
LISP AND SYMBOLIC COMPUTATION: An International Journal, 7, 147-172 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Distributed Data Structures and Algorithms for
GrSbner Basis Computation*

SOUMEN CHAKRABARTI

KATHERINE YELICK
Computer Science Division,
University of California, Berkeley, CA 94720, USA.

soumen@cs.berkeley.edu

yelick@cs.berkeley.edu

A b s t r a c t . We present the design and implementation of a parallel algorithm for computing
Gr5bner bases on distributed memory multiprocessors. The parallel algorithm is irregular both in
space and time: the data structures are dynamic pointer-based structures and the computations on
the structures have unpredictable duration. The algorithm is presented as a series of refinements
on a transition rule program, in which computation proceeds by nondeterministic invocations
of guarded commands. Two key data structures, a set and a priority queue, are distributed
across processors in the parallel algorithm. The data structures are designed for high throughput
and latency tolerance, as appropriate for distributed memory machines. The programming style
represents a compromise between shared-memory and message-passing models. The distributed
nature of the data structures shows through their interface in that the semantics are weaker
than with shared atomic objects, but they still provide a shared abstraction that can be used
for reasoning about program correctness. In the data structure design there is a classic trade-off
between locality and load balance. We argue that this is best solved by designing scheduling
structures in tandem with the state data structures, since the decision to replicate or partition
state affects the overhead of dynamically moving tasks.

Keywords : Parallel computing, distributed data structures, GrSbner basis, software caching,
relaxed consistency, load balancing.

1. I n t r o d u c t i o n

Symbol i c a lgebra app l i ca t ions are chal lenging t a rge t s for para l le l i sm, because t h e y
have i r regu la r d a t a s t ruc tures , unp red i c t ab l e c o m p u t a t i o n t imes , and asynchronous ,
i r r egu la r communica t ion . In th is pape r we descr ibe t he design and i m p l e m e n t a t i o n
of one such app l i ca t ion , t he GrSbner basis c o m p u t a t i o n , on c o n t e m p o r a r y message-
pass ing mul t ip rocessors . The i m p l e m e n t a t i o n relies on two g loba l ly sha red d a t a
s t ruc tu re s t h a t are des igned to provide high t h r o u g h p u t and l a t ency to le rance .
High t h r o u g h p u t , m e a s u r e d by the number of ope ra t ions t h a t can be c o m p l e t e d in
un i t t ime , is of ten more va luab le t h a n low execut ion t ime of i nd iv idua l opera t ions ,
because t h e r e is enough para l l e l i sm to keep m a n y ope ra t ions runn ing in para l l e l [16].
L a t e n c y to l e rance is a more real is t ic goal t h a n low latency, s ince some ope ra t i ons
requi re commun ica t i on and r emo te computa t ion ; l a t ency to le rance is o b t a i n e d b y
m a k i n g the ope ra t i ons sp l i t -phase , so t h a t a single processor m a y have mul t ip l e
ope ra t i ons ou t s t and ing .

This work was supported in part by the Advanced Research Projects Agency of the Department
of Defense monitored by the Office of Naval Research under contract DABT63-92-C-0026~ by AT&:T,
and by the National Science Foundation through an Infrastructure Grant (number CDA-8722788) and a
Research Initiation Award (number CCR-9210260). The information presented here does not necessarily
reflect the position or the policy of the Government and no official endorsement should be inferred.

148 CHAKRABARTI AND YELICK

The GrSbner basis application is used to solve a system of multivariate non-linear
polynomial equations, i.e., to find the roots of a set of such polynomials. Given a set
of polynomials, we compute another set called their GrSbner basis, which has the
same roots, but for which the roots may be computed more easily [8]. Computing
the GrSbner basis is analogous to doing Gaussian elimination on a linear system,
with the GrSbner basis playing the role of the triangularized system. The Gr6bner
basis computation is entirely symbolic; it computes on a set of polynomials rather
than vectors and matrices. Systems of non-linear equations arise in a large number
of problem domains, and the applicability of the GrSbner basis computation is
limited only by its performance.

To expose the parallelism in the GrSbner basis algorithm, we recast the sequential
algorithm as a nondeterministic procedure defined by a set of guarded commands,
called rules. The execution proceeds by repeatedly firing rules whose guards are
enabled. This eliminates unnecessary serialization that is present in a determin-
istic description of the algorithm. The program is refined until the rules can be
executed concurrently with only small amounts of synchronization, and the shared
data structures can be replaced by distributed ones.

Not surprisingly, one of the hardest problems in the data structure design is to
address the trade-off between locality and load balance. Load balance demands
that computation (and therefore data) be spread out across the machines, while
locality requires that each computation is done on the processor tha t owns its data,
typically the processor that created the computation. The two data structures in
our design address these issues in a synergistic manner: a set of polynomials is
dynamically cached on multiple processors, giving good locality to the tasks that
use the polynomials, and a randomized scheduling queue is used to provide good
dynamic load balance. Had we chosen to partit ion the polynomial set, a randomized
scheduler would have performed quite poorly, since the chance that a task would
be scheduled on a processor that owned the necessary data would be small.

The paper is organized as follows. In Section 2 we describe the basic structure of
the GrSbner basis computation and outline an approach for parallelization. This
approach leads to the design of two distributed data structures, which are presented
in Section 3 using an application-independent point of view. Incorporating the
data structures back into the GrSbner basis algorithm changes the algorithm, as
described in Section 4, since the data structures provide weaker semantics than
assumed in the earlier algorithm. Our design is sufficiently formal tha t a proof of
correctness can be constructed simultaneously. In this paper, we only state the
main results needed for correctness, and omit the proofs. A detailed correctness
proof can be found in [13]. Details of implementation and performance are given
in Section 5. A review of related work is presented in Section 6 and concluding
remarks are made in Section 7.

2. GrSbner Basis C o m p u t a t i o n

In this section we introduce the notion of a GrSbner basis, review Buchberger's
sequential algorithm, and formulate it as a set of transition rules. The underlying
assumption is that the operations on these data structures are atomic. From this

PARALLEL GR(DBNER BASIS ALGORITHM 149

parallel algorithm, the main data structures are identified and some of their usage
characteristics obtained. For example, the data structure implementations will be
quite different for structures that are frequently written than for those that are
mostly read. This lays the groundwork for the design of distributed data structures
in Section 3, which are incorporated into the GrSbner basis algorithm in Section 4.

The first sequential algorithm for finding GrSbner bases was given by Buch-
berger [8]. Given a set of polynomials, it produces another set of polynomials
with the same roots and additional properties that make it easier to compute those
roots. The new set, called the GrSbner basis, is analogous to a triangular set of
linear equations, which can be solved by substitution. The two basic operations in
computing a GrSbner basis are to take two polynomials and combine them into a
scaled sum, and to simplify a polynomial by subtracting multiples of other polyno-
mials.

Polynomials are defined by a set of coefficients and a set of variables. In general,
the coefficients may be taken from an arbitrary field, and there are applications
of GrSbner basis in which the coefficients are not simply numbers, but, for exam-
ple, are themselves ratios of polynomials. Although our implementation supports
only rational coefficients, our algorithm may be used with coefficients from an arbi-
t ra ry field, so we use this general formulation in stating the problem. However, the
reader may safely consider the special case in which coefficients are rational num-
bers on which exact arithmetic is performed. Our examples will use only rational
coefficients.

2.1. N o t a t i o n

We introduce some notation to define the problem. Let K be a field and xl , ..., Xn
be variables, arbitrarily ordered as Xl > x2 > . . . > xn. Then K[xl , ..., Xn] defines
a ring of polynomials under standard polynomial arithmetic. A polynomial is a
sum of monomials scaled by coefficients. Monomials are of the form x~. . .xni~,
and coefficients are elements in K. A total order ~- on monomials is admissible
if for all monomials a,p,q it satisfies (1) p _ 1 (note that 1 = x °. . .x°n) and
(2) p ~ q ~ a p ~ a q , w h e r e p ~ q i f p ~ - q o r p = q .

Example: A monomial p looks like x~ 1 - . . x ~ ~, where Q > 0, 1 _< g < n. One .-:-
c o m m o n l y used admissible ordering is the lexieographie ordering: p = x~ 1 . . . x~ ' is
greater t h a n q = x ~ 1 . . - x~ n iff3g, l < ~ < n : Q > j ~ , a n d V £ t : l < ~ < g , Q , = j~ , .
Thus, with x > y > z, we have xy 2 > yl°z. []

Assume that an admissible ordering ~- is specified on monomials. By conven-
tion, polynomials are written with their monomials in decreasing order of ~-, with
at most one instance of a given monomial. TERM(p, i) denotes the i-th term of
polynomial p. A term contains the coefficient and the monomial: TERM(p, i) =
COEF(p,i) X MoNo(p, i) . The head term of a polynomial p is the leading term:
HTERM(p) = TERM(p, 1). Similarly, HCOEF(p) = COEF(p, 1) and HMONO(p) =
MONO(p, 1). HMONO, HCOEF and HTERM are naturally extended to sets of poly-
nomials: HMONO(S) = {HMONO(p) : p C S}, etc. The admissible ordering ~- is

1 5 0 CHAKRABARTI AND YELICK

extended to polynomials by defining p ~- q iff HMONO(p) ~ HMONO(q), and p ~ q
iff HMONO(p) __ HMONO(q).

Example: Given variables x > y > z and lexicographic ordering on monomials,
polynomial p = 2x2yz 3 - 7xy 1° + z is in canonical form with HTERM(p) = 2x2yz 3,
HMONO(p) = x2yz 3 and HCOEF(p) = 2. []

The ideal of a given set S of polynomials is the set of all polynomials that can be
expressed as polynomial multiples of the elements in S, i.e.,

I D E A L (S) = { s ~ E s p s : p c K [x l , . . . , X n] } . (1)

In Gaussian elimination, we use the property that scaling the equations and adding
them does not affect the solution (as long as we use non-singular transformations);
the analog is t rue of GrSbner basis computation. We define two operations, REDUCE
and S P O L , each of which scales its two argument polynomials by two terms and
computes their scaled sum. As in Gaussian elimination, the motive is to cancel
terms and get a simpler set of equations.

The first operation is polynomial reduction. Given polynomials p and r such that
HMONO(r) divides MONO(p, i) for some i, r is said to reduce p to p', given by:

TERM(p, i)
p' = REDUCE(p,{r}) = p HTERM(r) x r. (2)

Note that TERM(p, i) does not exist in p~, and therefore p ~ p~. Reduction is used to
eliminate redundant polynomials in Gr6bner basis computation, much like scaling
and summing rows zeros out linearly dependent rows in Gaussian elimination.

Example: If p = 2x2yz a - 7xy 1° + z and r = 5xyz - 3 then r reduces p to p~ =

p - [~ x z 2 I. r = -7xy 1° + 6xz2 + z. []

Reduction by a set S of polynomials is done by repeatedly reducing p by some
element of S. When no element of S can reduce p, it is irreducible or in normal
form, in which case NORMAL?(/), ~q) is true. The collection of all possible normal
forms of p when reduced by S is denoted NFs(p). The zero polynomial, 0, is in
normal form with respect to any S.

The second operation is s-polynomial computation. For this, we will need to
define the highest common factor of two monomials:

HCF(x~ i~ x j l ' min(i l , j l) . xmin(in , jn)
= X l - - • (3)

Given polynomials Pl and P2, with head terms klml and k2m2 respectively, their
s-polynomial is given by

k2m2 klml
SPOL(pl,p2) ---- Pl HCF(ml, m2) P2 HCF(ml, m2)" (4)

PARALLEL GROBNER BASIS ALGORITHM 151

Example: Given polynomials p = x - 13y 2 - 12z 3 and q = x 2 - xy + 92z under
lexicographic ordering x > y > z, their s-polynomial is given by SPOL(p, q) -----
- 1 3 x y 2 - 12xz 3 + xy - 92z. []

Given a set F of polynomials, a Gr6bner basis of F is a set G of polynomials
satisfying the following:
• IDEAL(G) = IDEAL(F) and
® For each p E IDEAL(F), NFc(p) = {0}.

An extensive survey of the theory and applications can be found in Mishra [24].

2.2. Sequential Algorithm

Buehberger's sequential algorithm, which we call GB-seq, is shown in figure i. It
proceeds by computing s-polynomials, reducing them, and adding any non-zero
polynomials to the basis. The two main data structures are G (the basis) and gpq

(the priority queue of pairs for SPOL computation). In this version, polynomials
entering G are completely reduced with respect to all previous elements in G, but
old basis elements are not checked for reducibility by new entrants. The effect is
that polynomials that have entered the basis once are never modified or deleted.
Correctness of GB-seq was established by Buchberger; we refer to the version in
Mishra and Yap [24] (Theorem 5.8).

THEOREM 1 (BUCHBERGER)
® G is a GrSbner basis i f fVf , g E G,O E NFc(SPOL(f ,g)) .
® Algorithm GB-seq terminates with G being a GrSbner basis of F.

Algebraic optimizations to the basic algorithm have been developed that test s-
polynom-ials to quickly detect reduction to zero, without actually performing the
reduction [9]. Although our implementation includes such improvements, we omit
them from the presentation for simplicity.

2.3. S o u r c e s o f P a r a l l e l i s m

There is parallelism at various levels in the algorithm. At the smallest grain, poly-
nomial arithmetic (including arithmetic operations on the coefficients, which are
infinite precision integers in our implementation) can be parallelized. Medium grain
parallelism can be exploited by permitting many reducers to reduce a polynomial
simultaneously - - they work on different monomials. Coarser grain parallelism
exists in computing and reducing several s-polynomials independently in parallel.
Reduction has many degrees of freedom, since the choice of a reducer is not spec-
ified. Also, although REDUCE denotes reduction to normal form, it need not be
done all at once; any number of reduction steps will do. Finally, the choice of a
pair from gpq to compute the SPOL is not specified. Although selection heuristics
affect performance, one can work on several pairs simultaneously.

Even for shared memory machines, parallel coefficient or polynomial arithmetic
appears to be too fine-grained. Medium grain parallelism has been a t tempted
by Clarke et aI [15] without any significant benefit on an Encore, a bus-based
shared memory machine, probably because the overhead is too high. Our algorithm

152 CHAKRABARTI AND YELICK

Input : F, a finite set of polynomials.
Initially:

G = F
gpq-- { { f ,g} : f , g e G}

while gpq ¢ 0 {
let {f, g} be any pair in gpq
gpq = gpq \ { (f , g))
h = SPOL(f, g)
h ~ = REDUCE(h, G)
if h' ¢ 0 {

gpq-- gpqU ((f , hl) : f C G}
G = G U h '

)

Figure 1. Sequential Algorithm GB-seq [Buchberger]. G is initialized to the input set F and
grows to become a GrSbner basis. Elements in G are never modified, gpq is the set of pairs of
polynomials. The function REDUCE(h, G) returns some element h / E NFG(h), i.e., it reduces h
completely to normal form.

was planned for the CM-5, a multiprocessor where a hardware message carries at
most 5 words and takes at least 5-6#s to transfer (about 200 cycles). Thus, fine
and medium grain parallelism were ruled out, as was distributing an individual
polynomial across multiple processors.

2.4. T r a n s i t i o n R u l e F o r m u l a t i o n

Transition rules are a means for exploiting nondeterminism in a sequential algorithm
description. Inspired by guarded command languages [14], [17], and augmented by
linearizable da ta types [35], this style was used to implement a shared-memory
Knuth-Bendix procedure [37]. Transition rules help break the computat ion into
independently schedulable chunks, so the scheduling decisions are deferred until
late in the design process. The rules are written in the form C ~ A, where C is the
enabling condition (a guard predicate) and A is the action. An execution proceeds
by repeatedly f iring enabled rules nondeterministically. Termination occurs when
none of the rules can be fired. Parallelism results from being able to overlap rule
executions in t ime on multiple processors.

Our approach is to s tar t with a transition rule description of the sequential al-
gorithm, then refine it to use distributed data structures instead of shared ones.
Ideally, switching from shared to distributed data structures should not entail any
change in the algorithm or proof of correctness. However, a relaxed da ta s tructure
semantics will allow for a more efficient implementat ion on distributed memory,
but will require a new algorithm and correctness argument.

2.4 .1 . T r a n s i t l o n R u l e s w l t h a S i n g l e S h a r e d B a s i s

Our first version, algorithm GB-share, is a simple t ransformation of algorithm GB-
seq, the purpose being only to replace the sequential control structure by a tran-

PARALLEL GROBNER BASIS ALGORITHM 153

Inpu t : F, a finite set of polynomials.
Initially:

grq = O, G = F,
g p q = { { f , g } : f, g E G } .

S-Polynomial
B{p, q} e gpq

gpq = gpq \ {p, q}
grq = 9rq U { (p, q, SPOL(p, q)}}

_Augmentation
3(p, q, r) E grq : NORMAL.7(r, G), r 7~ 0 =~

grq = grq \ {(p, q,r)}
g p q = g p q U { {s , r} , s C G }
c = a u {r}

Reduction
, B(p,q,r) C grq : ~NoaMAL?(r,G)

r = REDUCE(r, G)

[nterReduction
3p, q E G : q reduces p

p' = REDucE(p, {q})
a = (G \ {p}) U {p'}
g p q = g p q U { {p',g}: g e G , gT£p'}

(a) (b)

Figure 2. (a) GB-share: Transition rule formulation using a single shared basis. Data structures G
and 9Pq are as before. Unlike in Algorithm GB-seq, REDUCE(r, G) need not return a normal form; a
partially reduced form will do. (b) Algorithm GB-share is augmented with the rule InterReduction
to give an algorithm with interreduction with a shared basis. InterReduction might reduce a basis
element to zero; we assume for simplicity that zero elements are left around in G but are never
considered as reducers.

sition rule oriented formulation. Later, we shall refine and augment this basic
skeleton. Algorithm GB-share is shown in figure 2. There are three data struc-
tures: G is the growing basis, 9Pq is the pair set as before and grq is a temporary
set of polynomials in some stage of being reduced. The 9 denotes that they are
global, being shared by all processors. The r stands for reducts, and p stands for
pairs. The q stands for (priority) queue, and reflects the importance of heuris-
tic ordering for good performance. The grq data structure exposes parallelism in
reduction operations; we keep it partitioned among processors, without transfers
from one partition to another.

The correctness of GB-share follows from Buchberger's proof of correctness of
GB-seq. We omit the proof, but sketch the main properties that lead to the result.
Partial correctness depends on the invariance of IDEAL(G) (after each rule invoca-
tion, IDEAL(G) = IDEAL(F) holds), and the observation that Vp, q E G, {p, q} ¢
gpq ~ 0 c N F a (SPOL(p, q)). The proof of termination depends on the observa-
tions that REDUCE, NORMAL? and SPOL are all terminating for any argument,
that IDEAL(HMONO(G)) grows each time G is augmented and never shrinks during
any other operation, and that there cannot be an infinite sequence of invocations of
Reduc t ion . Because IDEAL
(HMONO(G)) grows monotonically over time, termination follows from Hilbert 's
basis theorem ([26], pages 420-425).

154 CHAKRABARTI AND YELICK

2.4.2. I n t e r r e d u c t l o n w i t h a Single S h a r e d Bas i s

When a new polynomial is added to the basis, existing polynomials may become
reducible by it. Although this is somewhat controversial [19], Buchberger and
others believe that performing these "reverse" reductions, and thus keeping the
basis reduced with respect to itself, is essential for good performance. Buchberger
describes an elaborate way of keeping track of polynomials that become reducible
each time the basis grows, so that after each addition the basis is interreduced, i.e.,
basis polynomials are reduced by each other until nothing more can be reduced [8].

Adding interreduction increases the difficulty of parallelization, because the ba-
sis is no longer a "grow-only" data structure. We know of no earlier a t tempts to
parallelize interreduction, probably because Buchberger's formulation makes exten-
sive changes to the basis during interreduction, and s-polynomial computation and
reduction operations cannot go on concurrently with interreduction.

We augment our transition rule system by a rule for interreduction. Figure 2
shows the new rule InterReduction. While the extent of reduction done in Reduction
is not specified, we can assume, for the correctness argument, that only a single
reduction step occurs in InterReduction. It follows that correctness is preserved if
InterReduction were to reduce multiple steps, which is done in the implementation.

Informally, correctness of the modified program can be proved if the partial cor-
rectness and termination properties are preserved by the modified version. This can
be shown in two parts. If an invocation of InterReduction modifies the basis from
G1 to G2, it can be shown [13] that any polynomial p which can be reduced to zero
using G1 can also be reduced to zero using G2 (i.e., 0 e NFcl (p) ~ 0 E NFc2(p)),
and that IDEAL(HMONO(G1)) C IDEAL(HMONO(G2)). Working from these obser-
vations, we can establish the following.

LEMMA 1 Algorithm GB-share terminates with G being a GrSbner basis of F.

As in algorithm GB-seq, the key data structures in algorithm GB-share are gpq
and G. In GB-share, they are still central resources, which can lead to significant
bottlenecks in a parallel program. In Section 3, we shall address the design of
efficient distributed memory representations of basis G and pair queue gpq.

3. D i s t r i b u t e d D a t a S t r u c t u r e s

In this section we describe the distributed data structures for locality and paral-
lelism. Informally, our design methodology is to exploit the theoretical elegance
and expressibility of shared memory programs, then adapt it for efficient execution
on distributed memory multiprocessors using a runtime library of data structures.
These distributed data structures are part of a library project called Multipol [36].

For example, randomly assigning tasks to processors works well for applications
like ours running on a shared memory multiprocessor. Hence our data structure for
parallelism incorporates randomized load balancing. To ensure good performance in
a distributed memory setting, we design a data structure for enhancing locality tha t
implements shared memory by caching objects and running consistency protocols
on collections of objects.

PARALLEL GROBNER BASIS ALGORITHM 155

In Section 3.1 we describe the multiset data structure with relaxed consistency.
This is built on top of the data structure tha t supports replicated cached objects,
described in Section 3.2. The task queue for dynamic load balancing is described
in Section 3.3.

3.1. Se t w i t h R e l a x e d C o n s i s t e n c y

Replication, rather than partitioning, is often chosen as the strategy for distributing
data structures that are accessed frequently. However, mutation of data introduces
complications regarding consistency of copies. Designers of large scale multipro-
cessors with logically shared, but physically distributed, memory (like DASH and
KSR-1) have already recognized the importance of weakening the memory consis-
tency model [1], [18] to escape the overheads of keeping multiple caches coherent.
This is more important when caching and consistency management is done in soft-
ware, since the overheads are even higher.

Hardware solutions to caching are easier to use and provide faster individual
operations, but they suffer some drawbacks. First, the coherency units are of fixed
size, which can lead to performance problems such as object fragmentation and
false sharing. Second, the consistency protocol is rigid and therefore not adaptable
to different application needs. In particular, consistency is defined on the semantics
of low level read-write operations, which may be stronger than necessary. In a set,
for example, the order in which elements are inserted leads to different memory
representations, but the same set.

In the parallel GrSbner basis computation, one of the important shared data
structures is a set G of polynomials that is frequently read and seldom written; the
set contains a relatively small subset of all the polynomials that are computed and
examined during the course of the algorithm. We therefore wish to replicate the set
across processors. With interreduction, not only is the set modified by insertion, its
elements may be modified or deleted. Polynomials are the unit of caching, simply
called objects, and the set of input polynomials, which evolves into the final answer,
is an aggregate of these objects. Because elements are reduced with respect to each
other, there will never be any duplicate elements in the set. Technically, since that
uniqueness is maintained by the user of the data structure, rather than being built
into the semantics of the insertion operation, the data structure is really a multiset.
With this disclaimer, we will, for brevity, refer to the basis as a "set" throughout.

Support for high throughput operations on the set is provided by making the
operations split-phase, with one operation to initiate a state change or observation
and another to check that it has completed. A set is an unordered aggregate of
objects that are replicated lazily across processors and validated "on demand."

3 .1 . i . T h e Se t I n t e r face

A set has type SetType and its elements are of type ElemldType. Elements of one
set may occur in another set or, as in the case of our task queue, in a completely
different type of aggregate structure. To avoid having multiple copies of elements
that appear in more than one aggregate, we assume that ElemIdType refers to

156 CHAKRABARTI AND YELICK

names (i.e., ID's) of objects rather than values. The ID can be looked up in the
object caching layer to be described later.

Our implementations are done in C using lightweight messages called active mes-
sages [32]. The processors are not kept tightly synchronized, but there are some
points in the computation, usually initially, when all processor cooperate to perform
a single function, such as creating a distributed data structure. These operations
are, by convention, named with an a l l _ prefix. Thus a set G is created as follows:

SetType C = all_SetCreate();

Inserting an element into a set is a split-phase operation initiated by the oper-
ation S e t I n s e r t I n i t . The inserted element is visible to the calling processor by
the time S e t I n s e r t I n i t returns, but there is a delay before other processors see
the new element. The calling processor can make sure all other processors have
been notified of the insert by checking if S e t I n s e r t T e s t returns t r u e . Similarly,
S e t D e l e t e I n i t and S e t D e l e t e T e s t initiate and check for completion of a delete
operation.. Mutation of elements in the set is internal to the object data structure to
be described later. The signatures of the set construction and mutation operations
are summarized here.

SetType all_SetCreate();
SetStatus SetInsertInit (SetType, ElemIdType);
Boolean SetInsertTest (SetType);
SetStatus SetDeleteInit (SetType, ElemIdType);
Boolean SetDeleteTest (SetType);

An important set operation for the GrSbner basis algorithm is an iterator. Mo-
tivated by the memory hierarchy considerations mentioned before, we have two

versions of iterators.

SetForAllIds (SetType, ElemIdType) { loop body };

is an iterator that produces all element names in the set, and executes loop body
successively with each name. Note that not all ID's may have corresponding local
data.

SetForSomeElems (SetType, ElemType) { loop body};

executes the loop body successively with each element in some subset of the set.
Operationally, the subset corresponds to those elements that are locally cached.
Note that the type of the iterating variable is ElemType, i.e., it is a value, not a
name like ElemIdType.

SetForAllIds is useful when the object names can be used without having to
know their values, as in generating pairs of ID's in algorithm CB-dist (see fig-
ure 4). SetForSomeElems is used in reduction, where only a subset of the elements
may be needed to make progress. SetForSomeElems can be implemented using
SetForAllIds and a test for local availability of an object, described in Section 3.2.

PARALLEL GROBNER BASIS ALGORITHM 157

At some point in an execution, the set client will need to ensure that the values
of all elements of the set are locally available. A validation operation is used to
make a given processor's view of the set globally consistent. As with all other set
operations that require communication, validation is split-phase:

SetValidInit (SetType);
Boolean SetValidTest (SetType);

Once SetValidTest returns true, the iterators are guaranteed to "see" all elements
in the set, as long as no concurrent insertions or deletions are being done.

3.1.2. The Set Implementat ion

A set is implemented as a list of ElemType's in each processor's memory. Not all of
the ID's have corresponding valid data in all processors, but the ID lists are kept
consistent at all times except between the initialization of either insertion or deletion
and the point at which a test for completion of those operations returns true. The
S e t I n s e r t I n i t and S e t D e l e t e I n i t operations are implemented by broadcasting
the new element identifier to other processors. The ID is usually much smaller
than the data it represents, so these are very inexpensive. These operations are
only used when a lock is held or there is some other guarantee of exclusive access.
The S e t V a l i d I n i t operation is used to increase the size of the locally visible set
- - each t ime it is called on an invalid set, some positive number of unavailable
elements will become available within finite time.

3.2. R e p l i c a t e d O b j e c t s

Underlying the set implementation is a basic object layer, ROL, that provides a
shared memory abstraction that is under application control. An object is a con-
tiguous data block of arbitrary size. The system provides primitives for registering
objects into the object space, modifying, reading, and destroying objects, and con-
trolling the consistency of objects on different processors.

An object is identified by a unique identifier. This ID is created when the object
is registered into the object space and is used for all subsequent operations on the
object. Each time an object is modified, a new version of the object is created.
Internally, an object is regarded as a sequence of versions, although the version
management is transparent to the user. There is an explicit validation protocol
tha t a node process has to call to upgrade its version of the object. To enable easy
overlap between communication and computation, most primitives are split-phase
as in the set interface. There is no mechanism for dynamic thread creation: a single
thread is assumed per physical processor, and it has control over that processor's
view of the object system.

3.2.1. The ROL Interface

Primitives provided by ROL are broadly classified into creation, modification, read
access, validation and destruction. An object space is created by calling the func-
tion:

ObjSpace all_ObjSpaceCreate();

158 CHAKRABARTI AND YELICK

All processors call this operation to create and initialize an object space; they must
all complete the initialization before other operations may be called. Although
we generally imagine all objects in one program to be in a single object space,
there may be situations in which the sets of objects are independent, in which case
multiple object spaces make sense.

An object is created by allocating memory, filling it up with (the first version of)
data, and registering it into the object space. The function 0bj C r e a t e l n i t initiates
the creation of an object s i z e bytes large, pointed to by data , and returns the new
unique ID for the object in id0ut . A matching 0 b j e r e a t e T e s t can be used to
determine whether creation is complete. There is often unrelated work that can
be done during split-phase operations; in the GrSbner basis program, one common
type of work is reduction of partially reduced polynomials tha t are held in grq for
this purpose.

ObjCreatelnit (ObjSpace U,
int size, DbjType *data, IdType *idOut);

Boolean ObjCreateTest (ObjSpace U, IdType id);

We use 0bjType to indicate the type of some object that the client has placed in
the object space. The object space is not homogeneous, and in C the type is given
as void, with the responsibility for knowing the actual type left to the user.

An object, identified by id, can be modified or deleted using the following split-
phase operations:

ObjStatus ObjModifylnit (ObjSpace U,
IdType id, int newSize, ObjType *newData);

Boolean ObjModifyTest (ObjSpace U, IdType id);
DbjStatus ObjDestroyInit (ObjSpace U, IdType id);
Boolean ObjDestroyTest (ObjSpace U, IdType id);

The old data freed by either modification or deletion will eventually be garbage
collected by the system. Concurrent modifications or deletions of an object are
not allowed; it is the client's responsibility to ensure exclusive access. Both of the
initiate operations have a return status to indicate whether the named object is
available, known to the object system but not (locally) available, unknown, previ-
ously deleted, or in various other exceptional states.

Reading an object is also a two phase process. First, 0b jReadSta r t is called to
acquire a handle to a locally cached version, if one exists. This also notifies the ROL
layer that this version cannot be garbage collected until the read is complete, even
if other versions arrive. The application can then read the data buffer, and when
finished it releases the handle using 0bjReadEnd. As with the other operations,
0 b j g e a d S t a r t may return a status code indicating the object is not available, in
which case the out return value will not be defined.

0bjStatus 0bjReadStart (0bjSpace U, IdType id,
0bjType **out);

0bjStatus 0bjReadEnd (0bjType *in);

PARALLEL GROBNER BASIS ALGORITHM 159

When an object is read by some processor, any version cached in local memory
may be returned. To ensure that the value is the most recent one requires a valida-
tion call from the application level. The Ob jga l id functions provide the necessary
functionality.

ObjStatus ObjValidlnit (ObjSpace U, IdType id);
Boolean ObjValidTest (DbjSpace U, IdType id);

Note that there is no built-in critical region provided between reads and modifica-
tion: immediately after 0b jVa l idTes t returns successfully, another processor may
destroy this property. If it is necessary for a processor to get the latest value, a
lock or other higher level protocol must be used. In the GrSbner basis code, mod-
ification of set elements happens only during interreduction, and since processors
may use old versions for doing their own reductions, no lock is needed on individual
polynomials.

MgmtType WrapType

IdType id; 1
int state; 1 ~
int lastVersion, lastWriter; ~ I I
int numAcks; ~ I ~---k---~
WrapType *current; I / I I I _ I
WrapType *pending; ~--~ I I Data 1

l Map id to
id ~ MgmtType

pointer

Figure 3. The object management structure, wrappers, and vermon control.

IdType id;
int version; Work
int size; Area
int numReaders

Data
Buffer

3.2.2. T h e ROL Implementat ion

The basic components of the implementation are shown in figure 3. Each proces-
sor has a mapping from the object ID's to management structures; the mapping
is implemented by a hash table. The management structure for each object con-
tains information about operations in progress on the object (the s t a t e) , the last
processor tha t modified the object, the current version number, and a count of
acknowledgements from outstanding remote operations. The object in figure 3 has
two versions: one that is currently being read by at least one processor, and an-
other tha t has been written by some processor and is pending. If the current version
were not being read, the pending version would have replaced it. If there were more
pending versions, these would be linked together using the workspace portion of the
wrapper. The wrapper contains version-specific information, such as the number of
processor currently reading it and the size and value of the version.

160 CHAKRABARTI AND YELICK

Atomicity of most of the operations is achieved by simple pointer swinging oper-
ations. When an object is written, a new version is created and atomically replaces
the current wrapper or is linked into the list of pending wrappers. The implementa-
tion is complicated by the desire to support split-phase operations. Keeping track
of the number of pending operations and their acknowledgements, for example, is
only necessary because multiple operations may be outstanding. The level of cod-
ing detail necessary to get the protocols to be correct and efficient is exactly what
we wish to hide in a library of distributed data structures.

3.3. Task Queue

The remaining data structure problem for the GrSbner basis implementation is the
design of a distributed priority queue for holding pairs of polynomials. An impor-
taut observation from the original algorithm is that strict priority is not required
for correctness, but obliviousness to the "quality" of polynomial pairs will lead to
unacceptable performance. On a distributed memory machine, this immediately
leads to the design of a distributed task queue, in which priorities are used to lo-
cally order tasks, which are in this case polynomial pairs. This is not a full-scale
thread scheduling system, since tasks are really just data that is interpreted by the
application program, and once a task starts executing, it is never de-scheduled by
the system.

3.3.1. Task Queue In ter face

The task queue has the following primitive operations.

TqType all_TqCreate () ;
TqEnqueue (TqType, TaskType);
TqStatus TqDequeue (TqType, TaskType *);

These have the obvious semantics, with the exception of TqDequeue. The return
status of TqDequeue signals one of three possible conditions: a task is available and
was assigned to the TaskType pointer parameter; no tasks were currently available,
although the task queue is not necessarily globally empty; or, the queue is globally
empty and all tasks have been completed. In our implementation, the second case
occurs when there are no local tasks in the queue. This allows other work that
might be available, such as reducing polynomials in grq in GrSbner basis, to be
done while waiting for another task to arrive.

3.3.2. Task Queue I m p l e m e n t a t i o n

The original task queue used in the implementation was engineered to optimize for
locality and load balance [12]. Tasks were preferably scheduled on the processor tha t
created them, unless some other processor was starved for work. This led to a fairly
complicated implementation in which hints of work load were exchanged between
processors, and a task could move multiple times before being executed. For tasks
with high transportat ion costs, for example, when data has been partitioned and
moving a task means leaving its data behind or transporting it along with the task,
a strategy like this one may be necessary. However, once the decision was made

PARALLEL GRC)BNER BASIS ALGORITHM 161

to replicate the basis G in the Gr5bner basis code, moving a task involved moving
only a pair of object identifiers, which is a relatively low cost operation.

Given that load balancing can be done aggressively in our design, we chose a ran-
domized load balancing protocol that was not only easier to implement, but also
proved more amenable to theoretical analysis. Each processor has a local priority
queue of tasks. An idle processor tries to dequeue a task from its local queue. If one
exists, it is expanded. Any child task is enqueued into the priority queue of a pro-
cessor chosen uniformly at random from the P processors. There is no coordinated
global communication for load balancing purposes - - once a processor obtains a
task from its local pool and starts working at it, the task is run to completion.
Our algorithm is a generalization of the randomized algorithm described by Zhang
and Karp [23]; they assumed that each task took a fixed amount of time, so the
system proceeded by alternating one computation step on each processor with one
load balancing step. Our algorithm handles arbitrary task times and requires no
global synchronization points. A theoretical analysis of our algorithm is given in
[11]. Randomly assigning tasks to processors gave performance competitive with
more complicated protocols, at a trivial programming effort.

4. Algorithm Design with Distributed Data Structures

In Section 2, we introduced the GrSbner basis problem, and transformed it into
a transition rule formulation with interreduction, assuming throughout that the
sequential data structures G and gpq that appear in algorithm GB-seq can be effi-
ciently shared by P processors. Then, in Section 3, we explored some engineering
issues in the design of these data structures for a distributed memory multiproces-
sor. In both cases, the memory hierarchy shows through in the design. For the
task queue, strict priority is relaxed, which only affects performance, but for the
set structure, it is necessary to demonstrate correctness of the resulting algorithm.
In this section we rewrite the earlier transition rule programs to use the distributed
data structures and outline the main idea used to reason about correctness, namely,
the definition of an abstraction function on the distributed set.

4.1. A C o n s i s t e n c y P r o b l e m

If the distributed set is used without modifying the overall algorithm, the inconsis-
tent replicas of elements in the set may lead to incorrect executions. In particular,
the following "race condition" may arise, where operations using out-of-date copies
of the basis lead to mutual cancellation. This is a generalization of the case Ponder
pointed out [27].

E x a m p l e : Suppose, with ordering t > w > u > v > x > y > z, the following
polynomials exist in the basis.

ql = w x + y and q2 = w z - u y with SPOL(ql, q2) ~- u x y + y z = P l , say.

q3 = v y + y and q4 = v z with S P O L (q 3 , q 4) -~ y z = P2, say.

q5 = t u ÷ u and q6 = t y with SPOL(q5,q6) -~ u y = P3, say.

162 CHAKRABARTI AND YELICK

Next, P3 can reduce Pl to p~ = yz, which is the same as P2. Suppose processors P1
and P2 both have copies of p~ and p2. InterReduction fires on P1 and P2. Say p~
is reduced by P2 to 0 on P1. Processor P2 does not modify its copy of g, instead
it reduces P2 by p~ to 0. Subsequent invalidation messages lead both processors to
discard their copies of p~ and P2. This can possibly destroy the correctness of the
result. []

A solution to this special case is to impose a total order AGE on polynomials such
that if f = g, f is allowed to reduce g to 0 only if the order is favorable. In general,
a stronger check is needed, namely, the total order should be used whenever the
head monomiaIs of the reducer and the reduced are equal, even if the polynomials
are not completely equal. It is easy to verify that this check prevents the particular
error indicated, but it is still non-trivial to show correctness in general.

4.2. D i s t r i b u t e d M e m o r y A l g o r i t h m

Using the AGE function, we now write the transition rules GB-dist in figure 4
that describe a distributed algorithm. Since only one object space is used, we have
omitted this argument from the ROE operations. In the implementation, these rules
are written to permit multiple rule copies to execute simultaneously on different
processors.

The first transition rule, S-Polynomial, is essentially unchanged, except that it
has extra operations for manipulating the object space and the reduce queue. As
described in Section 3, TqDequeue may fail even though pairs exist somewhere in the
system and TqEnqueue is actually placing the new pair on some randomly chosen
processor.

Reduction is done in both Reduction and InterReduction by calling the function
REDUCE(r, G), which reduces a polynomial r by a set of polynomials G using the
set iterator SetForSomeElems. InterReduction modifies an existing element of the
basis G when it does reduction. Recall from the description of the object layer
that multiple modifications cannot be done concurrently; this is enforced in our
implementation by assigning each polynomial in the basis to an owner processor
with exclusive access for interreduction. Locks could also be used, but they seem
to require excessive communication in our environment. Finally, validation of the
basis is done by a separate rule, Validation, which must be executed regularly for
the computation to proceed.

4.3. C o r r e c t n e s s A r g u m e n t s

From the example in Section 4.1, it is clear that the correctness of algorithm GB-dist
does not directly follow from the correctness of algorithm GB-share in Section 2.
A correctness argument for algorithm GB-dist requires a more precise model of
the implementation. To model the software cache in the set implementation, the
variable G in GB-dist is really a distinct variable Gi on each processor i, 1 ~ i < P.
Also, the versions of a polynomial p throughout its lifetime can be recorded in a
hypothetical list called its version list [p(0),p(1), . . . ,p(t)]. The full version list
does not exist, but the abstraction captures the update history of p. Let us call the

PARALLEL GROBNER BASIS ALGORITHM 163

S-Polynomial TqDequeue(gpq,{f,g}) == TQ_SUCCESS
fVal id? = 0 b j R e a d S t a r t (f , p f) ;
gValid? = 0b jReadSta r t (g ,pg) ;
if (fValid? ~& gValid?)

grq = grq U { SPOL(pf,pg) }
else

TqEnqueue(gpq,{f ,g});
0bjReadEnd(pg);
0bjReadEnd(pf);

Reduction 3r E grq : ~NORMAL?(r, G) ==~
r = REDOCE(r, C) ;
if r == 0

grq = grq \ (r} ;

Augmentation SetVal idTes t (G) &~ 3r C g r q : N O R M A L ? (r , G) ~
g r q = g r q \ {r} ;
0bjCreateInit (size(r), r, newId);
SetInsertInit(G,newId);
while (!0bjCreateTest(newId) II !SetInsertTest(G))

do some useful work;
SetForAllIds (G, oldId)

TqEnqueue(gpq,{newId,oldId});

InterReduction 3f, h C G: [3bjValidTest (f) , h reduces f
HMONO(f) ~ HMONO(h) or AGE(f) > AGE(h)

pSta t = 0bjReadStar t (f , p f) ;
hSta t = 0bjReadStar t (h,ph) ;
newf = REDUCE(pf,{ph}) ;
0bjReadEnd (ph) ;
0b j Re adEnd (pf) ;
if (newf == 0) (

SetDeleteInit (G, f) ;
0bjDeleteInit (f) ;

} (Tests for completion not shown.)
else {

0bjModifyInit (f, size(newf), newf);
SetForAllIds (G, g)

TqEnqueue (gpq, {f ,g}) ;
}

Validation TRUE =~
SetValidInit (G)

Figure 4. GB-dlst: The complete transition rule algorithm with interreduction, showing the use
of the distributed data structures. Since there is only one object space, it is not shown in the
function calls.

164 CHAKRABARTI AND YELICK

set of all such version lists G ~. The local copy Gi contains processor i's view of G:
it contains at most one version, which is its current version, from each of the lists
in Gq

A validation operation either puts the first element of a new version sequence
in Gi or replaces version g(t) from a version sequence g by g(t + g), ~ > 0. We
will define an abstraction function that maps the physically distributed set to an
abstract set g containing only the latest versions at a given time.

G = {g(last) : [p(O),p(1),...,p(last)] c G'}. (5)

In GB-share, when an invocation of InterReduction modifies the value of the basis
from G1 to G2, one can show that polynomials reducing to zero in G1 can also reduce
to zero in G2, by replacing each reduction step using an element in G1 \ G2 by two
reduction steps, each using an element in G2. Furthermore, IDEAL(HMONO(G1)) C
IDEAL(HMONO(G2)), so progress is not hampered. It turns out that using the
same techniques in a more elaborate way, we can establish that these properties are
preserved, even with P copies of the basis, provided the AGE ordering is used.

Specifically, with the abstract basis g defined as in (5), we can show the analogues
of the above properties:

kip: 0 e N F g ~ (p) ~ 0 • N F 6 2 (p) , and (6)

IDEAL(HMONO(gl)) C_ IDEAL(HMONO(g2)), (7)

where gl and g2 are values of the abstract basis before and after an interreduction
step. Working from these observations, we can establish the following [13].

THEOREM 2 GB-dist terminates, computing a Gr6bner basis of F.

4.4. Implementat ion Sketch

So far, the transition rules have only been modified by creating distributed data
structures in place of the original shared ones. The semantics of the GB-dist al-
gorithm are still based on an interleaving of the transition rules. The real paral-
lelism comes from observing that many of the rules can now be overlapped, because
the data structure contain sufficient concurrency control. In this section, we give
sketches of the less obvious steps taken to transform the transition rules into a par-
allel program in terms of the abstractions we have defined in Section 3.1, Section 3.2
and Section 3.3.

Each processor runs a scheduling loop in which it Checks the guard conditions
and executes enabled rules. Under this model, the transition rule formulation in
figure 4 has one significant inefficiency. The guard of Reduction checks that tha t
some polynomial r in grq in reducible by G, while the guard of Augmentation checks
that r is not reducible by G. Reduction by a set involves a search for a reducer, so
it is more profitable to merge these two rules into a single one. The guard on the
new rule Reduce/Augment checks only that grq is non-empty, with the separation
based on reducibility handled by a conditional in the rule body. The combined rule

PARALLEL GROBNER BASIS ALGORITHM 165

R e d u c e / A u g m e n t
i f (~r C g r q) {

grq=grq\{~};
[r, s ta tus] = REDUCE(r,G);
if (r = 0)

return;

if (status == REDUCED) /* continue reduction */

grq = grq U {r};
e l se { /* t r y augment */

ACQUIRE LOCK;

if SetValidTest(G) {

0bjCreatelnit (size(r), r, newld);

Setlnsertlnit (G, newld);

while (!ObjCreateTest(newld) [I

do some useful work;

SetForAlllds (G, oldld)

TqEnqueue(gpq,{newld,oldld})
}

!SetInsertTest(G))

else /* set not valid --- try other reductions */
grq = grq U {r};

RELEASE LOCK;

Figure 5. The combined Reduce/Augment axiom, using operations provided by the 0bj, Tq and
Set abstractions. The ID oldId is generated by set iteration.

takes the form shown in figure 5. For convenience, the function REDUCE is modified
to return a status, REDUCED or NORMAL, to indicate whether a reduction was indeed
performed.

Some additional comments about the above code are in order. In the actual
implementat ion, overlap between rule executions is necessary for parallelism, and
correctness is ensured by a lock (see lock acquiring and releasing s ta tements in the
code). We use a simple spin lock, but with the following optimization. When a
processor tries to acquire a lock and fails, it is clear tha t some other processor is
doing an A u g m e n t a t i o n , so the S e t V a l i d T e s t on the first processor is doomed to
fail if it does not validate its set before it successfully acquires the lock. In any case,
unavailability of the lock, or detecting an invalid basis inside the critical section,
means tha t there are further potential reductions to do. Hence we place r back into
grq and continue with other rules, retrying the lock later.

5. P e r f o r m a n c e

In this section we present the performance of our implementation. We used a
Thinking Machines CM-5 multiprocessor [10]. Each node is a 33 MHz (15-20
MIPS) Sparc processor with 8 MB of memory. The network is a fat-tree supporting
at most 20 MB/s point to point data transfer. Communicat ion was done using the

166 CHAKRABARTI AND YELICK

Table i. Sample runn ing t imes (in seconds) of the pro to type . Ts is the runn ing t ime of a
sequent ia l implementa t ion . A is the number of po lynomia l s added to the basis, and Z is the
number of s -po lynomia ls reduced to zero. Note t h a t all numbers depend on bas is ordering,
pa i r selection, and pai r e l imina t ion cri teria.
Name Ts A Z 1 2 3 4 5 6 7 10 15 20
arnborg4 .28 6 18
arnborg5 97 53 411
katsura4 11 16 60
lazard 101 31 114
morgenstern 5.5 13 40
pavelle4 4 9 21
pavelle5 20 104
robbiano 0.5 13 30
rose 13.7 16 28
t r inks l 3.3 14 54

.314 .19 .13 .08 .06
190 86 63 43 31
46 10 8.1 7.7 5.7
20 6.7 5 3.3 3.1

3.9 2.2 1.2 1.2
5.47 2 1.2 1.4 .9
281 116 79 62 55
.82 .4 .27 .19
20 6.3 3 2.4 1.9

10.1 4.1 2.9 1.8 1.9

31

1.6

13 12 10
4.4 4.2 4.1
2.4

1
.7

28 15

1.6
1

active message layer CMAML. The implementation is in C; we used gcc-2 .3 .3 with
optimization -04 for our measurements.

5.1. Benchmarks

We have used the set of standard benchmarks collected mostly by Vidal [31]. Total
degree ordering was used, with ties being resolved by lexicographic order. We used
the pair elimination criteria in [9] and the traditional pair selection in [8]. The task
queue ordered pairs locally to favor the pair {f, g} with the smallest HMONO(f) ×
HMONO(g)/HCF(HMONO(f), HMONO(g)). In table 1 we give performance for some
of these examples. Some inputs are too small, for example, arnborg4 needs only
24 tasks to complete, making it too small to exploit more than 4-5 processors. In
general, problems like arnborg5, katsura4, pavelle5, running for tens to hundreds
of seconds, having hundreds of tasks, parallelize quite well. There are two different
sequential programs shown in table 1: Ts is the original sequential code and T1 is
the parallel algorithm running on a single processor.

Table 2 shows the fraction of running time spent idle (averaged over all P pro-
cessors), and in s-polynomial computation, reduction, task queue operations, lock
operations, pair generation and pruning, and ROL overheads, for a few sample runs
with P - 1, 5, 10, 20. In general, performance is good if most of the time is spent
in s-polynomial computation and reduction. The task queue operations (Tq) seem
to take significant time, but most of them are unsuccessful attempts to dequeue
before a termination detection algorithm is triggered, so this is really a measure of
uneven finishing times rather than task queue overhead.

5.2. Compu t ing Speedups

A common measure of parallelism in an application is the speedup of a parallel
algorithm relative to the "best" sequential one. However, no tight complexity
bound is known for the sequential algorithm, and both the sequential and parallel
algorithms are guided by heuristics. Moreover, the work done, hence, the running
time, of the parallel program has nondeterminism owing to variations in event
ordering. Furthermore, there are cases where the one-processor parallel version
outperforms the sequential program and vice versa.

PARALLEL GR()BNER BASIS ALGORITHM 167

Table 2. Execution time breakup for two sample inputs, for P ----
1, 5, 10, 20, to the nearest percent of total time.
arnborg5 Spoly Reduce Tq Idle Lock Pair ROL

P = 1 4 94 0 0 0 0 0
5 3 89 1 1 1 4 1
10 3 79 5 8 1 3 1
20 4 65 7 13 5 5 1

katsura4 Spoly Reduce Tq Idle Lock Pair ROL
P = I 2 97 0 0 0 1 0

5 2 89 3 4 0 1 1
10 2 79 8 8 1 1 1
20 1 49 24 24 0 1 1

In plotting speedup curves, we use the running t ime of the parallel version running
on one processor as the baseline for computing speedups. The results are shown
in figure 6. To provide a more realistic assessment of the overheads in the parallel
algorithm, running times of an optimized sequential program running on one node
of the CM-5 are also reported in table 1. Another problem is tha t different runs of
the program do not do the same amount of work, making "true" speedup hard to
estimate. We use a standardization procedure described next to remove this effect.

5.3. Superlinear Speedup

Par ts of the speedup curves in figure 6 are above the ideal linear speedup. I t is well-
known in problems with nondeterministic or heuristic scheduling (e.g., backtrack,
branch and bound, pa t te rn matching) tha t it is possible to solve a problem with P
processors in less than 1 / P of the t ime needed for one processor, because some of
them may find "short cuts" (in this case, good reducer polynomials) to the solution
whereas a single processor may be misled by an inaccurate heuristic.

To make sure tha t the speedup curves indicate the benefit of parallelism and not
fortuitous choice of polynomials, we also calibrated speedups after gett ing rid of
the nondeterminism. For this, the parallel version accumulates traces of activity at
each processor. A sequential program running on only one node of the CM-5 reads
in the traces and mimics an appropriately merged sequence of execution steps. The
execution t ime of this program is used as the baseline for normalized curves. One of
the outstanding examples of superlinear behavior is shown in figure 7(a); a similar
effect has been reported by Vidal [31] on this input. Normalized speedup is shown
in figure 7(b). The superlinear nature has been filtered completely and the linear
nature of "true" speedup shows clearly. (These tracing experiments were done
using an earlier version. Our current implementat ion does bet ter pair selection and
elimination. This improves absolute performance, but makes simulating the trace
harder.)

An input instance can be "large" in the sense of running t ime or memory require-
ments or both. Although our implementation scales well in time, replication of the
basis presents a limit to scalability in space. We have come across long-running
instances tha t might show highly scalable speedups, but all of them exceed the

168 CHAKRABARTI AND YELICK

11 2o

10 18 ..'""

" / 7
9 16

8 14 avelle5'"

/-',near
5 8

4 6

2 amborg4 2

1, ; 1'o o ; ;o I; 2'0
#Procs #Procs

Figure 6. Speedups (based on raw running time) for some standard benchmarks. Our implemen-
tation scales better than the best shared memory performance reported by Vidal even for very
small examples. (see text for an explanation about the anomaly of superlinear speedup in some
cases).

current memory capacity. To run such examples, a more flexible abstract ion is
needed tha t performs this space-time tradeoff on a continuum using a hybrid of
partit ioning and replication.

6. R e l a t e d W o r k

There are two directions of research related to the work reported here: research spe-
cific to parallelizing the GrSbner basis algorithm, and generic parallelism research
in language and runtime support for irregular applications.

Vidal [31] implemented a shared memory GrSbner basis program on an Encore
Multimax. He used a shared pool of pairs of polynomials and critical sections
for accessing the basis, which was in shared memory. Processors remove work
from the pool, produce s-polynomials, reduce them with read permission on the
basis and add new polynomials with write permission. In an extension of this
work [15], medium grain parallelism is explored in a shared memory setting, by
reducing a single polynomial by many reducers, working at different terms. Except
for examples where superlinear speedup results from chancing upon "short-cuts" in
the search space, efficiency is low. For standard examples the implementation does
not scale beyond 5-10 processors. Vidal also gives a survey of earlier attempts to
parallelize the algorithm.

Ponder [27] studied this problem in the context of performance enhancements in
algebraic manipulation systems. He noted the race condition in parallel interre-
duction, in which two copies of the same polynomial may reduce each other and

PARALLEL GROBNER BASIS ALGORITHM 169

60

o

4O

~30

20

10/ L:near.
......."

."1"
#Procs

(a) Not normalized

10

9

7
- o

~ 6

N 5
E
o

Z
4

L inea /

..-"

t | i i I

4 6 8 10 #Procs
(b) Normalized

Figure 7. Superlineax speedup (lazard). Figure (a) shows our best and worst performance over 5
runs and the best shared memory performance• All axe superlinear. When speedup is determined
by normalizing running time using a simulator, near-linear "true" speedup is seen in figure (b).

disappear. As described in Section 4, we avoid this without serialization by keeping
t ime stamps on the polynomials. Because the time stamps need not be globally
consistent, they can be efficiently computed in a distributed setting.

On distributed memory machines, a pipelined program has been reported by Siegl
[30]. Reduction of a polynomial is done by a pipeline of processes across which the
current basis is partitioned. The implementation was ported to a network of SUN
workstations, a t ransputer and a (shared memory) Sequent, but performance figures
are available only for the Sequent. These do not appear to be significant improve-
ments over Vidal's performance. Other distributed memory implementations have
been reported by Attardi [3] and Hawley [20]. None of these seem to exploit the
weak consistency requirements on the data structures in the same manner as our
implementation.

The SAM runtime system for supporting a shared memory model on distributed
memory machines [28] is closest to our approach of application controlled replication
and consistency management. In fact, our Gr6bner basis implementation has been
ported to SAM. One significant functionality that ROL provides is version control
t ransparent to the application. In SAM, shared objects have single assignment
semantics, which is cumbersome since the basis is mutated during interreduction.
Furthermore, no integrated load balancing support is provided in SAM.

Recent research has yielded sophisticated rnntime support like the Concert system
[22] and the Chare kernel [29], [21], and programming languages like Concurrent
Aggregates [2], pSather [25] and p C + + [6]. These are general purpose solutions

170 CHAKRABARTI AND YELICK

for modular and portable parallel programming, supporting irregular data sharing
and task scheduling at a fine to medium grain. Being language-based approaches,
they build in some policies for scheduling and load balancing, although in each case
the user has some control over data distribution. A separate thread of work has
been the development of application-specific distributed data structures, including
irregular grids [5], [4], B-trees [34], sets [16] and oct-trees [33]. These data structures
fit with the general framework of our approach, although we make the locality and
load balance trade-off a first order concern by giving the application direct control
over both scheduling and data layout.

7. Conclusion

We have described an efficient parallelization of Buchberger's GrSbner basis al-
gorithm for distributed memory multiprocessors. The performance results on the
CM-5 are encouraging, scaling to 20 processors, which is better than previous im-
plementations on both shared memory and distributed memory machines. On one
processor, our implementation is competitive with good sequential implementa-
tions, taking advantage of the known optimizations, such as pair elimination, and
heuristics for choosing polynomial pairs and reductions.

In this paper we have dealt mostly with the engineering aspects of parallel pro-
gramming. However, our design methodology allows us to show that the resulting
parallel algorithm is correct, and that its efficiency is predictably high. We have
cited these results where appropriate.

In addition to these application-specific contributions, we offer a general approach
for developing irregular parallel applications. The development is done by refining
a nondeterministic sequential algorithm, and the resulting program is organized
around distributed data structures with a relaxed semantics. Our data structures
use both partitioning and replication: partitioning for the frequently written task
queue, and replication for the infrequently written set and underlying objects. Re-
laxing the consistency enabled efficient implementations of the shared data struc-
tures, which would otherwise have been bottlenecks in a distributed environment.
Reasoning about parallel algorithms using a series of refinements is a well-known
technique that is demonstrated in the Unity framework [14], among others. How-
ever, in those formal models, a distributed environment is targeted by reducing
the original program for shared data down to message passing. Our work gives an
example of the development of a relatively large parallel application by focusing on
the interesting parts of parallelization, retaining data abstraction in a distributed
setting.

Acknowledgments

We are grateful to Steve Schwab for providing the packages for bignum and polyno-
mial arithmetic and a shared memory Gr5bner basis program developed at CMU.
Professor Richard Fateman made valuable comments on the work, and gave gener-
ous help on some geometry proof benchmarks. An initial version of the task queue

PARALLEL GR()BNER BASIS ALGORITHM 171

was c o d e d by C h i h - P o Wen . W e also a c k n o w l e d g e t h e ca re fu l c o m m e n t s of t h e

r e v i e w e r s t h a t e n a b l e d us t o i m p r o v e t h e p r e s e n t a t i o n .

R e f e r e n c e s

1. s . v . Adve and M. D. Hill. Weak ordering-a new definition. In 17th International Symposium
on Computer Architecture, April 1990.

2. Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Massively Parallel
Programs. MIT Press, Cambridge, MA, 1993.

3. G. Attardi and C. Traverso. A Network Implementation of Buchberger Algorithm. Technical
Report 1177, University di Pisa, January 1991.

4. S. B. Baden. Programming abstractions for dynamically partitioning and coordinating lo-
calized scientific calculations running on multiprocessors. SIAM Journal on Scientific and
Statistical Computing, 12(1): 145-157, 1991.

5. H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive scientific al-
gorithms on distributed memory multiprocessors. Concurrency: Practice and Experience,
pages 159-178, June 1991.

6. F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Maloney, and B. Mohr. Imple-
menting a parallel C + + runtime system for scalable parallel system. In Supercomputing'93,
pages 588-597, Portland, Oregon, November 1993.

7. M. P. Bonacina. Distributed Automated Deduction. PhD thesis, Department of Computer
Science, SUNY at Stony Brook, December 1992.

8. B. Buchberger. GrSbner basis: an algorithmic method in polynomial ideal theory. In N. K.
Bose, editor, Multidimensional Systems Theory, chapter 6, pages 184-232. D. Reidel Pub-
lishing Company, 1985.

9. B. Buchberger. A Criterion for detecting Unnecessary Reductions in the construction of
GrSbner Bases. In Proceedings of the EUROSAM '79, An International Symposium on
Symbolic and Algebraic Manipulation, pages 3-21, Marseille, France, June 1979.

10. N. J. Burnett. The Architecture of the CM-5. In IEEE Colloquium on 'Medium Grain
Distributed Computing' (Digest 070), pages 1-2, London, 26 March 1992.

11. S. Chakrabarti, A. Ranade, and K. Yelick. Randomized load balancing for tree structured
computation. In IEEE Scalable High Performance Computing Conference, pages 666-673,
Knoxville, Tennessee, May 1994.

12. S. Chakrabarti and K. Yelick. Implementing an irregular application on a distributed mem-
ory multiprocessor. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 169-178, San Diego, California, May 1993.

13. S. Chakrabarti and K. Yelick. On the correctness of a distributed memory GrSbner basis
algorithm. In C. Kirchner, editor, International Conference on Rewriting Techniques and
Applications, volume 690 of Lecture Notes in Computer Science, pages 77-91, Montreal,
Canada, 16-18 June 1993. Springer-Verlag.

14. K. M. Chandy and J. Misra. Parallel Program Design: a Foundation. Addison-Wesley
Publishing Company, Reading, Mass., 1988.

15. E. M. Clarke, D. E. Long, S. Michaylov, S. A. Schwab, J. P. Vidal, and S. Kimura. Parallel
symbolic computation algorithms. Technical Report CMU-CS-90-182, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, October 1990.

16. W. J. Dally. A VLSI Architecture for Concurrent Data Structures. PhD thesis, CMifornia
Institute of Technology, Pasadena, California, March 1986.

17. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
18. K. Gharachor]oo, D. Lenoski, J. Laudon, A. Cupta, and J. Hennessy. Memory Consistency

and Event Ordering in Scalable Shared-Memory Multiprocessors. In 17th International Sym-
posium on Computer Architecture, pages 15-26, 1990.

19. A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. "One sugar cube, please" OR
Selection strategies in the Buchberger algorithm. In Proceedings of the 1991 International
Symposium on Symbolic and Algebraic Computation, pages 49-54, Bonn, Germany, 15-17
July 1992.

172 CHAKRABARTI AND YELICK

20. D. J. Hawley. A Buchberger algorithm for Distributed Memory Multi-processors. In Pro-
ceedings of the 1st International A CPC Conference on Parallel Computation, pages 385-390,
Salzburg, Austria, 30 September - 2 October 1991. Springer-Verlag.

21. L. V. Kal~ and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System
based on C + + . Technical Report UIUCDCS-R-93-1796, University of Illinois, Urbana, IL,
March 1993. Also in OOPSLA'93.

22. V. Karamcheti and A. Chien. Concert - - Efficient Runtime Support for Concurrent Object-
Oriented Programming Languages on Stock Hardware. In Supercomputing'93, Portland,
Oregon, November 1993.

23. R. M. Karp and Y. Zhang. A Randomized Parallel Branch-and-bound Procedure. In Pro-
ceedings of the 20th Annual A C M Symposium on Theory of Computing, pages 290-300,
1988.
B. Mishra and C. Yap. Notes on GrSbner basis. In Information Sciences 38, pages 219-252.
Elsevier Science Publishing Company, 1989.
S. Murer, J. Feldman, and C.-C. Lim. pSather: Layered extensions to an object-oriented lan-
guage for efficient parallel computations. Technical Report 93-028, International Computer
Science Institute, Berkeley, CA, 1993.
Nathan Jacobson. Basic Algebra - - Volume 2. W. H. Freeman and Company, New York,
1989.
C. G. Ponder. Evaluation of "performance enhancements" in algebraic manipulat ion systems.
Technical Report UCB/CSD 88/438, University of California, Berkeley, 1988. Chapter 7,
Parallel Algorithms for GrSbner Basis Reduction.
D. J. Scales and M. S. Lain. A flexible shared memory system for distributed memory
machines. Unpublished manuscript, 1993.
W. Shu and L. V. Kal6. Chare Kernel - - a Runtime Support System for Parallel Computa-
tions. Journal of Parallel and Distributed Computing, 11:198-211, 1991.
K. Siegl. Parallel Gr5bner Basis Computat ion in II MAPLE]I. In A CM S IGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 179-186, San Diego, California,
May 1993.
J.-P. Vidal. The computation of GrSbner bases on a shared memory multiprocessor. Techni-
cal Report CMU-CS-90-163, School of Computer Science, Carnegie Mellon University, Pit ts-
burgh, PA 15213, 1990.
T. yon Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: A mech-
anism for integrated communication and computation. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages 256-266, 1992.
M. Warren and J. Salmon. A parallel hashed oct-tree n-body algorithm. In Supercomput-
ing'93, pages 12-21, Portland, Oregon, November 1993.
W. E. Weihl and P. Wang. Multi-version memory: Software cache management for concurrent
B-trees. In Proceedings of the Symposium on Parallel and Distributed Processing, December
1990.
K. Yelick. Using abstraction in explicitly parallel programs. Technical Report M I T / L C S / T R -
507, Massachusetts Inst i tute of Technology, 545 Technology Square, Cambridge, MA 02139,
July 1991.
K. Yelick, S. Chakrabarti , E. Deprit, J. Jones, and A. Krishnamurthy. Data Structures for
Irregular Applications. In Proceedings of the DIMA CS Workshop on Parallel Algorithms for
Unstructured and Dynamic Problems, 1993.
K. A. Yelick and S. J. Garland. A parallel completion procedure for term rewriting systems.
In Conference on Automated Deduction, Saratoga Springs, NY, 1992.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

