomials, which evolves into the final answer, 
is an aggregate of these objects. Because elements are reduced with respect to each 
other, there will never be any duplicate elements in the set. Technically, since that  
uniqueness is maintained by the user of the data structure, rather than being built 
into the semantics of the insertion operation, the data structure is really a multiset. 
With this disclaimer, we will, for brevity, refer to the basis as a "set" throughout.  

Support  for high throughput  operations on the set is provided by making the 
operations split-phase, with one operation to initiate a state change or observation 
and another to check that  it has completed. A set is an unordered aggregate of 
objects that  are replicated lazily across processors and validated "on demand." 

3 .1 . i .  T h e  Se t  I n t e r face  

A set has type SetType and its elements are of type ElemldType. Elements of one 
set may occur in another set or, as in the case of our task queue, in a completely 
different type of aggregate structure. To avoid having multiple copies of elements 
that  appear in more than one aggregate, we assume that  ElemIdType refers to 
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names (i.e., ID's) of objects rather than values. The ID can be looked up in the 
object caching layer to be described later. 

Our implementations are done in C using lightweight messages called active mes- 
sages [32]. The processors are not kept tightly synchronized, but there are some 
points in the computation, usually initially, when all processor cooperate to perform 
a single function, such as creating a distributed data  structure. These operations 
are, by convention, named with an a l l _  prefix. Thus a set G is created as follows: 

SetType C = all_SetCreate(); 

Inserting an element into a set is a split-phase operation initiated by the oper- 
ation S e t I n s e r t I n i t .  The inserted element is visible to the calling processor by 
the time S e t I n s e r t I n i t  returns, but there is a delay before other processors see 
the new element. The calling processor can make sure all other processors have 
been notified of the insert by checking if S e t I n s e r t T e s t  returns t r u e .  Similarly, 
S e t D e l e t e I n i t  and S e t D e l e t e T e s t  initiate and check for completion of a delete 
operation.. Mutation of elements in the set is internal to the object data  structure to 
be described later. The signatures of the set construction and mutation operations 
are summarized here. 

SetType all_SetCreate(); 
SetStatus SetInsertInit ( SetType, ElemIdType ); 
Boolean SetInsertTest ( SetType ); 
SetStatus SetDeleteInit ( SetType, ElemIdType ); 
Boolean SetDeleteTest ( SetType ); 

An important set operation for the GrSbner basis algorithm is an iterator. Mo- 
tivated by the memory hierarchy considerations mentioned before, we have two 

versions of iterators. 

SetForAllIds ( SetType, ElemIdType ) { loop body }; 

is an iterator that  produces all element names in the set, and executes loop body 
successively with each name. Note that  not all ID's may have corresponding local 
data. 

SetForSomeElems ( SetType, ElemType ) { loop body}; 

executes the loop body successively with each element in some subset of the set. 
Operationally, the subset corresponds to those elements that  are locally cached. 
Note that the type of the iterating variable is ElemType, i.e., it is a value, not a 
name like ElemIdType. 

SetForAllIds is useful when the object names can be used without having to 
know their values, as in generating pairs of ID's in algorithm CB-dist (see fig- 
ure 4). SetForSomeElems is used in reduction, where only a subset of the elements 
may be needed to make progress. SetForSomeElems can be implemented using 
SetForAllIds and a test for local availability of an object, described in Section 3.2. 
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At some point in an execution, the set client will need to ensure that  the values 
of all elements of the set are locally available. A validation operation is used to 
make a given processor's view of the set globally consistent. As with all other set 
operations that  require communication, validation is split-phase: 

SetValidInit ( SetType ); 
Boolean SetValidTest ( SetType ); 

Once SetValidTest returns true, the iterators are guaranteed to "see" all elements 
in the set, as long as no concurrent insertions or deletions are being done. 

3.1.2. The Set Implementat ion 

A set is implemented as a list of ElemType's in each processor's memory. Not all of 
the ID's have corresponding valid data  in all processors, but  the ID lists are kept 
consistent at all times except between the initialization of either insertion or deletion 
and the point at which a test for completion of those operations returns true. The 
S e t I n s e r t I n i t  and S e t D e l e t e I n i t  operations are implemented by broadcasting 
the new element identifier to other processors. The ID is usually much smaller 
than the data  it represents, so these are very inexpensive. These operations are 
only used when a lock is held or there is some other guarantee of exclusive access. 
The S e t V a l i d I n i t  operation is used to increase the size of the locally visible set 
- -  each t ime it is called on an invalid set, some positive number of unavailable 
elements will become available within finite time. 

3.2. R e p l i c a t e d  O b j e c t s  

Underlying the set implementation is a basic object layer, ROL, that  provides a 
shared memory abstraction that  is under application control. An object is a con- 
tiguous data  block of arbitrary size. The system provides primitives for registering 
objects into the object space, modifying, reading, and destroying objects, and con- 
trolling the consistency of objects on different processors. 

An object is identified by a unique identifier. This ID is created when the object 
is registered into the object space and is used for all subsequent operations on the 
object. Each time an object is modified, a new version of the object is created. 
Internally, an object is regarded as a sequence of versions, although the version 
management is transparent to the user. There is an explicit validation protocol 
tha t  a node process has to call to upgrade its version of the object. To enable easy 
overlap between communication and computation, most primitives are split-phase 
as in the set interface. There is no mechanism for dynamic thread creation: a single 
thread is assumed per physical processor, and it has control over that  processor's 
view of the object system. 

3.2.1. The ROL Interface 

Primitives provided by ROL are broadly classified into creation, modification, read 
access, validation and destruction. An object space is created by calling the func- 
tion: 

ObjSpace all_ObjSpaceCreate(); 
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All processors call this operation to create and initialize an object space; they must 
all complete the initialization before other operations may be called. Although 
we generally imagine all objects in one program to be in a single object space, 
there may be situations in which the sets of objects are independent, in which case 
multiple object spaces make sense. 

An object is created by allocating memory, filling it up with (the first version of) 
data, and registering it into the object space. The function 0bj C r e a t e l n i t  initiates 
the creation of an object s i z e  bytes large, pointed to by data ,  and returns the new 
unique ID for the object in id0ut .  A matching 0 b j e r e a t e T e s t  can be used to 
determine whether creation is complete. There is often unrelated work that  can 
be done during split-phase operations; in the GrSbner basis program, one common 
type of work is reduction of partially reduced polynomials tha t  are held in grq for 
this purpose. 

ObjCreatelnit ( ObjSpace U, 
int size, DbjType *data, IdType *idOut ); 

Boolean ObjCreateTest ( ObjSpace U, IdType id ); 

We use 0bjType to indicate the type of some object that  the client has placed in 
the object space. The object space is not homogeneous, and in C the type is given 
as void,  with the responsibility for knowing the actual type left to the user. 

An object, identified by id, can be modified or deleted using the following split- 
phase operations: 

ObjStatus ObjModifylnit ( ObjSpace U, 
IdType id, int newSize, ObjType *newData ); 

Boolean ObjModifyTest ( ObjSpace U, IdType id ); 
DbjStatus ObjDestroyInit ( ObjSpace U, IdType id ); 
Boolean ObjDestroyTest ( ObjSpace U, IdType id ); 

The old data  freed by either modification or deletion will eventually be garbage 
collected by the system. Concurrent modifications or deletions of an object are 
not allowed; it is the client's responsibility to ensure exclusive access. Both of the 
initiate operations have a return status to indicate whether the named object is 
available, known to the object system but not (locally) available, unknown, previ- 
ously deleted, or in various other exceptional states. 

Reading an object is also a two phase process. First, 0b jReadSta r t  is called to 
acquire a handle to a locally cached version, if one exists. This also notifies the ROL 
layer that  this version cannot be garbage collected until the read is complete, even 
if other versions arrive. The application can then read the data buffer, and when 
finished it releases the handle using 0bjReadEnd. As with the other operations, 
0 b j g e a d S t a r t  may return a status code indicating the object is not available, in 
which case the out  return value will not be defined. 

0bjStatus 0bjReadStart ( 0bjSpace U, IdType id, 
0bjType **out ); 

0bjStatus 0bjReadEnd ( 0bjType *in ); 
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When an object is read by some processor, any version cached in local memory 
may be returned. To ensure that  the value is the most recent one requires a valida- 
tion call from the application level. The Ob jga l id  functions provide the necessary 
functionality. 

ObjStatus ObjValidlnit ( ObjSpace U, IdType id ); 
Boolean ObjValidTest ( DbjSpace U, IdType id ); 

Note that  there is no built-in critical region provided between reads and modifica- 
tion: immediately after 0b jVa l idTes t  returns successfully, another processor may 
destroy this property. If it is necessary for a processor to get the latest value, a 
lock or other higher level protocol must be used. In the GrSbner basis code, mod- 
ification of set elements happens only during interreduction, and since processors 
may use old versions for doing their own reductions, no lock is needed on individual 
polynomials. 

MgmtType WrapType 

IdType id; 1 
int state; 1 ~ 
int lastVersion, lastWriter; ~ I I 
int numAcks; ~ I ~---k---~ 
WrapType *current; I / I I I _ I 
WrapType *pending; ~--~ I I Data 1 

l Map id to 
id ~ MgmtType 

pointer 

Figure 3. The object management structure, wrappers, and vermon control. 

IdType id; 
int version; Work 
int size; Area 
int numReaders 

Data 
Buffer 

3.2.2. T h e  ROL Implementat ion 

The basic components of the implementation are shown in figure 3. Each proces- 
sor has a mapping from the object ID's to management structures; the mapping 
is implemented by a hash table. The management structure for each object con- 
tains information about operations in progress on the object (the s t a t e ) ,  the last 
processor tha t  modified the object, the current version number, and a count of 
acknowledgements from outstanding remote operations. The object in figure 3 has 
two versions: one that  is currently being read by at least one processor, and an- 
other tha t  has been written by some processor and is pending. If the current version 
were not being read, the pending version would have replaced it. If there were more 
pending versions, these would be linked together using the workspace portion of the 
wrapper. The wrapper contains version-specific information, such as the number of 
processor currently reading it and the size and value of the version. 
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Atomicity of most of the operations is achieved by simple pointer swinging oper- 
ations. When an object is written, a new version is created and atomically replaces 
the current wrapper or is linked into the list of pending wrappers. The implementa- 
tion is complicated by the desire to support split-phase operations. Keeping track 
of the number of pending operations and their acknowledgements, for example, is 
only necessary because multiple operations may be outstanding. The level of cod- 
ing detail necessary to get the protocols to be correct and efficient is exactly what 
we wish to hide in a library of distributed data structures. 

3.3. Task Queue 

The remaining data structure problem for the GrSbner basis implementation is the 
design of a distributed priority queue for holding pairs of polynomials. An impor- 
taut  observation from the original algorithm is that  strict priority is not required 
for correctness, but  obliviousness to the "quality" of polynomial pairs will lead to 
unacceptable performance. On a distributed memory machine, this immediately 
leads to the design of a distributed task queue, in which priorities are used to lo- 
cally order tasks, which are in this case polynomial pairs. This is not a full-scale 
thread scheduling system, since tasks are really just data that  is interpreted by the 
application program, and once a task starts executing, it is never de-scheduled by 
the system. 

3.3.1. Task Queue In ter face  

The task queue has the following primitive operations. 

TqType all_TqCreate () ; 
TqEnqueue (TqType, TaskType); 
TqStatus TqDequeue (TqType, TaskType *); 

These have the obvious semantics, with the exception of TqDequeue. The return 
status of TqDequeue signals one of three possible conditions: a task is available and 
was assigned to the TaskType pointer parameter; no tasks were currently available, 
although the task queue is not necessarily globally empty; or, the queue is globally 
empty and all tasks have been completed. In our implementation, the second case 
occurs when there are no local tasks in the queue. This allows other work that  
might be available, such as reducing polynomials in grq in GrSbner basis, to be 
done while waiting for another task to arrive. 

3.3.2. Task Queue I m p l e m e n t a t i o n  

The original task queue used in the implementation was engineered to optimize for 
locality and load balance [12]. Tasks were preferably scheduled on the processor tha t  
created them, unless some other processor was starved for work. This led to a fairly 
complicated implementation in which hints of work load were exchanged between 
processors, and a task could move multiple times before being executed. For tasks 
with high transportat ion costs, for example, when data  has been partitioned and 
moving a task means leaving its data behind or transporting it along with the task, 
a strategy like this one may be necessary. However, once the decision was made 
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to replicate the basis G in the Gr5bner basis code, moving a task involved moving 
only a pair of object identifiers, which is a relatively low cost operation. 

Given that  load balancing can be done aggressively in our design, we chose a ran- 
domized load balancing protocol that  was not only easier to implement, but  also 
proved more amenable to theoretical analysis. Each processor has a local priority 
queue of tasks. An idle processor tries to dequeue a task from its local queue. If one 
exists, it is expanded. Any child task is enqueued into the priority queue of a pro- 
cessor chosen uniformly at random from the P processors. There is no coordinated 
global communication for load balancing purposes - -  once a processor obtains a 
task from its local pool and starts working at it, the task is run to completion. 
Our algorithm is a generalization of the randomized algorithm described by Zhang 
and Karp [23]; they assumed that  each task took a fixed amount of time, so the 
system proceeded by alternating one computation step on each processor with one 
load balancing step. Our algorithm handles arbitrary task times and requires no 
global synchronization points. A theoretical analysis of our algorithm is given in 
[11]. Randomly assigning tasks to processors gave performance competitive with 
more complicated protocols, at a trivial programming effort. 

4. Algorithm Design with Distributed Data Structures 

In Section 2, we introduced the GrSbner basis problem, and transformed it into 
a transition rule formulation with interreduction, assuming throughout  that  the 
sequential data  structures G and gpq  that  appear in algorithm GB-seq can be effi- 
ciently shared by P processors. Then, in Section 3, we explored some engineering 
issues in the design of these data  structures for a distributed memory multiproces- 
sor. In both cases, the memory hierarchy shows through in the design. For the 
task queue, strict priority is relaxed, which only affects performance, but  for the 
set structure, it is necessary to demonstrate correctness of the resulting algorithm. 
In this section we rewrite the earlier transition rule programs to use the distributed 
data  structures and outline the main idea used to reason about correctness, namely, 
the definition of an abstraction function on the distributed set. 

4.1. A C o n s i s t e n c y  P r o b l e m  

If the distributed set is used without modifying the overall algorithm, the inconsis- 
tent  replicas of elements in the set may lead to incorrect executions. In particular, 
the following "race condition" may arise, where operations using out-of-date copies 
of the basis lead to mutual cancellation. This is a generalization of the case Ponder 
pointed out [27]. 

E x a m p l e :  Suppose, with ordering t > w > u > v > x > y > z, the following 
polynomials exist in the basis. 

ql  = w x  + y and q2 = w z  - u y  with SPOL(ql, q2) ~- u x y  + y z  = P l ,  say. 

q3 = v y  + y and q4 = v z  with S P O L ( q 3 , q 4  ) -~ y z  = P2, say. 

q5 = t u  ÷ u and q6 = t y  with SPOL(q5,q6) -~ u y  = P3, say. 
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Next, P3 can reduce Pl to p~ = yz, which is the same as P2. Suppose processors P1 
and P2 both have copies of p~ and p2. InterReduction fires on P1 and P2. Say p~ 
is reduced by P2 to 0 on P1. Processor P2 does not modify its copy of g, instead 
it reduces P2 by p~ to 0. Subsequent invalidation messages lead both processors to 
discard their copies of p~ and P2. This can possibly destroy the correctness of the 
result. [] 

A solution to this special case is to impose a total order AGE on polynomials such 
that  if f = g, f is allowed to reduce g to 0 only if the order is favorable. In general, 
a stronger check is needed, namely, the total order should be used whenever the 
head monomiaIs of the reducer and the reduced are equal, even if the polynomials 
are not completely equal. It is easy to verify that  this check prevents the particular 
error indicated, but it is still non-trivial to show correctness in general. 

4.2. D i s t r i b u t e d  M e m o r y  A l g o r i t h m  

Using the AGE function, we now write the transition rules GB-dist in figure 4 
that  describe a distributed algorithm. Since only one object space is used, we have 
omitted this argument from the ROE operations. In the implementation, these rules 
are written to permit multiple rule copies to execute simultaneously on different 
processors. 

The first transition rule, S-Polynomial, is essentially unchanged, except that  it 
has extra operations for manipulating the object space and the reduce queue. As 
described in Section 3, TqDequeue may fail even though pairs exist somewhere in the 
system and TqEnqueue is actually placing the new pair on some randomly chosen 
processor. 

Reduction is done in both Reduction and InterReduction by calling the function 
REDUCE(r, G), which reduces a polynomial r by a set of polynomials G using the 
set iterator SetForSomeElems. InterReduction modifies an existing element of the 
basis G when it does reduction. Recall from the description of the object layer 
that  multiple modifications cannot be done concurrently; this is enforced in our 
implementation by assigning each polynomial in the basis to an owner processor 
with exclusive access for interreduction. Locks could also be used, but  they seem 
to require excessive communication in our environment. Finally, validation of the 
basis is done by a separate rule, Validation, which must be executed regularly for 
the computation to proceed. 

4.3. C o r r e c t n e s s  A r g u m e n t s  

From the example in Section 4.1, it is clear that  the correctness of algorithm GB-dist 
does not directly follow from the correctness of algorithm GB-share in Section 2. 
A correctness argument for algorithm GB-dist requires a more precise model of 
the implementation. To model the software cache in the set implementation, the 
variable G in GB-dist is really a distinct variable Gi on each processor i, 1 ~ i < P.  
Also, the versions of a polynomial p throughout its lifetime can be recorded in a 
hypothetical list called its version list [p(0),p(1), . . .  ,p(t)].  The full version list 
does not exist, but the abstraction captures the update history of p. Let us call the 
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S-Polynomial TqDequeue(gpq,{f,g}) == TQ_SUCCESS 
fVal id?  = 0 b j R e a d S t a r t ( f , p f ) ;  
gValid? = 0b jReadSta r t (g ,pg) ;  
if ( fValid? ~& gValid? ) 

grq = grq U { SPOL(pf,pg) } 
else 

TqEnqueue(gpq,{f ,g});  
0bjReadEnd(pg); 
0bjReadEnd(pf);  

Reduction 3r E grq : ~NORMAL?(r, G) ==~ 
r = REDOCE(r, C) ; 
if r == 0 

grq = grq \ (r} ; 

Augmentation SetVal idTes t (G)  &~ 3r C g r q : N O R M A L ? ( r , G ) ~  
g r q = g r q \  {r} ;  
0bjCreateInit (size(r), r, newId ); 
SetInsertInit(G,newId); 
while (!0bjCreateTest(newId) II !SetInsertTest(G) ) 

do some useful work; 
SetForAllIds ( G, oldId ) 

TqEnqueue(gpq,{newId,oldId}); 

InterReduction 3f, h C G: [3bjValidTest ( f ) ,  h reduces f 
HMONO(f) ~ HMONO(h) or AGE(f) > AGE(h) 

pSta t  = 0bjReadStar t  ( f , p f )  ; 
hSta t  = 0bjReadStar t  (h,ph) ; 
newf = REDUCE(pf,{ph}) ; 
0bjReadEnd (ph) ; 
0b j Re adEnd ( pf ) ; 
if ( newf == 0 ) ( 

SetDeleteInit (G, f) ; 
0bjDeleteInit (f) ; 

} (Tests for completion not shown.) 
else { 

0bjModifyInit ( f, size(newf), newf ); 
SetForAllIds ( G, g ) 

TqEnqueue (gpq, {f ,g}) ; 
} 

Validation TRUE =~ 
SetValidInit (G) 

Figure 4. GB-dlst: The complete transition rule algorithm with interreduction, showing the use 
of the distributed data structures. Since there is only one object space, it is not shown in the 
function calls. 
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set of all such version lists G ~. The local copy Gi contains processor i's view of G: 
it contains at most one version, which is its current version, from each of the lists 
in Gq 

A validation operation either puts the first element of a new version sequence 
in Gi or replaces version g(t) from a version sequence g by g(t + g), ~ > 0. We 
will define an abstraction function that  maps the physically distributed set to an 
abstract set g containing only the latest versions at a given time. 

G = {g(last) :  [p(O),p(1),...,p(last)] c G'}. (5) 

In GB-share, when an invocation of InterReduction modifies the value of the basis 
from G1 to G2, one can show that  polynomials reducing to zero in G1 can also reduce 
to zero in G2, by replacing each reduction step using an element in G1 \ G2 by two 
reduction steps, each using an element in G2. Furthermore, IDEAL(HMONO(G1)) C 
IDEAL(HMONO(G2)), so progress is not hampered. It turns out that  using the 
same techniques in a more elaborate way, we can establish that  these properties are 
preserved, even with P copies of the basis, provided the AGE ordering is used. 

Specifically, with the abstract basis g defined as in (5), we can show the analogues 
of the above properties: 

kip: 0 e N F g ~ ( p )  ~ 0 • N F 6 2 ( p ) ,  and (6) 

IDEAL(HMONO(gl)) C_ IDEAL(HMONO(g2)), (7) 

where gl  and g2 are values of the abstract basis before and after an interreduction 
step. Working from these observations, we can establish the following [13]. 

THEOREM 2 GB-dist terminates, computing a Gr6bner basis of F. 

4.4. Implementat ion Sketch 

So far, the transition rules have only been modified by creating distributed data  
structures in place of the original shared ones. The semantics of the GB-dist al- 
gorithm are still based on an interleaving of the transition rules. The real paral- 
lelism comes from observing that  many of the rules can now be overlapped, because 
the data  structure contain sufficient concurrency control. In this section, we give 
sketches of the less obvious steps taken to transform the transition rules into a par- 
allel program in terms of the abstractions we have defined in Section 3.1, Section 3.2 
and Section 3.3. 

Each processor runs a scheduling loop in which it Checks the guard conditions 
and executes enabled rules. Under this model, the transition rule formulation in 
figure 4 has one significant inefficiency. The guard of Reduction checks that  tha t  
some polynomial r in grq in reducible by G, while the guard of Augmentation checks 
that  r is not reducible by G. Reduction by a set involves a search for a reducer, so 
it is more profitable to merge these two rules into a single one. The guard on the 
new rule Reduce/Augment checks only that  grq is non-empty, with the separation 
based on reducibility handled by a conditional in the rule body. The combined rule 
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R e d u c e / A u g m e n t  
i f  ( ~r C g r q  ) { 

grq=grq\{~}; 
[r,  s ta tus]  = REDUCE(r,G); 
if ( r = 0 ) 

return; 

if ( status == REDUCED ) /* continue reduction */ 

grq = grq U {r}; 
e l se  { /* t r y  augment */ 

ACQUIRE LOCK; 

if SetValidTest(G) { 

0bjCreatelnit (size(r), r, newld ); 

Setlnsertlnit ( G, newld ); 

while (!ObjCreateTest(newld) [I 

do some useful work; 

SetForAlllds ( G, oldld ) 

TqEnqueue(gpq,{newld,oldld}) 
} 

!SetInsertTest(G) ) 

else /* set not valid --- try other reductions */ 
grq = grq U {r}; 

RELEASE LOCK; 

Figure 5. The combined Reduce/Augment axiom, using operations provided by the 0bj, Tq and 
Set abstractions. The ID oldId is generated by set iteration. 

takes the form shown in figure 5. For convenience, the function REDUCE is modified 
to return a status, REDUCED or NORMAL, to indicate whether a reduction was indeed 
performed. 

Some additional comments  about  the above code are in order. In the actual 
implementat ion,  overlap between rule executions is necessary for parallelism, and 
correctness is ensured by a lock (see lock acquiring and releasing s ta tements  in the 
code). We use a simple spin lock, but with the following optimization. When a 
processor tries to acquire a lock and fails, it is clear tha t  some other processor is 
doing an A u g m e n t a t i o n ,  so the S e t V a l i d T e s t  on the first processor is doomed to 
fail if it does not validate its set before it successfully acquires the lock. In any case, 
unavailability of the lock, or detecting an invalid basis inside the critical section, 
means tha t  there are further potential  reductions to do. Hence we place r back into 
grq  and continue with other rules, retrying the lock later. 

5. P e r f o r m a n c e  

In this section we present the performance of our implementation. We used a 
Thinking Machines CM-5 multiprocessor [10]. Each node is a 33 MHz (15-20 
MIPS) Sparc processor with 8 MB of memory. The network is a fat-tree supporting 
at most 20 MB/s  point to point data  transfer. Communicat ion was done using the 
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Table i. Sample  runn ing  t imes  (in seconds) of the  pro to type .  Ts is the  runn ing  t ime  of a 
sequent ia l  implementa t ion .  A is the  number  of po lynomia l s  added  to  the  basis,  and  Z is the  
number  of s -po lynomia ls  reduced to  zero. Note  t h a t  all  numbers  depend  on bas is  ordering,  
pa i r  selection,  and  pai r  e l imina t ion  cri teria.  
Name Ts A Z 1 2 3 4 5 6 7 10 15 20 
arnborg4 .28 6 18 
arnborg5 97 53 411 
katsura4 11 16 60 
lazard 101 31 114 
morgenstern 5.5 13 40 
pavelle4 4 9 21 
pavelle5 20 104 
robbiano 0.5 13 30 
rose 13.7 16 28 
t r inks l  3.3 14 54 

.314 .19 .13 .08 .06 
190 86 63 43 31 
46 10 8.1 7.7 5.7 
20 6.7 5 3.3 3.1 

3.9 2.2 1.2 1.2 
5.47 2 1.2 1.4 .9 
281 116 79 62 55 
.82 .4 .27 .19 
20 6.3 3 2.4 1.9 

10.1 4.1 2.9 1.8 1.9 

31 

1.6 

13 12 10 
4.4 4.2 4.1 
2.4 

1 
.7 

28 15 

1.6 
1 

active message layer CMAML. The implementation is in C; we used gcc-2 .3 .3  with 
optimization -04 for our measurements. 

5.1. Benchmarks  

We have used the set of standard benchmarks collected mostly by Vidal [31]. Total 
degree ordering was used, with ties being resolved by lexicographic order. We used 
the pair elimination criteria in [9] and the traditional pair selection in [8]. The task 
queue ordered pairs locally to favor the pair {f, g} with the smallest HMONO(f) × 
HMONO(g)/HCF(HMONO(f), HMONO(g)). In table 1 we give performance for some 
of these examples. Some inputs are too small, for example, arnborg4 needs only 
24 tasks to complete, making it too small to exploit more than 4-5 processors. In 
general, problems like arnborg5, katsura4, pavelle5, running for tens to hundreds 
of seconds, having hundreds of tasks, parallelize quite well. There are two different 
sequential programs shown in table 1: Ts is the original sequential code and T1 is 
the parallel algorithm running on a single processor. 

Table 2 shows the fraction of running time spent idle (averaged over all P pro- 
cessors), and in s-polynomial computation, reduction, task queue operations, lock 
operations, pair generation and pruning, and ROL overheads, for a few sample runs 
with P - 1, 5, 10, 20. In general, performance is good if most of the time is spent 
in s-polynomial computation and reduction. The task queue operations (Tq) seem 
to take significant time, but most of them are unsuccessful attempts to dequeue 
before a termination detection algorithm is triggered, so this is really a measure of 
uneven finishing times rather than task queue overhead. 

5.2. Compu t ing  Speedups 

A common measure of parallelism in an application is the speedup of a parallel 
algorithm relative to the "best" sequential one. However, no tight complexity 
bound is known for the sequential algorithm, and both the sequential and parallel 
algorithms are guided by heuristics. Moreover, the work done, hence, the running 
time, of the parallel program has nondeterminism owing to variations in event 
ordering. Furthermore, there are cases where the one-processor parallel version 
outperforms the sequential program and vice versa. 
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Table 2. Execution time breakup for two sample inputs, for P ---- 
1, 5, 10, 20, to the nearest percent of total time. 
arnborg5 Spoly Reduce Tq Idle Lock Pair ROL 

P =  1 4 94 0 0 0 0 0 
5 3 89 1 1 1 4 1 
10 3 79 5 8 1 3 1 
20 4 65 7 13 5 5 1 

katsura4 Spoly Reduce Tq Idle Lock Pair ROL 
P = I  2 97 0 0 0 1 0 

5 2 89 3 4 0 1 1 
10 2 79 8 8 1 1 1 
20 1 49 24 24 0 1 1 

In plotting speedup curves, we use the running t ime of the parallel version running 
on one processor as the baseline for computing speedups. The results are shown 
in figure 6. To provide a more realistic assessment of the overheads in the parallel 
algorithm, running times of an optimized sequential program running on one node 
of the CM-5 are also reported in table 1. Another problem is tha t  different runs of 
the program do not do the same amount  of work, making "true" speedup hard to 
estimate.  We use a standardization procedure described next to remove this effect. 

5.3. Superlinear Speedup 

Par ts  of the speedup curves in figure 6 are above the ideal linear speedup. I t  is well- 
known in problems with nondeterministic or heuristic scheduling (e.g., backtrack, 
branch and bound, pa t te rn  matching) tha t  it is possible to solve a problem with P 
processors in less than  1 / P  of the t ime needed for one processor, because some of 
them may  find "short cuts" (in this case, good reducer polynomials) to the solution 
whereas a single processor may be misled by an inaccurate heuristic. 

To make sure tha t  the speedup curves indicate the benefit of parallelism and not 
fortuitous choice of polynomials, we also calibrated speedups after gett ing rid of 
the nondeterminism. For this, the parallel version accumulates traces of activity at 
each processor. A sequential program running on only one node of the CM-5 reads 
in the traces and mimics an appropriately merged sequence of execution steps. The 
execution t ime of this program is used as the baseline for normalized curves. One of 
the outstanding examples of superlinear behavior is shown in figure 7(a); a similar 
effect has been reported by Vidal [31] on this input. Normalized speedup is shown 
in figure 7(b). The superlinear nature has been filtered completely and the linear 
nature  of "true" speedup shows clearly. (These tracing experiments were done 
using an earlier version. Our current implementat ion does bet ter  pair selection and 
elimination. This improves absolute performance, but  makes simulating the trace 
harder.) 

An input instance can be "large" in the sense of running t ime or memory  require- 
ments or both. Although our implementation scales well in time, replication of the 
basis presents a limit to scalability in space. We have come across long-running 
instances tha t  might show highly scalable speedups, but all of them exceed the 



168 CHAKRABARTI AND YELICK 

11 2o 

10 18 ..'"" 

" / 7 
9 16 

8 14 avelle5 ....'" 

/-',near 
5 8 

4 6 

2 amborg4 2 

1, ; 1'o o ; ;o I; 2'0 
#Procs #Procs 

Figure 6. Speedups (based on raw running time) for some standard benchmarks. Our implemen- 
tation scales better than the best shared memory performance reported by Vidal even for very 
small examples. (see text for an explanation about the anomaly of superlinear speedup in some 
cases). 

current memory  capacity. To run such examples, a more flexible abstract ion is 
needed tha t  performs this space-time tradeoff on a continuum using a hybrid of 
partit ioning and replication. 

6. R e l a t e d  W o r k  

There are two directions of research related to the work reported here: research spe- 
cific to parallelizing the GrSbner basis algorithm, and generic parallelism research 
in language and runtime support for irregular applications. 

Vidal [31] implemented a shared memory GrSbner basis program on an Encore 
Multimax. He used a shared pool of pairs of polynomials and critical sections 
for accessing the basis, which was in shared memory. Processors remove work 
from the pool, produce s-polynomials, reduce them with read permission on the 
basis and add new polynomials with write permission. In an extension of this 
work [15], medium grain parallelism is explored in a shared memory setting, by 
reducing a single polynomial by many reducers, working at different terms. Except 
for examples where superlinear speedup results from chancing upon "short-cuts" in 
the search space, efficiency is low. For standard examples the implementation does 
not scale beyond 5-10 processors. Vidal also gives a survey of earlier attempts to 
parallelize the algorithm. 

Ponder [27] studied this problem in the context of performance enhancements in 
algebraic manipulation systems. He noted the race condition in parallel interre- 
duction, in which two copies of the same polynomial may reduce each other and 
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Figure 7. Superlineax speedup (lazard). Figure (a) shows our best and worst performance over 5 
runs and the best shared memory performance• All axe superlinear. When speedup is determined 
by normalizing running time using a simulator, near-linear "true" speedup is seen in figure (b). 

disappear. As described in Section 4, we avoid this without serialization by keeping 
t ime stamps on the polynomials. Because the time stamps need not be globally 
consistent, they can be efficiently computed in a distributed setting. 

On distributed memory machines, a pipelined program has been reported by Siegl 
[30]. Reduction of a polynomial is done by a pipeline of processes across which the 
current basis is partitioned. The implementation was ported to a network of SUN 
workstations, a t ransputer  and a (shared memory) Sequent, but performance figures 
are available only for the Sequent. These do not appear to be significant improve- 
ments over Vidal's performance. Other distributed memory implementations have 
been reported by Attardi [3] and Hawley [20]. None of these seem to exploit the 
weak consistency requirements on the data  structures in the same manner as our 
implementation. 

The SAM runtime system for supporting a shared memory model on distributed 
memory machines [28] is closest to our approach of application controlled replication 
and consistency management. In fact, our Gr6bner basis implementation has been 
ported to SAM. One significant functionality that  ROL provides is version control 
t ransparent  to the application. In SAM, shared objects have single assignment 
semantics, which is cumbersome since the basis is mutated during interreduction. 
Furthermore, no integrated load balancing support is provided in SAM. 

Recent research has yielded sophisticated rnntime support like the Concert system 
[22] and the Chare kernel [29], [21], and programming languages like Concurrent 
Aggregates [2], pSather [25] and p C + +  [6]. These are general purpose solutions 
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for modular and portable parallel programming, supporting irregular data sharing 
and task scheduling at a fine to medium grain. Being language-based approaches, 
they build in some policies for scheduling and load balancing, although in each case 
the user has some control over data distribution. A separate thread of work has 
been the development of application-specific distributed data structures, including 
irregular grids [5], [4], B-trees [34], sets [16] and oct-trees [33]. These data structures 
fit with the general framework of our approach, although we make the locality and 
load balance trade-off a first order concern by giving the application direct control 
over both scheduling and data layout. 

7. Conclusion 

We have described an efficient parallelization of Buchberger's GrSbner basis al- 
gorithm for distributed memory multiprocessors. The performance results on the 
CM-5 are encouraging, scaling to 20 processors, which is better than previous im- 
plementations on both shared memory and distributed memory machines. On one 
processor, our implementation is competitive with good sequential implementa- 
tions, taking advantage of the known optimizations, such as pair elimination, and 
heuristics for choosing polynomial pairs and reductions. 

In this paper we have dealt mostly with the engineering aspects of parallel pro- 
gramming. However, our design methodology allows us to show that the resulting 
parallel algorithm is correct, and that its efficiency is predictably high. We have 
cited these results where appropriate. 

In addition to these application-specific contributions, we offer a general approach 
for developing irregular parallel applications. The development is done by refining 
a nondeterministic sequential algorithm, and the resulting program is organized 
around distributed data structures with a relaxed semantics. Our data structures 
use both partitioning and replication: partitioning for the frequently written task 
queue, and replication for the infrequently written set and underlying objects. Re- 
laxing the consistency enabled efficient implementations of the shared data struc- 
tures, which would otherwise have been bottlenecks in a distributed environment. 
Reasoning about parallel algorithms using a series of refinements is a well-known 
technique that is demonstrated in the Unity framework [14], among others. How- 
ever, in those formal models, a distributed environment is targeted by reducing 
the original program for shared data down to message passing. Our work gives an 
example of the development of a relatively large parallel application by focusing on 
the interesting parts of parallelization, retaining data abstraction in a distributed 
setting. 
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