Estimating Execution Time of Distributed
Applications

Maciej Drozdowski*

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 3a, 60-965 Poznan, Poland
Maciej.Drozdowski@cs.put.poznan.pl

Abstract. In this work we consider the problem of estimating execution
time of distributed applications. The main difficulty stems from the
communication delays and shared nature of the computing and commu-
nication media. A simple method taking into account communications
and concurrency of computations is proposed to estimate the execution
time of a distributed application. The proposed technique is evaluated
in a sequence of experiments. It is demonstrated that this method is
feasible. Other interesting consequences are also outlined.

Keywords: performance evaluation, communication delays, clusters of
workstations, scheduling.

1 Introduction

Measurement of the execution time of a computer application is fundamental
to assess its efficiency. This observation applies also to parallel programs. Con-
temporary parallel applications are executed in shared and spatially distributed
environments. Consequently, parallel programs are exposed to communication
delays and coexistence with many applications competing for the resources of
the computer system. Hence, a method of measuring execution time of a dis-
tributed application in a shared environment would be very desired.

The need for efficient allocation of the activities (programs) to the resources
(processors, communication channels) gave rise to many scheduling models in
parallel processing (cf. monographs: [1I35J6]). These deterministic scheduling
models assume initial knowledge of the parallel application parameters such as
processing times or communication delays. In this work we consider a method
of obtaining these parameters, the precision and soundness of the final model.

The study presented here has a practical origin. It has been observed that
while reporting the efficiency of parallel applications run in shared environments,
the influence of the competing programs is difficult to be dealt with. The indi-
cations of the computation efficiency tend to be unreliable. Thus, a practical
method of eliminating such influence is needed.

* This research was partially supported by KBN grant.

R. Wyrzykowski et al. (Eds.): PPAM 2001, LNCS 2328, pp. 137-[[44] 2002.
© Springer-Verlag Berlin Heidelberg 2002

138 M. Drozdowski

The above considerations boil down to a question: How to measure dis-
tributed application execution time? In parallel applications run in a shared
and distributed system, communication delays include influence of other com-
munications. Likewise, computation time may include influence of other user
applications.

Consider several ad hoc answers to the above question. Firstly, we can use
astronomical time (wall time). This seems to be an ideal solution, but only in
a completely dedicated system. Not only other users are not allowed to use our
computers, our network segment must be completely isolated from the outside
world, but also the software suite running on our computers must be fully con-
trollable. These requirements are realistic in dedicated systems. However, it is far
more difficult to fulfil them in geographically scattered and multiplatform sys-
tems. As a second solution, it is possible to measure processor times and system
times consumed on all computers by our program. Still, this method does not
take into account communication delays and precedence constraints between the
operations executed on various processors. We conclude that a ”good” method
of measuring real execution time of parallel applications should:

1. account for the order of the program operations,

2. respect communication delays,

3. eliminate influence of other users and applications sharing the computing
environment,

4. be simple conceptually and in implementation.

Satisfying the above requirements may be hard due to distributed nature of
the application. We discuss it in the last section. However, we believe that a
satisfactory estimation can be obtained by the method presented in this paper.

2 Proposition of a Solution

Without loss of generality let us assume that communications involve two dif-
ferent computers connected by some kind of network. Thus, we exclude for the
time being broadcast and internal communications. We will use term processor
time to denote both the processor time consumed by the program executed in
the user space and by the system on behalf of the application.

In the scheduling theory it is common to represent activities, programs or
projects by a precedence constraints graph. Let G(V, A) denote a directed acyclic
graph with set V' of events representing fork or join of the program control, and
set A of arcs representing communication or computation operations (cf. Fig[l).
This method of representing precedences between the operations is called activ-
ity on arc in the deterministic scheduling theory [I]. Graph G(V, A) represents
control flow in the distributed application. Let every arc has a weight equal to
the duration of the operation it represents. Hence, arc j representing computa-
tions has weight a; equal to the processing (i.e. computation) time, while arc
k corresponding to the communication has weight c; equal to the communica-
tion time. The length of the longest path in graph G represents the execution

Estimating Execution Time of Distributed Applications 139

time of the whole program. Example graph G(V, A) is presented in Figlll Ac-
tivities of processors Py, ..., P, are shown along dotted horizontal lines. Solid
lines represent computations, dashed lines represent communications between
the processors. Determining the longest path in G is a well-known and easily

Py e >

P,O—>O——(O—>O)— > —0

P, .
v pmpgaton

p, > SHamlEL NN

Fig.1. Control flow graph and estimation of the execution time

solvable problem [4]. Observe that G takes into account both precedence con-
straints and communication delays. Hence, calculating the running time of a
distributed application as the longest path in G fulfills the first and the second
requirement of the ”good” method. However, a problem of satisfying the third
requirement and collecting data to apply this method in practice still remains
open.

In many cases the structure of G can be obtained fairly easily. In some ap-
plications, e.g. in linear algebra and numerical analysis, G is known a priori and
fixed. In other applications it is possible to reconstruct G using logs of commu-
nications between the computers. The duration of a computational arc between
two events (or nodes in graph G) can be measured as processor time used by our
application. This value can be obtained, for example, by use of function times
(UNIX) or GetProcessTimes (Windows) in C language. The values returned
by the above functions are related to our own process, and eliminate influence
of other users sharing the computing environment. Determining duration of the
communication arcs is a harder problem. Communication time can be measured,
for instance, as the difference between the communication initiation time on the
sender, and the communication completion at the receiver. However, this method
requires that distributed processors have perfectly synchronized clocks. Further-
more, influence of the external communications is not eliminated. We propose
a different technique. Observe that there is a dependence of the communication
delay t.om on the amount of the transferred data v: teom = f(v). As the data
structures communicated over the network are explicitly declared by the pro-
grammer in the message passing environments it is not difficult to determine the
amount v (e.g. in bytes) of the transferred information. f(v) can be measured

140 M. Drozdowski

off-line as astronomical time. If f(v) is measured in an unloaded or dedicated
network, then the communication time estimated from f(v) for known v, will
retain character of a dedicated network even if the real communication took
place in shared and loaded environment. In this way influence of the external
communications can be eliminated. Thus, labeling communication arcs in graph
G with the amount of data transferred is equivalent to labeling it with the com-
munication time. The procedure of estimating the execution time is applied after
the application termination on the basis of the recorded logs.

3 Experimental Evaluation

The method presented in the previous section has been tested in a series of
experiments conducted on various applications and environments. The results
are preliminary because the experiments were not always performed in the same
way. We believe, however, that the main conclusions are valid despite that.

The goals of the evaluation were to verify stability of the reported running
time in changing environment conditions, and to investigate coincidence of the
results with the running time in dedicated environment. Satisfying the former
condition is necessary for drawing conclusions on the behavior and the per-
formance of distributed applications in shared and changing environment. The
latter condition is imposed by the need for eliminating influence of the competing
applications.

The first experiments (experiments 1) were performed in a cluster of four het-
erogeneous Sun workstations. The communication medium was a single segment
10Mb Ethernet. The second group of experiments (experiments 2) were per-
formed in a cluster of five homogeneous PCs: Pentium 166 MMX, 32 MB of RAM,
Windows NT 4.0, connected by a single segment 10Mb Ethernet. The third series
experiments (experiments 3) were done on six PCs: Pentium 200MMX, 64MB
of RAM memory, with Linux operating system (Red Hat 6.0, kernel 2.2.5), in-
terconnected by 100Mb single segment Ethernet. PVM message passing library
was used in all experiments. The applications were: distributed search for a pat-
tern in a text file (experiments 1), distributed multiplication of two matrices
(experiments 2), distributed computation of Julia set image (experiments 3).

In the search for a pattern application [8] a big data file was divided into
chunks. The chunks of text were sent to the processors to seek for a text pat-
tern. A ready processor applied for data to the master processor. The order of
activating the processors and the assignment of the data pieces to the processors
was not known a priori. Therefore, the structure of the control flow graph G was
known only after the execution of the program.

Matrix multiplication application [7] consisted in computing a product of two
square matrices. The logical processor interconnection was a mesh topology. The
multiplied matrices were divided into stripes and sent along the columns of the
mesh. The results were sent along the rows of the mesh. In this application the
control flow graph is known a priori. Nondeterminism was possible only in the
order of final receiving the results by the master processor.

Estimating Execution Time of Distributed Applications 141

The third application [2] was a distributed computation of Julia set image.
The image of the Julia set (a.k.a. Mandelbrot fractal) is showing the convergence
of a sequence zp =0, 2,41 = z% + ¢ of complex numbers. The convergence of z,
was mapped from a square [-2,2]x[-2,2] of parameter ¢ values to a 1000x1000
bitmap. Slave processors analyzed convergence of z, in a submesh determined
by the coordinates of the opposite corners (lower-left and upper-right). Work
was distributed to the processors in equal chunks representing some number of
full horizontal lines in the bitmap. After initial distribution of the work the first
processor requesting work also received new load first from the work distributor
(master). Hence, the structure of the control flow graph was not known a priori
as the order of sending work and receiving results from the slaves was not fixed.

To restore the control flow graph for all operations the consumed proces-
sor time, receiver/sender identifiers, amount of transferred data were logged.
In experiments 1 communication time for the transferred amount of data was
calculated using Lagrangean interpolation. In the remaining experiments com-
munication time was approximated by a linear function.

The first test of the method consisted in verifying the coincidence of the
astronomical execution time in a dedicated system, with the execution time
calculated by our procedure in the system under varying load. These times should
be equal, or at least, the difference should be constant. Example results of this
test in experiments 1 are shown in FigPl Horizontal axis in Figld represents
system load reported by the operating system, along the vertical axis relative
difference between the astronomical and the estimated times is shown. As it can
be seen the difference is less than 18% and it is distributed in 6% range. Thus,
the difference is small and stable.

In the second test stability of the method was examined. The changes of the
execution time of the same application estimated by our method were recorded
under various computer loads. The reported value should be constant under all
loads. In experiments 3 the changes of the load were caused artificially by running
a simple program with one infinite loop containing one integer add operation.
The results of this test are presented in Fig.§ for experiments 3. On the vertical
axis time is reported, on the horizontal axis the load is shown in the units of
the number of running loading programs. The upper line is the astronomical
execution time. Obviously, this time increases with the load. The lower line is
the execution time estimated by our method. It is constant as expected.

Interesting results were obtained in experiments 2 (cf. FigHl). The difference
between the estimated execution time and the astronomical time was stable in
the central range of the multiplied matrices sizes. However, the difference was
non-negligible. It was observed, that the astronomical time comprises execution
time of the operating system services and runtime environment (e.g. pvmd). These
overheads are not included in the consumed processor time of our application.
We concluded that astronomical time was longer than it should be. During the
execution of our application, the operating system and other services consumed,
e.g., 20% of the processor time. Thus, the astronomical time inevitably includes
contribution of the operating system overheads. In order to have a fair compar-

142 M. Drozdowski

ison the astronomical time should be decreased by approx. 20%. Alternatively,
the computational arcs in control flow graph G should be lengthened approx.
1/(1 — 0.2) times. The results of such a correction in the estimated time are
shown in Fig Q]

Influence of the communication time to processing time ratio has been also
tested (cf. Fig[). It was observed that with growing contribution of the process-
ing time in the overall execution time, the difference between the estimated and
astronomical times diminishes. This can be caused by decreasing contribution of
the communication delays. It can be concluded that estimation of communica-
tion time is an important source of the error in our method.

118 250 |
B estimated - astronomical
Qo
= L6
-2
g
(=]
=
2
i1
Z 114 Y
=]
2
<
£
2112
11 + + + + W’—Hﬂ .
) 20 0 60 80 100 20 40 60 <0, . 100 120
load [%] number of loading processes

Fig. 2. Differences in the estimated ex- Fig.3. Stability of the estimated execu-

ecution time under varying load. Astro- tion time under varying load. Astronomi-
nomical time measured in unloaded sys- cal time changes with increasing load. Ex-
tem. Experiments I. periments III.

16 10

4 not corrected ¥ corrected

S

o
©

.95+

0.9+

estimated/astronomical time

IS4
®
i

0.85

estimated/astronomical time

0.6 1 1 1 1 1 0. ; ; \ \
0 100 200 300 400 500 600 100 200 300 200
matrix size avg.slave run time [ms]

Fig. 4. Influence of the standard system Fig. 5. Influence of the processing time
load. Experiments II. duration. Experiments I.

Estimating Execution Time of Distributed Applications 143

4 Discussion

The of the experiments show that the method is rational. The calculated esti-
mates are stable and close to the execution time in dedicated environment.

There are, however, limitations in drawing conclusions on the basis of the
calculated estimates. In many cases the structure of control flow graph is nonde-
terministic, and can change, e.g., in different load conditions. Therefore, it may
be unjustified to extend the results from the previous runs to the future ones.

There are potential sources of error in our method. The logging procedure
may change the load of the computers. Consequently, the durations of the pro-
gram operations and the structure of the control flow graph may be different
than if the execution logs were not recorded. The results of our experiments
show, however, that on average this influence is not big. Our method uses pro-
cedures of the operating system to measure consumed processor time. It is an
open question how reliable these services are. Errors can be introduced also in
the estimation of the communication delay. We observed that with the increas-
ing speed of the communication networks and the processors the contribution
of the linear dependence of communication time on the volume of transferred
data diminishes. The nonlinear phenomena arising from communication initi-
ation, buffering and reception become dominating. Note, that in all our tests
these operations were implemented in software.

The results of experiments 2 (cf. Figll) lead us to yet another confusing
observation that our method is able to eliminate influence of other application
completely. This means that also operating system and runtime environment can
be excluded from the estimation. Still, it would be difficult to use a computer
system without such a software layer.

The technique we presented can be extended in various directions. It would
not be difficult to include interprocess communications done on the same proces-
sor. Furthermore, broadcast messages can be logged and included in the control
flow graph. In our considerations we assumed full interconnection (clique) be-
tween the processors, which is hardly ever the case. As a result the messages of
the same application may overlap in time and compete with each other for the
communication medium. This leads to the extension of the communication op-
erations. Yet, such an extension can be calculated if the communication network
topology and the medium access protocol are known. For example in Ethernet,
when two (or more) messages share the communication channel, the bandwidth
decreases proportionately to the number of competing messages. Practical veri-
fication of these extensions can be a subject of future research.

5 Conclusions

A new method of estimating execution time of a distributed application in a
shared environment has been presented. The results of the experiments demon-
strate method usability. This technique can be applied in performance profilers.
Still, many fundamental questions remain open.

144 M. Drozdowski

References

1. J.Blazewicz, K.Ecker, E.Pesch, G.Schmidt, J.Weglarz, Scheduling Computer and
Manufacturing Processes, Springer, Berlin, 1996.

2. B.Burba, B.Figas, L.Wasylyk, Pomiar czasu wykonania aplikacji w $rodowisku
rozproszonym, B.Sc. thesis, Institute of Computing Science, Poznan University of
Technology, 1999.

3. P. Chretienne and C. Picoleau. Scheduling with communication delays: A survey.
In P. Chretienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors, Scheduling
theory and its applications. J. Wiley, 1995.

4. T.H.Cormen, C.E.Leiserson, R.L.Rivest, Introduction to Algorithms, Mas-
sachusetts Institute of Technology, 1990.

5. E.G. Coffman Jr. (editor). Computer and job-shop scheduling theory. Wiley & Sons,
New York, 1976.

6. M.Drozdowski, Selected problems of scheduling tasks in multiprocessor computer
systems, Series: Monographs, No.321, Poznann University of Technology Press,
Poznan, (1997), (see also http://www.cs.put.poznan.pl/ maciejd/h.ps).

7. R.Janasiak, Pomiar rzeczywistego czasu wykonania aplikacji w sSrodowisku rozpros-
zonym, M.Sc. thesis, Institute of Computing Science, Poznan University of Tech-
nology, 1998.

8. R.Maciejewski, Szacowanie czasu wykonania aplikacji w sSrodowisku rozproszonym,
M.Sc. thesis, Institute of Computing Science, Poznan University of Technology,
1997.

	Introduction
	Proposition of a Solution
	Experimental Evaluation
	Discussion
	Conclusions

