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Abstract 

Alvin R. Lebeckt 

Matrix multiplication is an important kernel in linear algebra al- 
gorithms, and the performance of both serial and parallel imple- 
mentations is highly dependent on the memory system behavior. 
Unfortunately, due to false sharing and cache conflicts, traditional 
column-major or row-major array layouts incur high variability in 
memory system performance as matrix size varies. This paper in- 
vestigates the use of recursive array layouts for improving the per- 
formance of parallel recursive matrix multiplication algorithms. 

We extend previous work by Frens and Wise on recursive ma- 
trix multiplication to examine several recursive array layouts and 
three recursive algorithms: standard matrix multiplication, and the 
more complex algorithms of Strassen and Winograd. We show 
that while recursive array layouts significantly outperform tradi- 
tional layouts (reducing execution times by a factor of 1.2-2.5) for 
the standard algorithm, they offer little improvement for Strassen’s 
and Winograd’s algorithms; we provide an algorithmic explanation 
of this phenomenon. We demonstrate that carrying the recursive 
layout down to the level of individual matrix elements is counter- 
productive, and that a combination of recursive layouts down to 
canonically ordered matrix tiles instead yields higher performance. 
We evaluate five recursive layouts with successively increasing com- 
plexity of address computation, and show that addressing over- 
heads can be kept in control even for the most computationally de- 
manding of these layouts. Finally, we provide a critique of the Cilk 
system that we used to parallelize our code. 

1 Introduction 

High-performance dense linear algebra codes, whether sequential 
or parallel, rely on good spatial and temporal locality of reference 
for their performance. Matrix multiplication is an important ker- 
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nel in linear algebraic algorithms, and is enshrined in the dgemm 
routine in the BLAS 3 library [lo]. There is an intimate relation- 
ship between the layout of the arrays in memory and the perfor- 
mance of the routine. On modem shared-memory multiprocessors 
with multi-level memory hierarchies, the column-major layout as- 
sumed in the BLAS 3 library can result in performance anomalies 
as the matrix size is varied. These anomalies result from unfavor- 
able access patterns in the memory hierarchy that cause interfer- 
ence misses and false sharing and increase memory system over- 
heads experienced by the code. In this paper, we investigate recur- 
sive array layouts accompanied by recursive control structures as a 
means of delivering high and robust performance for parallel dense 
linear algebra. 

The use of quad- or act-trees (or, in a dual interpretation, space- 
filling curves) is known in parallel computing [ 1,20,21,33,35,38] 
for improving both load balance and locality. The computations 
thus parallelized or restructured are reasonably coarse-grained, thus 
making the overheads of maintaining and accessing the data struc- 
tures insignificant. Frens and Wise [12] champion the use of quad- 
trees to represent matrices and explore its use in matrix multiplica- 
tion. While the authors presented some excellent ideas, we felt that 
they carried them to an extreme. Based on this previous work, we 
were left with several questions that we address in this paper. 

Previous work using such layouts did not worry greatly about 
the overhead of address computations. The algorithms de- 
scribed in the literature [31] follow from the basic defini- 
tions and are not particularly optimized for performance. Are 
there fast algorithms, perhaps involving bit manipulation, for 
maintaining the “dope vectors” that would enable such data 
structures to be used for fine-grained parallelism? Or, even 
better, can the address computations be embedded implicitly 
in the control structure of the program? 

Frens and Wise carried out their quad-tree layout of matrices 
down to the level of matrix elements, disregarding the result 
of Lam, Rothberg, and Wolf [26] that a tile that fits in cache 
and is contiguous in memory space can be organized in a 
canonical order without compromising locality of reference. 
This suggests the need for the quadtree decomposition to ter- 
minate well before the element level and to co-exist with tiles 
organized in a canonical manner. Could this interfacing of 
two layout functions be accomplished without increasing the 
cost of addressing? How does absolute performance relate to 
the choice of tile size? 

Frens and Wise assumed that all matrices would be organized 
in quad-tree fashion, and therefore did not quantify the cost 
of converting to and from a canonical order at the routine 
interface. This is an optimistic assumption that is currently 
unrealistic. We feel that an honest accounting of costs needs 
to quantify the overhead of format conversion. Would the 
performance benefits of quad-tree data structures be lost in 
the cost of building them in the first place? 

There are several variants of recursive orderings other than 
the U-ordering that Frens and Wise used. Some of these 
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orderings, such as Gray-Morton [28] and Hilbert [18], are 
supposedly better for load balancing, albeit at the expense 
of greater addressing overhead. How would these variants 
compare in terms of complexity vs. performance improve- 
ment for fine-grained parallel computations? 

l Frens and Wise speculated about the “attractive hybrid com- 
posed of Strassen’s recurrence and this one” [12, p. 2151. 
This is an interesting variation on the problem for two rea- 
sons. First, Strassen’s algorithm [36] achieves a lower oper- 
ation count at the expense of more data accesses in patterns 
that have worse algorithmic locality of reference. Second, 
the control structure of Strassen’s algorithm is not as simple 
as that of the standard recursive algorithm, making it trickier 
to work with quad-tree layouts. Could this combination be 
made to work, and how would it perform? 

Our major contributions are as follows. First, we provide im- 
proved performance over that reported by Frens and Wise by stop- 
ping their recursive splitting well before the level of single ele- 
ments. Second, we integrate recursive data layouts into Strassen’s 
algorithm and provide some surprising performance results. Third, 
we test five different recursive layouts and characterize their rel- 
ative performance. We provide efficient addressing routines for 
these layout functions that would be useful to implementors wish- 
ing to incorporate such layout functions into fine-grained parallel 
computations. Finally, as a side effect, we provide an evaluation 
of the strengths and weaknesses of the Cilk system [4], which we 
used to parallelize our code. 

The remainder of this paper is organized as follows. Section 
2 introduces the algorithms for fast matrix multiplication that we 
discuss in this paper. Section 3 introduces recursive data layouts 
for multi-dimensional arrays. Section 4 describes the implementa- 
tion issues that arose in weaving together the recursive data layouts 
with the recursive control structures of the algorithms. Section 5 
offers measurement results that support the claim that these layouts 
improve the overall performance. Section 6 compares our approach 
with previous related work. Section 7 presents conclusions. 

2 Algorithms for fast matrix multiplication 

The computation we discuss in this paper is that of matrix multipli- 
cation. Let -4 and B be two n x n matrices, where n = 2k. Let 
C = A l B, where the symbol l represents matrix multiplication. 

Rather than formulate the matrix product in terms of row or 
column operations, we will proceed by quadrant or sub-matrix op- 
erations. Partition the two input matrices A and B and the result 
matrix C into quadrants as follows. 

The standard algorithm that performs O(n3) operations pro- 
ceeds as shown in Figure l(a), performing eight recursive matrix 
multiplication calls and four matrix additions. 

Strassen’s original algorithm [36] uses algebraic identities to re- 
duce the number of recursive matrix multiplication calls from eight 
to seven at the cost of 18 matrix additions/subtractions. This change 
reduces the operation count to O(n’s ‘). The algorithm proceeds as 
shown in Figure 1 (b). 

Winograd’s variant [l l] of Strassen’s algorithm uses seven re- 
cursive matrix multiplication calls and 15 matrix additions/subtractions. 
It is known [ll] that this is the minimum number of multiplica- 
tions and additions possible for any recursive matrix multiplication 

algorithm based on division into quadrants. The computation pro- 
ceeds as shown in Figure l(c). Compared to Strassen’s original 
algorithm, the noteworthy feature of Winograd’s variant is its iden- 
tification and reuse of common subexpressions. These shared com- 
putations are responsible for reducing the number of additions, but 
also contribute to worse locality of reference unless special atten- 
tion is given to this aspect of the computation. 

Figure l(a)-(c) also illustrate the elements of A and B read to 
compute the individual elements of C = A l B, for 8 x 8 ma- 
trices. Each of the six diagrams has an 8 x 8 grid of boxes, each 
box representing an element of C. Each box contains an 8 x 8 grid 
of points, each point representing an element of matrix A or B. 
The grid points corresponding to elements read are indicated by a 
dot. From these figures, we observe that the standard algorithm has 
good algorithmic locality of reference, accessing consecutive ele- 
ments in a matrix row or column.’ In contrast, the access patterns 
of Strassen’s and Winograd’s algorithms are much worse in terms 
of algorithmic locality. This is particularly evident along the main 
diagonal for Strassen’s algorithm and for elements (0,7) and (7,O) 
for Winograd’s. This raises the question of whether the benefits of 
the reduced number of floating point operations for the fast algo- 
rithms would be lost as a result of the increased number of memory 
accesses. We answer this question in Section 5. 

We do not discuss in this paper numerical issues concerning the 
fast algorithms, as they are covered elsewhere [17]. 

We use Cilk [4] to implement parallel versions of these algo- 
rithms. Parallelism is exposed in the recursive matrix multiplica- 
tion calls. The seven or eight calls are spawned in parallel, and 
these in turn invoke other recursive calls in parallel. Cilk supports 
this nested parallelism, providing a very clean implementation. 

2.1 Interface 

In order to stay consistent with previous work and to permit mean- 
ingful comparisons, all our implementations follow the same call- 
ing conventions as the dgemm subroutine in the Level 3 BLAS li- 
brary [lo]. Thus, the implementation computes C t (Y * op(A) l 

op( B) +/I * C, where cv and /3 are scalars, op( A) is an m x Ic double 
precision real matrix, op( B) is a Ic x n double precision real matrix, 
C is an m x n double precision real matrix, and op(X) is either 
X or XT. The matrices A, B, and C are stored in column-major 
order, with leading dimensions ZdA, ZdB, and ZdC respectively. 

3 Recursive array layouts 

Programming languages that support multi-dimensional arrays must 
also provide a function (the layout function L) to map the array 
index space into the linear memory address space. For ease of ex- 
position, we assume a two-dimensional array with m rows and n 
columns, which we index using a zero-based scheme. The results 
we discuss generalize to higher-dimensional arrays and other in- 
dexing schemes. We define L such that L(i, j) is the memory lo- 
cation of the array element in row i and column j relative to the 
starting memory location of the array, in units of array elements. 
We list near the end of the argument list of L, following a semi- 
colon, any “structural” parameters (such as m and n) of L, thus: 
L(i, j; m, 72). 

The default layout functions provided in current programming 
languages are the row-major layout Ln as used in Pascal, given by 
LR(~, j; m, n) = n . i + j, and the column-major layout Lc as 

‘We add the qualifier “algorithmic” to emphasize the point that we are reasoning 
about this issue at an algorithmic level, independent of the architecture of the un- 
derlying memory hierarchy. In terms of the 3C model [191 of cache misses, we are 
reasoning about capacity misses at a high level, not about conflict misses. 
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Post-additions 

cll=Pl+P2 

c21 =P3+P4 

cl2 = p5 + p6 

c22 = P7 -b Ps 

Recursive calls Pre-additions Elts of A read to compute C 

rlnrlclclrloo 
auuuuuuu 
EEEiEiEEEE 
OEl”qRRRR 

PI = -411 . &I 
P2 = A12 l B21 

P3 = AZI . BII 
P4 = A22 . B21 

P5 = A11 . B12 

p6 = A12 . B22 

P7 = A21 l B12 

Elts of B read to compute C 

q ammmc71~0 amammmao 
q mmmmmun 
q mmmmmun 
q mmmmmmn cnxommaicoo 
q mammmcuu 
q mmmmmmn 

Ps = A22 l B22 
(a) Standard algorithm 

cll=Pl+P4-P5+P7 

c21 =pZ+p4 

Cl2 = P3 + P5 

c22 = Pl + P3 - P2 + P6 

P, = S1 l TI 
Pz=Sz*B11 
P3 =A11 l T2 
P4 = A22 l T3 

Ps = S3 l B22 

P6 = ~94 l T4 

P7 = Ss l T5 

SI = AII + A22 
S2 = A21 + A22 

s3 = A11 - Al2 
s4 = A21 - A11 
S5 = A12 - A22 

K=Bil+B22 

T2 = B12 - B22 

T3 = B21 - B11 
T4 = BII + B12 
Tg=B21+B22 

(b) Strassen’s algorithm 

c,,= U,=P,+Pz 9 = ~411 .&I 
u2 = Pl + P4 P2 = A12 . B21 

u3 = u2 + P5 P3 = SI l TI 

c21 = u4=u3+q P4 = S2 . T2 

c22 = us = u3 + P3 Ps = S3 l T3 
u6 = u2 i- p3 P6 = S4 l B22 

&!= u7=&+& P7 = A22 l T4 

SI = A21 + A22 
s2 = S, - Al1 

s3 = A11 - A21 
S4 = A12 - S, 
Tl=B12-B11 

T2 = B22 - T, 

T3 = B22 - B12 
T4 = B?, -T? 

(c) Winograd’s variant of Skassen’s algorithm 

Figure 1: Descriptions and algorithmic locality of reference of the three matrix multiplication algorithms. 

used in Fortran, given by Lc(i, j; m, n) = m . j + i. We do not 
consider the vector-of-vector layout used for non-constant arrays in 
C, because these are not true multi-dimensional arrays. Following 
the terminology of Ciemiak and Li [S], we refer to LR and LC as 
canonical layout functions. Figure 2(a) and (b) show these two lay- 
out functions. Canonical layouts do not always interact well with 
cache memories, because the layout function favors one axis of the 
index space over the other: neighbors in the unfavored direction 
become distant in memory. This dilution effect has implications 
for both parallel execution and single-node performance that can 
reduce program performance. In the shared-memory parallel en- 
vironments in which we experimented, the elements of a quadrant 
of a matrix are spread out in shared memory, and a single shared 
memory block can contain elements from two quadrants, and thus 
be written by the two processors computing those quadrants. This 
leads to false sharing 193. In a message-passing parallel environ- 
ment such as those used in implementations of High Performance 
Fortran [25], typical array distributions would again spread a ma- 

trix quadrant over many processors, thereby increasing communi- 
cation costs. The dilation effect can compromise single-node mem- 
ory system performance in the following ways: by reducing or even 
nullifying the effectiveness of multi-word cache lines; by reducing 
the effectiveness of translation lookaside buffers (TLBs) for large 
matrix sizes; and by causing cache misses due to self-interference 
even when a tiled loop repeatedly accesses a small array tile. 

The above considerations have led authors to investigate a class 
of array layout functions variously described as being based either 
on quadtrees [12] or on space-filling curves [IS, 32,341. Instances 
of this family are familiar in parallel computing under the names 
Morton ordering and Hilbert ordering. 

Despite the dilation effect described above, canonical layout 
functions have one major advantage: they allow quick incremen- 
tal address computation. This idiom is understood by compilers 
and is one of the keys to high performance in libraries such as na- 
tive BLAS. Unlike Frens and Wise, therefore, we will not carry 
the recursive layout down to the level of individual elements, but 
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(a) Row-major layout, LR (b) Column-major layout, Lc (c)Z-Morton layout, Lz 

6:9 : 10 I 53 : 54 : 57 I sail I 10 9:6 :5 158157:54:5/11 

(d) U-Morton layout, Lu (e) X-Morton layout, Lx (f) G-Morton layout, LG (g) Hilbert layout, LH 

Figure 2: Graphical description of layout functions. Arrays are m x n; tiles are tn x tc. 

will terminate the recursion when we reach a tn x tc submatrix 
that fits in cache. We will also describe these layouts in terms of 
space-filling curves rather than in terms of quad-trees. (The quad- 
tree is simply an aid to conceptualizing the layout, and none of its 
internal nodes need to be physically represented in memory. The 
space-filling curve makes this clear.) 

Assume for the moment that we know how to choose tR and 
tc, and that tR and tc simultaneously satisfy 

(2) 

for some positive integer d. We can now view our original m x n 
array as a g x 2 array of tn x tc tiles. Equivalently, we have 
mapped the original two-dimensional array index space (i, j) into 
the four-dimensional space 

(ti,tj,fi,,fJ) = (T(i;tR)r~(j;tC),IF(i;tR),IF(j;tC)) 

T(i;t) = idivt 

F(i; t) = i mod t. 

We now create two subspaces: the space T of tile co-ordinates 
(t;, t3). and the space F of tile offsets (fi, f,). We apply the canon- 
ical layout function Lc in the F-space (to keep each tile contigu- 
ous in memory) and a layout function LT in the T-space (to obtain 
the starting memory location of the tile), and define our recursive 
layout function L as their sum: 

where S(i,j) gives the position along the space-filling curve (Le.,- 
the pre-image) of the element at rectangular co-ordinates (i, j). 

Equation (3) defines a family of layout functions parameter- 
ized by the function S characterizing the space-filling curve. All of 
these recursive layout functions have the following operational in- 
terpretation following from Hilbert’s construction [18]. Divide the 
original matrix into four quadrants, and lay out these submatrices 
in memory in an order specified by LT. A kR x kc submatrix with 
kR > tn and kc > tc is laid out recursively using LT; a tn x tc 

tile is laid out using Lc. 
Space-filling curves are based on the idea of threading a region 

with self-similar line segments at multiple scales. The two funda- 
mental operations involved are scaling and orienting (rotating) the 
line segments. We classify the five recursive layouts we consider 
in this paper into three classes based on the number of orientations 
needed. Three layouts (U-Morton, X-Morton, and Z-Morton) re- 
quire a single orientation; one layout (Gray-Morton) requires two 
orientations; and one layout (Hilbert) requires four orientations. 
We now discuss the structure of these layouts and the computations 
involved in calculating their S functions. 

We need the following notation to discuss the computational 
aspects of the recursive layouts. For any non-negative integer i, let 
B(i) be the bit string corresponding to its standard binary encoding, 
and let g(i) be the bit string corresponding to its Gray code [30] 
encoding. Correspondingly, for any bit string s, let B-’ (.s) be the 
non-negative integer i such that B(i) = S, and let 8-‘(s) be the 
non-negative integer i such that B(i) = s, Also, if u = ud-1 . . . ua 
andv=Vd-r... v. are two bit patterns each of length d, let u w v 
be the bit pattern of length 2d resulting from the bitwise interleav- 
ing Of u and v, i.e., u w v = U&lv&.l ~~~uovo. Finally, we 
adopt the convention that, for all layouts, S(O,O) = 0. Rotations 
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and reflections of the layout functions are possible, and are most 
cleanly computed by interchanging the i and j arguments and/or 
subtracting them from Zd - 1. 

3.1 Recursive layouts with a single orientation 

The three layouts U-Morton (Lu), X-Morton (LX), andZ-Morton 
(Lz), illustrated in Figure 2(c)-(e), are based on a single pattern 
of ordering quadrants that repeat ad injinitum. The mnemonics are 
based on the letters of the English alphabet that these ordering pat- 
terns resemble. We note that the Z-Morton layout should prop- 
erly be called the Lebesgue layout, since it is based on Lebesgue’s 
space-filling curve [34, p. SO]. 

The 6 functions for these layouts are easily computed with bit 
operations, as follows. 

For Lu: S(i,j) = @(L?(j) w (B(i) XOR f?(j))) 
For LX: S(;,j) = K’((a(i)XORB(j)) w a(j)) 
For La: S(;,j) = K’(B(i) w S(j)) 

3.2 Recursive layouts with two orientations 

The Gray-Morton layout [28] (LG) is based on a C-shaped line seg- 
ment and its counterpart that is rotated by 180 degrees. Figure 2(f) 
illustrates this layout. Computationally, its S function is defined as 
follows: S(i,j) = 4-‘@(i) w B(j)). 

3.3 Recursive layouts with four orientations 

The Hilbert layout [18] (LH) is based on a C-shaped line seg- 
ment and its three counterparts rotated by 90, 180, and 270 de- 
grees. Figure 2(g) illustrates this layout. The 9 function for this 
layout is computationally more complex than any of the others. The 
fastest method we know of is based on an informal description by 
Bially 123, which works by driving a finite state machine with pairs 
of bits from i and j, delivering two bits of S(;,j) at each step. 

3.4 Summary 

We have described five recursive layout functions in terms of space- 
filling curves. These layouts grow in complexity from the ones 
basedon Lebesgue’s space-filling curve to the one basedon Hilbert’s 
space-filling curve. We now state several facts of interest regard- 
ing the mathematical and computational properties of these layout 
functions. 

l It follows from the pigeonhole principle that only two of the 
four cardinal neighbors of (i, j) can be adjacent to S(;,j). 
Thus, recursive layouts are prone to a dilation effect simi- 
lar to that the canonical layouts experience. The important 
difference is that the dilation occurs at multiple scales. This 
dilation effect is seen in the abrupt jumps in the curves of 
Figure 2. We note that these jumps get less pronounced as 
the number of orientations increases. 

l The LG layout function has a Useful symmetry that is easi- 
est to appreciate visually. Refer to Figure 2(f) and observe 
the northwest quadrant (tiles O-15) and the southeast quad- 
rant (tiles 32-47), which have different orientations. If we 
remove the single edge between the top half and the bottom 
half of each quadrant (edge 7-8 for the northwest quadrant, 
edge 39-40 for the southeast quadrant), we note that the top 
and bottom halves of the two quadrants are identically ori- 
ented. That is, two quadrants of opposite orientation differ 
only in the order in which their top and bottom halves are 
“glued” together. We exploit this symmetry in Section 4. 

l In terms of computational complexity of the 9 functions of 
the different layout functions, we observe that bits 2u+ 1 and 
2u of S(;, j) depend only on bit ZJ of i and j for the layouts 
with a single orientation, while they depend on bits i through 
d - 1 for the Lo and LH layouts. 

4 Implementation issues 

Section 2 described the parallel recursive control structure of the 
matrix multiplication algorithms, and Section 3 described the re- 
cursive array layouts we wanted to combine with the algorithms. 
This section links these two aspects together, addressing a number 
of implementation issues in the process. 

Integration of address computation into control struc- 
ture. For the matrix multiplication algorithms of Section 2, we 
can integrate the computation of the S function into the control 
structure in an incremental manner, as follows. Observe that the 
actual work of matrix multiplication happens on tR x tc tiles when 
the recursion terminates. At each recursive step, we need to locate 
the quadrants of the current trio of matrices, perform pre-additions 
on quadrants, spawn the parallel recursive calls, and perform the 
post-additions on quadrants. The additions have no temporal local- 
ity and are ideally suited to streaming through the memory hierar- 
chy, which is aided by the fact that recursive layouts keep quad- 
rants contiguous in memory. Therefore, all we need is the abil- 
ity to quickly locate the starting points of the four quadrants of a 
(sub)matrix. This produces the correct S number of the tiles when 
the recursion terminates, which are then converted to memory ad- 
dresses and passed to the leaf matrix multiplication routine. 

For the LG and LH layout functions, which have multiple ori- 
entations, we need to retain both the location and the orientation 
of quadrants. We encode orientation in one or two most significant 
bits of the integers. 

Relaxing the constraint of equation (2). The definitions of 
the recursive matrix layouts in Section 3 assumed that tn and tc 
were constrained as described in equation (2). This assumption 
does not hold in general, and the conceptual way of fixing this 
problem is to pad the matrix to an m’ x n’ matrix which satis- 
fies equation (2). There are two concrete ways to implement this 
padding process. 

l Frens and Wise keep a flag at internal nodes of their quad- 
tree representation to indicate empty or nearly full subtrees, 
which “directs the algebra around zeroes (as additive identi- 
ties and multiplicative annihilators)” [12, p. 2081. 

Maintaining such flags makes their solution insensitive to 
the amount of padding, but requires maintaining the internal 
nodes of the quad-tree. This scheme is particularly useful 
for sparse matrices, where patches of zeros can occur in ar- 
bitrary portions of the matrices. Note that if one carries the 
quad-tree decomposition down to individual elements, then 
m’z2mandn’ z5 2n in the worst case. 

l We pick tR and tc from an architecture-dependent range, 
explicitly insert the zero padding, and blindly perform all the 
arithmetic on the zeros. We choose the range of acceptable 
tile sizes so that the tiles are neither too small (which would 
increase the overhead of recursive control) nor overflow the 
cache (which would result in capacity misses). Since tiles 
are contiguous, there are no self-interference misses. This 
makes the performance of the leaf-level matrix multiplica- 
tions almost insensitive to the tile size [37]. 
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Our scheme is sensitive to the amount of padding, since it 5 Experimental results 
performs computations on the padded portions of the matri- 
ces. However, if we choose tile sizes from the range [Tmin, T,,,], Our experimental platform was a Sun Enterprise 3000 SMP with 
the maximum ratio of pad to matrix size is l/Tm;n .- 

Our imposition of the range [Tmi”, T,,,] of tile sizes is guided 
by cache considerations, but causes a problem for rectangular ma- 
trices whose aspect ratio m/n is either too large or too small. Let 
cy = Tmax/Tmin , and call a matrix wide, squat, or lean depending 
on whether LY < m/n, 1/cr < mfn < a, or I/Q > m/n. For 
wide and lean matrices, it is not possible to find tile sizes that si- 
multaneously satisfy the constraints of equation (2) and lie in the 
prescribed range of tile sizes.* This problem can easily be under- 
stood by considering the following case: m = 1024, n = 256, 
Tmin = 17, and T - 32. III&X - 

We overcome this limitation quite simply, by dividing wide or 
lean the matrix into squat submatrices, and reconstructing the ma- 
trix product in terms of the submatrix products. Figure 3(a) and 
Figure 3(b) show two examples of how the input matrices A and 
B are divided, and how the result C is reconstructed from results 
of submatrix multiplications. These multiple submatrix multiplica- 
tions are, of course, spawned to execute in parallel. 

Conversion and transposition issues. In order to stay com- 
patible with dgeaua, we assume that all matrices are presented in 
column-major layout. Our implementation internally allocates ad- 
ditional storage and converts the matrices from column-major to 
the recursive layout. The remapping of the individual tiles is again 
amenable to parallel execution. We incorporate any matrix transpo- 
sition operations required by the operation into this remapping step. 
This is handy, because it requires only a single routine for the core 
matrix multiplication algorithm. The alternative solution requires 
multiple code versions or indirection using pointers to handle these 
cases correctly. 

four 170 MHz UltraSPARC processors, and 384 MB of main mem- 
ory, running SunOS 5.51. We used version 52.1 of the Cilk sys- 
tem [4] compiled with critical path tracking turned off. The Cilk 
system requires the use of gee to compile the C files its cilk2c 

compiler generates from Cilk source. We used the gee-2.7.2 com- 
piler with optimization level -03. The experimental machine was 
otherwise idle. We also took multiple measurements of every data 
point to further reduce measurement uncertainty. 

We timed the full cross-product of the three algorithms (stan- 
dard, Strassen, Winograd) and the six layout functions (Lc, Lu, 
LX, Lz, Lo, LX) running on 1, 2, and 4 processors on square 
matrices with n ranging from 500 through 1500. We verified cor- 
rectness of our codes by comparing their outputs with the output 
of vendor-supplied native version of dgemm, However, we could 
not perform the leaf-level multiplications in our codes by calling 
the vendor-supplied native version of dgemm, since we could not 
get Cilk to support such linkage of external libraries. Instead, we 
coded up a C version of a 6-100~ tiled matrix multiplication routine 
with the innermost accumulation loop unrolled four-way. We report 
all our results in terms of execution time, rather than megaflop/s 
(which would not correctly account for the padding we introduce) 
or speedup (since the values are sensitive to the baseline). 

Issues with pre- and post-additions. There is one final im- 
plementation issue arising from the interaction of the pre- and post- 
additions with the recursive layouts with more than one orientation. 
Consider, for example, the addition Si = A1 1 + A22 in Strassen’s 
algorithm. For recursive layouts with a single orientation, we sim- 
ply stream through the appropriate number of elements from the 
starting locations of AI r and A22, adding them and streaming them 
out to Si . This is not true for Lo and LH layouts, since the orien- 
tations of A1 i and A22 are different. In other words, while each tile 
(and the entire set of tiles) is contiguous in memory, corresponding 
tiles of A1 i and A22 are not at the same relative position. 

For Lo, the fix is simple, exploiting the symmetry discussed 
in Section 3.4. If the orientations of the two tiles are different, and 
each quadrant contains 2k tiles, then the ordering of tiles in one ori- 
entation is TI , . . , T2k while the ordering of tiles in the other ori- 
entation is Tk+ 1, . . . , zk, Tl , . . , Tk . Therefore, we simply need 
to perform the pre- and post-additions in two half-steps. 

For LH, the situation is more complicated, because there is no 
simple pattern to the ordering of tiles. Instead, we keep global 
mapping arrays of these orders for the various orientations, and 
use these arrays to identify corresponding tiles in pre- and post- 
additions. The added cost in loop control is insignificant. 

‘The proof is by contradiction. Let m/n > a, and assume that we can find tR 
and tc as desired. From equation (2). we have m/n = t~/t~. Combining the 
range constraints and equation (2). we get T,,,i, Q tc < TV ( T,,,. But this 
gives t~/tc < 0. Thecase l/a > m/n is analogous. 

General comments. As predicted by theory, we observed the 
two fast algorithms consistently outperforming the standard algo- 
rithm. This is apparent from the different y-axis extents in the sub- 
graphs of Figure 6. From the same figure, we observe virtually no 
difference between the execution times of the two fast algorithms. 
This suggests to us that the worse algorithmic locality of reference 
of Winograd’s algorithm compared to Strassen’s (see Figure 1) off- 
sets its advantage of lower operation count. 

We observed near-perfect scalability for all the codes, as evi- 
dent from Figures 5 and 6. By running under a different version of 
Cilk in which critical path tracing was enabled, we determined that, 
for n = 1000, there is sufficient parallelism in the standard algo- 
rithm to keep about 40 processors busy; the corresponding number 
for the two fast algorithms is around 23. This is as expected, since 
the total work of the algorithms is O(dt6), while the critical path 
is O(lg* n). 

Choice of tile size. To back our claim that, for best perfor- 
mance, the recursive layouts should be stopped before the matrix 
element level, we timed a version of the standard algorithm with 
the Lz layout in which we explicitly controlled the tile size at 
which the recursive layout stopped. Figure 4 shows the single- 
processor execution times from this experiment with: n = 1024, 
t E {1,2,4,8,16,32,64,128,256,512}; and n = 1536, t E 
{3,6,12,24,48,96,192,384,768}. (We used these values of n 
because they allow us to choose many tile sizes’without incurring 
any padding.) The results for multiple processor runs are simi- 
lar. The shape of the plot confirms our claim. The “bump”s in the 
curves are reproducible. 

For reference, the native dgenun routine runs for this problem 
size in 17.874 seconds. Thus, our best time of 33.609 seconds (at 
a tile size of 16) puts us at a slowdown factor of 1.88, compared to 
the factor of around 8 that Frens and Wise reported [12, Table 11. 
The numbers for n = 1536 are 61.555 seconds for native dgerma, 
96.1996 seconds for our best time, and a slowdown factor of 1.56. 

Robustness of performance. To study the robustness of the 
performance of the various algorithms, we timed the standard and 
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Strassen algorithms using the LC and LZ layouts for n in the range 
[lOOO, 10481 on l-4 processors. Figure 5 shows the results, which 
are unlike what we had originally expected. The standard algorithm 
with LC layout exhibits large performance swings which are totally 
reproducible. The LZ layout greatly reduces this variation but does 
not totally eliminate it. In stark contrast, Strassen’s algorithm does 
not display such fluctuation for either layout. In neither case do we 
observe a radical performance loss at n = 1024, which is what we 
originally expected to observe. The fluctuations for the standard 
algorithm appear to be an artifact of paging, although we have not 
yet been able to confirm this hypothesis. We offer our explanation 
of the robustness of Strassen’s algorithm in Section 5.1. 

Relative performance of different layouts. Figure 6 shows 
the relative performance of the various layout functions at two prob- 
lem sizes: n = 1000 and n = 1200. The figures reveal two major 
points. First, compared to the LC layout, the effect of recursive 
layouts on the standard algorithm is dramatic, while their effect on 
the two fast algorithms is marginal. We offer our explanation of 
this effect in Section 5.1. Second, at least for these problem sizes, 
the performance of all the recursive layouts is approximately the 
same. We interpret this to mean that our implementation of the 
layouts is sufficiently efficient to control the addressing overheads 
even of LH. An alternate explanation is that the purported benefits 
of, say, LH over Lz, do not manifest themselves until we reach 

A critique of Cilk. Overall, we were favorably impressed with 
the capabilities of the Cilk system [4] that we used to parallelize 
our code. For a research system, it was quite robust. The simplicity 
of the language extensions made it possible for us to parallelize our 
codes in an afternoon. The restriction of not being able to call Cilk 
functions from C functions, while sound in its motivation, was the 
one feature that we found annoying, for a simple reason: it required 
to annotate several intervening C functions in a call chain into Cilk 
functions, which appeared to us to be spurious. This problem is 
avoidable by using the library version of Cilk. 

The intimate connections between Cilk and gee, and the limi- 
tations on linking non-Cilk libraries, are serious barriers to getting 
performance out of the system. In order to quantify these losses, 
we compiled our serial C codes with three different sets of com- 
pile and link options: (i) a baseline version compiled with the ven- 
dor cc (Sun’s Workshop Compilers Version 4.2), with optimization 
level - fast, and linking in the native dgemm routine from Sun’s 
perflib library for the leaf-level matrix multiplications; (ii) a ver- 
sion compiled with the vendor cc with optimization level -fast, 
but with our C routine instead of the native dgenua; and (iii) a 
version compiled with gee version 2.7.2, with optimization level 
-03, and with our C routine instead of the native dgemm. Fig- 
ure 7 summarizes our measurements with these three versions for 
several problem sizes, algorithms, and layout functions. The re- 
sults are quite uniform: the lack of native BLAS costs us a factor of 
1.2-1.4, while the switch to gee costs us a factor of 1.5-1.9. We 
find it interesting that the incremental loss in performance due to 
switching compilers is comparable to the loss in performance due 
to the non-availability of native BLAS. The single-processor Cilk 
running times are indistinguishable from the running times of ver- 
sion (iii) above, indicating an extremely efficient implementation 
of the Cilk mntime system. 

5.1 Why the fast algorithms behave differently than the 
standard algorithm 

Our explanation for the qualitative difference in the behavior of the 
fast algorithms compared to the standard algorithm is as follows. 
Both the Strassen and Winograd algorithms perform pre-additions, 
which require the allocation of quadrant-sized temporary storage, 
while this is not the case with the standard algorithm. Therefore, 
when performing the leaf-level matrix products, the standard algo- 
rithm works with tiles of the original input matrices, which have 
leading dimension equal to n. In contrast, every level of recursion 
in the fast algorithms reduces the leading dimension by a factor of 
approximately two, even if we do not re-structure the matrix at the 
rap level. This intrinsic feature of the fast algorithms makes them 
less sensitive to idiosyncrasies of the memory system. 
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We note one other curious feature that we have observed in the 
fast algorithms. If we were interested only in sequential compu- 
tation, and wished to conserve space, we would intersperse recur- 
sive calls with pre- and post-additions. This version behaves more 
like the standard algorithm: LZ reduces execution times by lO- 
20%. Of course, there is no parallelism in such a code, so it was 
not appropriate for this study. A systematic explanation of these 
curious interactions between space requirements, execution time, 
parallelism, and memory system architecture remains open. 

6 Related work 

We categorize related work into two categories: previous applica- 
tion of recursive array layout functions in scientific libraries, and 
work in the parallel systems community community related to lan- 
guage design and iteration space tiling for parallelism. 

Scientific libraries Several projects emphasize the generation 
of self-tuning libraries for specific problems. We are aware of three 
such efforts: PHiPAC [3], ATLAS [39], and FFTW [13]. The 
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Figure 6: Comparative performance of the six layouts. The top row is for 72 = 1000, while the bottom row is for n = 1200. The columns 
from left to right are for the standard, Strassen, and Winograd algorithms. 

PHiPAC project aims at producing highly tuned code for specific 
BLAS 3 [lo] kernels such as matrix multiplication that are tiled for 
multiple levels of the memory hierarchy. Their approach to generat- 
ing an efficient code is to explicitly search the space of possible pro- 
grams, to test the performance of each candidate code by running 
it on the target machine, and to select the code with highest per- 
formance. It appears that the code they generate is specialized not 
only for a specific memory architecture but also for a specific ma- 
trix size. The ATLAS project generates code for BLAS 3 routines 
based on the result that all of these routines can be implemented 
efficiently given a fast matrix multiplication routine. The FFTW 
project generates fast routines for one- and multi-dimensional fast 
Fourier transforms. None of these projects explicitly use data re- 
structuring, although the FFTW project recognizes their impor- 
tance. 

Frens and Wise [12] provide an implementation of recursive 
matrix multiplication. We adopted their idea of computation re- 
structuring by recursion unfolding. They appear to carry the recur- 
sion down to the level of single array elements, which causes a dra- 
matic loss of performance. Their reported performance is consider- 
ably lower than ours; it is difficult to tell whether this difference in 
performance is due to architectural improvements, to assumptions 
made in the algorithmic details, or to coding differences. 

Gustavson [16] discusses the role of recursive control strategies 
in automatic variable blocking of dense linear algebra codes, and 
shows dramatic performance gains compared to implementations 
of the same routines in IBM’s Engineering and Scientfic Subroutine 
Library (ESSL). 

The application of space-filling curves is not new to parallel 
processing, although most of the applications of the techniques 
have been tailored to specific application domains [l, 20,21,33, 
35,381. They have also been applied for bandwidth reduction in 
information theory [2], for graphics applications [14,27], and for 

database applications [22]. Most of these applications have far 
coarser granularity than our test codes. We have shown that the 
overheads of these layouts can be reduced enough to make them 
useful for fine-grained computations. 

Parallel languages and compilers. The parallel compiler 
literature contains much work on iteration space tiling for gaining 
parallelism [41] and improving cache performance [5,40]. Carter 
et al. [6] discuss hierarchical tiling schemes for a hierarchical shared 
memory model. Lam, Rothberg, and Wolf [26] discuss the im- 
portance of cache optimizations for blocked algorithms. A major 
conclusion of their paper was that “it is beneficial to copy non- 
contiguous reused data into consecutive locations”. Our recursive 
data layouts can be considered an early binding version of this rec- 
ommendation, where the copying is done possibly as early as com- 
pile time. 

The class of data-parallel languages exemplified by High Per- 
formance Fortran 12.51 recognizes the fact that co-location of data 
with processors is important for parallel performance, and provides 
user directives such as align and distribute to re-structure 
array storage into forms suitable for parallel computing. The recur- 
sive layout functions described in this paper can be fitted into this 
memory model using the mapped distribution supported in HPF 
2.0. Hu et al.‘s implementation [20] of a tree-structured N-body 
simulation algorithm manually incorporated Lz within HPF in a 
similar manner. Support for the recursive layouts could be formally 
added to HPF without much trouble. The more critical question is 
how well the corresponding control structures (which are most nat- 
urally described using recursion and nested dynamic spawning of 
computations) would fit within the HPF framework. 

A substantial body of work in the parallel computing litera- 
ture deals with layout optimization of arrays. Representative work 
includes that of Mace [29] for vector machines; of various au- 
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thors investigating automatic array alignment and distribution for 
distributed memory machines [7,15,23,24]; and of Ciemiak and 
Li [S] for DSM environments. The last paper also recognizes the 
importance of joint control and data optimization. 

7 Conclusions 

We have examined the combination of five recursive layout func- 
tions with three parallel matrix multiplication algorithms. We have 
demonstrated that addressing using these layout functions can be 
accomplished cheaply, and that these address computations can be 
performed implicitly by embedding them in the control structure 
of the algorithms. We have shown that, to realize maximum per- 
formance, such recursive layouts need to co-exist with canonical 
layouts, and that this interfacing can be performed efficiently. We 
observed no significant performance variations among the differ- 
ent layout functions. Finally, we observed a fundamental qualita- 
tive difference between the standard algorithm and the fast ones in 
terms of the benefits of recursive layouts; we attribute this differ- 
ence to the algorithmic feature of pre-additions. 
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