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Abstract

Kaltofen and Pan’s processor-efficient parallel algorithm for
the solution of a general n x n system of linear equations
over an abstract field is extended in two ways. First, it is
shown that dense, unstructured systems of linear equations
over small fields can be solved using the time established by
Kaltofen and Pan for this case, and with the time-processor
product established by Kaltofen and Pan for computations
over iarge fields — reducing the work required for the small
field case by slightly more than a logarithmic factor. Second,
a processor-efficient parallel algorithm ia given for computa-
tion of the inverse of a matrix over an abstract field. This
algorithm has essentially the same complexity as Kaltofen
and Pan’s algorithm for thw problem, but it does not rely on
any program transformation of the type given by Baur and
Straaaen, and used by Kaltofen and Pan to obtain an algo-
rithm for matrix inversion. Thus, thii is the first “explicitly
given” processor-efficient parallel algorithm for matrix in-
version over an abstract field.

1 Introduction

In the early 1990’s, Kaltofen and Pan presented the first
known processor-efficient parallel algorithm for the solution
of systems of linear equations over abstract fields ([6], [7]).
This paper includes two extensions of this work. We assume
the same model of computation as Kaltofen and Pan (as
described in [6]).

Henceforth we will consider the “work” used by a paral-
lel algorithm to be its tim~processor product, and we will
define Al(n) to be a function of n such that it is possible to
compute the product of two n x n matrices with entries in
a field F using time O(log n) and work O(JA (n)). Clearly,
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one can choose M(n) c 0(n3); we will assume henceforth
that M(n) ~ nz log3 n, as well.

Kaltofen and Pan show (in [6]) that one can solve a non-
singular n x n system reliably in time 0(log2 n) using work

\
O M(n) log n), provided that the size of F is greater than
cn for some constant c greater than three, and provided
that the characteristic of F is greater than n. In subsequent
work ([7], [8]) Kaltofen and Pan have eliminated these con-
ditions on F, at the coat of increasing the time and work
bounda for th~ computation by polylogarithmic factors.

In thw paper, it is shown that a first stage of Kaltofen and
Pan’s algorithm can be modified slightly, so that it can be
performed reliably over small fields within the time and work
bounda that have been established for Kaltofen and Pan’s
algorithm in the large field case. Later stages of Kaltofen
and Pan’s algorithm require greater time, but the same or
1sss work, in the small field (and small characteristic) case.
Thus, this change does not improve the time required to
solve nonaingular linear systems in the small field case. How-
ever, it does imply that the work bound ia improved, so that
nonsingukw systems over arbitrary fields can be solved using
polylogarithmic time and work O(M (n) log n).

Kaltofen and Pan also consider several related problems,
includlng the problem of computing the inverse A-1 of a
given nonsingular matrix A E F“x”. They establish (in [6])
that this problem can be solved with at most the same
asymptotic coat as is needed to compute the determinant
— and, hence, within the bounds on time and work that
they have established for solving linear systems. Kaltofen
and Pan obtain this reduction by modifying a construction
of Baur and Strasaen [1], which trawforms a straightline
program computing a function ~ into one which also com-
putes the partial derivatives of ~; the modified construction
of Kaltofen and Pan preserves circuit depth as well as size.
A more “explicit” algorithm — one which does not rely on
Baur and Str-n’s construction or Kaltofen and Pan’s ex-
tension — might arguably be preferable, since it could be
e=ier to implement, and it might more easily prove the ex-
istence of a “uniform” family of circuits for matrix inversion
of small depth and size.

An explicit processor-efficient parallel algorithm for ma-
trix inversion over abstract fields, with essentially the same
cost as Kaltofen and Pan’s algorithm for solving liiear sya-
tema, is given in this paper. Several problems, including the
W factorization of matrices ([9]), computation of a maximal
nonaingular minor and PLU factorization ([3]), and (Las
Vegaa) computation of the Frobenius normal form, mini-
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mum polynomial, and characteristic polynomial of a ma-
trix ([4]), have previously been reduced to matrix inversion.
The new algorithm can therefore be used as a subroutine to
provide somewhat more explicit processor-efficient parallel
algorithms, than have previously been available, for all these
problems as well.

A more detai~ed description of Kaltofen and Pan’s
method will be given in Section 2 of this paper. The im-
provement of Kaltofen and Pan’s algorithm for the small
field case appears in Section 3, while the new algorithm for
matrix inversion is given in Section 4. These last two sec-
tions can be read independently (but both depend on Sec-
tion 2).

2 Kaltofen and Pan’s Method

Kaltofen and Pan’s algorithm can be regarded as a two part
process. These parts are dkcussed in detail in the next two
subsections.

2.1 Reduction to Solving a Toeplitz Linear System

Recall that a matrix T E F n x n is a Toeplitz matriz if

ran–I an ... a2n-3 a2n–2
an–z an–l “’. azn–d azn-.s1

1’
T= : : ., ;

I (2.1)

al ag . . . an- 1 an
ao al ,. an-z an–-l

for elements ao, al,..., agn.-g E F, so that each band parallel
to the diagonal includes copies of the same element of F.
The first part of Kaltofen and Pan’s algorithm is a (Las
Vegas) reduction from the problem of solving an arbitrary
nonsingular system of linear equations to that of solving a
nonsingular Toeplit z linear system.

Suppose, now, that A < F“x’, b G F“x 1, and that we
wish to find the vector z E F’x 1 such that AX = b. In
order to apply KaJtofen and Pan’s method, it is necessary
to find “conditioners” X, Y E F“ xn such that the matrix
~ = XAY is nonsingul~ and has a minimum polynomial

ix E F[z] with degree n. If ~ = Xb E F“x’ and y E F’x’ is
a solution for the system ~y = ~, then x = Yy is a solution
for the original system AZ = b, so that X and Y serve to
reduce the original problem to one such that the coefficient
matrix haa a minimum polynomial with full degree.

Kaltofen and Pan present two randomized constructions
of appropriate conditioners X and Y over sufficiently large
ground fields. In particular, they show in [6] that one can
set X to be the identity matrix, and Y = HD, a product of
a Hankel matrix H and a diagonal matrix D. The results
of [7] imply that one can also set X to be an upper triangu-
lar Toeplitz matrix and Y to be a lower triangular Toeplitz
matrix, both with ones on the diagonal. If the entries of the
above structured matrices (H and D in the first construc-
tion, X and Y in the second) are selected uniformly and
independently from a finite subset S of the ground field F,

then the probability that either construction fails — that is,
~ = XAY is singular, or has a minimum polynomial with
degree less than n — is in 0(n2/lSl).

Now, recall that if CIO,CYI,m,... is an infinite sequence
of elements of F, then thk sequence is linearly generated if

there exist elements co, cl, . .,% 6 F, not all zero, such
that

@CEi +CICli+l + . . . +CmC2i+7n = O

for all z z O. A polynomial c~zm + ~_lZm-l + ~. . +
cxz + co E F[z] is a genemting polynomial for the sequence
QO, CM, ct2, . . . if the above condition is satisfied (using the
coefficients of the polynomial, as above), while the minimum
polynomial of the sequence is the (uniqne) monic generating
polynomial of the sequence of le=t degree.

Note that if u, v E F“x 1 then the sequence

CIO= UTU, CU= UTAV, . . . ,~a= uTAiu, . . . (2.2)

is linearly generated; indeed, the minimum polynomial fA
of i is a generating polynomial for this sequence. In order
to complete the fist stage of Kaltofen and Pan’s method,
it is necessary to find a pair of “projection vectors” u, u E

F’ x 1 such that the minimum polynomial <~.” for the above

sequence has full degree n; in this case, ~~~” = f~.

Kaltofen and Pau show that if ~ is nonsingular and has
a minimum polynomial with degree n, and if the entries
of vectors u and v are selected uniformly and independently
from S, then the probability that the sequence (2.2) does not
have a minimum polynomial with degree n is in O(n/lSl).
Alternatively, if the ground field F is tinit.e, one can observe
that the minimum polynomial of the sequence hsa full degree
if the Toeplitz matrix

[

an-l Crn . Q2n-3 @2n-2
an–z an–l .,. a2n-4 c12n-3

T= : : ., ; ; 1 (2.3)

al a2 . . . an-l an
ao al .“. cb–2 an-l

is nonsingular, and that T = Ku Ku, where Ku and
Ku are the “Krylov ma~rices” such that ~u has rows
Tb=A’’-l, u= A2,2, . . ., UTA, UT (from top to bottom), and
K. has columns v,~v, . . . . ~n-lu (from left to right). A
result of Wiedemann [10] can be used to establih that if
~ is nonsingular and has a minimum polynomial with de-
gree n, and the entries of u and v are selected uniformly and
independently from the finite field F, then the events “~ti
is nonsingular” and “Km is nonsingular” are independent,
and each has probabilityy at least 1/(6 logQn), where q = IFI.

Thus, for randomly chosen u and v, the probability that T
is nonsingular is at least 1/(36 log; n).

In fact, Wiedemaun statez a slq@tly more precise bound
(replacing log, n with the smallest positive integer j such

thatn~q+q2+q3+. + ~“ ). Hw bound is optimal in
the sense that there exist nonsingular matrices ~ G F’ xn
whose minimum polynomials have full degree for which this
bound, on the probability of choosing u and v such that the
correapondlng matrix ‘1’ is nonsingular, is tight.

Suppose now that conditioners X} Y E F* ‘“ and projec-
tion vectors u, v E F“ x 1 that satisfj the above conditions are
available. As shown by Kaltofen and Pan, the matrix ~ =
XAY ● F“xn, values ao, al, ag, . . . ,agn-1 E F (as given in
equation (2.2)) , and vectors ~ = XB, ~~, ~28, . . ., ~“–16 E
F’x 1 can all be computed using time 0(log2 n) with work
O(M (n) log n). The minimum polynomial of ~ can then be
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computed by solving a nonsingular system of linear equ~
tions whose coefficient matrix is the Toeplitz matrix given in
equation (2.3). Finally, given thw minimum polynomial, the
solution y of the system ~y = ~ can be com@ed * a linear. --
combination of the vectors b, Ab,.. ., ~“-lb, and the solu-
tion z = Yy of the original system can be computed using
matrix-vector multiplication, using additional time O(log n)
and work 0(n2).

When applying th~ process in the small field ca.w it is
necessary to perform computations over a field extension
E whose degree over the ground field F is at moat loga-
rithmic in n, in order to ensure that suitable conditioners
X, Y E E“x” and projection vectors u, u ~ E’x 1 can be
found with high probability. The time and work required
are increased by factors that are polynomial in log log n and
in log n, respectively, if arithmetic over the ground field is
considered to be at unit cost.

2.2 Solution of a Tbeplitz Linear System

Kaltofen and Pan have now contributed (at least) three al-
gorithms for this remaining part of the computation, which
is used to compute the minimum polynomial of the above
matrix ~. The details of these algorithms will not be given
here, but it will be observed that the analysis of these al-
gorithms provided by Kaltofen and Pan imply that the im-
provement described in Section 3, for the first part of the
computation, remdts in the improved work bound that has
been claimed for the small field case.

The algorithm for solving nonsingular Toeplitz systems
given (fist) for this problem (in [6]) also uses time 0(log2 n)
and work O(M (n) log n), provided that the ground field is
sufficiently large and the field characteristic is either zero or
greater than n. It is clear, though, that the condition on
field size can be discarded if the field characteristic is in th~
range, without increasing the time or work needed by more
than a linear factor — for either the field is infinite or (when
the characteristic ie positive) the size of the field is at least
as large as the characteristic, so that Kaltofen and Pan’s
met hod can certainly be used reliably by working over an
extension E of F whose degree over the ground field is less
than or equal to three. In this case every operation in E can
be implemented using a constant number of operations over
the ground field, so that the overhead required to work in
a field extension does not afk% the asymptotic cost of the
method.

Kaltofen and Pan presented a second, more general,
method in [7] that uses 0(log2 n) time and O(M (n)) work
to reduce the problem of solving a nonsingular n x n Toeplitz
linear system to that of solving a dense, unstructured system
whose order is ~, where p is the characteristic of the ground

field. Ifp is sufficiently large — in particular, W < p ~ n —
then this establishes once again that the entire computation
can be performed using time 0(log2 n) and O{M(n) log n)
work, without requiring that the ground field F is large; for if
the characteristic of F is positive and greater than @, then
so is the size of F. In this case computations can be per-
formed reliably, and with low overhead, using a field exten-
sion whose degree is at most six. The that stage of Kaltofen
and Pan’s algorithm in [6] can be used to reduce the problem
to that of solving a nonsingular n x n Toeplitz linear system.
A single iteration of the process descxibed in [7] reduces this
to the problem of solving a dense, unstructured linear sys-
tem whose order is leas than @ — and, since th~ is less

thau the char~lc of the ground field, the algorithm
of [6] can be used to complete the computation.

The aIgorithm of [7] can be used instead if the character-
istic p is positive and less than or equal to V. However, the
time required increases by an O(logP n) factor, even when
the ground field is sufficiently large, and it may be necessarY
to work in an extension with logarithmic degree over F in
order to keep the probability of failure small. In this case
the additional overhead introduced by the use of field ex-
tensions is also nontrivial, and incre.aws both the time and
work that must be used.

A more recent algorithm of Kaitofen and Pan [8] can be
used to solve a nonsingular n x n Toeplitz-like system of lin-
ear equations over a sufficiently large field of ositive charac-

Pteriatic p ~ fi in 0(log3 n) time using O(n log nlog log n)
work. This can be used for computations over small iinite
fields, by working over a field extension whose degree is at
most logarithmic in n. If one counts operations over the
ground field rather than over the extension, then the time
used increasa to O((log n)3+0(l)) and the work increasea
by slightly more than a logarithmic factor. Thus the work
for this ste is still in O(M(n) log n) assuming, again, that
M(n) ~ nfiogg n.

3 Matrix Condkioning and Projections over Small
Fields

In thissection, it will be shown that if F is a fizite field of
size q ~ 2, and one chooses conditioners X and Y to be the
identity matrix and a (dense, unstructured) matrix whose
entries are selected uniformly and independently from F,
respectively, then the probability that ~ = XAY is non-

singular and has a minimum polynomial ~A with degree n
can be bounded away from zero. Furthermore, if Y ia cho-
sen uniformly from Fnx” and projection vectors u aud u are
chosen uniformly and independently from F“x 1, then the
corresponding matrix T (given in equation (2.3)) is nonain-
gular with probability bounded away from zero ~ well. In
particular, for q ~ 2, let

(

$&, ifq=2,

[
2

fi> ifq =3,
Pq =

7’?%’ ifq =4,

(1 - :)(1 -~), ifq~5.

(3.1)

Theorem 3.1. Suppose F is a finite field of size q and A 6
F“x’ is nonsingular. If the enfies of a matriz Y E F’x”
and vector v ~ F“%1 are chosen uniformly an! independently
@m F, then the ptvbabilit~ that the matriz A = AY is non-
singular and has a minimum polynomial m“th degree n, and
then vectors v,~v,~zv,..., ~’-lv are iinearlg independent,

is equal to the product of (1 - ~) and the ptvbability that

a mndomly chosen matriz in F“ x” is nonsingular, and is
therefore greater than or equal to pq.

The next result is an immediate corollary, since it refers
to a condition that is implied by the one deecribed in the
theorem.

Corollary 3.2. Suppose F is a jinite jield of size q and A ●

F“x’ is nonsingular. If the entries of a matriz Y c F“x” are
chosen uni~ormly and independently ji-orn F then the pro-
bability that the matrir ~ = AY is nonsingular, and has a
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minimum polynomial with degree n, is greater than or equal
to pq.

It will also be shown that, since a suitable conditioner
and one projection can be found with positive probability, a
suitable conditioner and two projections can also be chosen
with positive probability.

Theorem 3.3. Suppme F is a finite field of size q and A ~
Fnxn is nonsingular. If the entries of a matti Y c P’x”
and vectors u, v E F“x 1 are chosen uniformly and indepen-
dently ji-vm F, then the probability that the matrix ~ = AY is
nonsingular, and the minimum polynomial for the sequence

U=V,UTAV, UTA%, . . . ,U=A%, . . .

has d~ree n, is greater than or equal to max(2pq – 1, ~p~).

It is easily checked that ~p~ ? 2p* – 1 if q S 4, md
l*<2pq– 1=1 - ~ if q ~ 5. Hence the followingzPq –
is equivalent to the above theorem, and simply provides a
more explicit statement of the same bounds.

Corollary 3.4. Suppose F is a finite field of size q and A ~
F“” is nonsingular. If the entries of a matriz Y E F“x”

and vectors u, v c Fn x 1 are chosen unijormly and indepen-
dently j+om F, then the mat% ~ = AY is nomingular and
the minimum polynomial for the sequence

UTV,U=AV, U=A*V, . . . ,u*i~v, . . .

has degree n with probability greater than or equal to Uq, for

(m+) ifq =2,

[

. . .
1

~1 ifq =3,
Oq = 1

ygl ijq =4,
~_:,

if9Z5.

(3.2)

In particular, this probability is grenter than or equal to one-
half ifq ~ 8.

Theorem 3.3 implies that the first stage of Kaltofen and
Pau’s algorithm can be performed reliably, over all fields,
without taking field extensions — provided that one is will-
ing to use a dense, “unstructured” matrix as a conditioner.
This is unacceptable for a sparse- or structured-linear sys-
tem solver, and it would be desirable (and much more useful,
for the solution of sparse and structured systems over small
fields) if results similar to the above could be established
when randomly chosen sparse or structured conditioners X
and Y are used. However, the above results do show that
the tirst stage of Kaltofen and Pan’s parallel algorithm for
the solution of a nonsingular n x n linear system can be im-
plemented using time 0(log2 n) with O(M (n) log n) work
without taking field extensions. Since the work required for
the second p&t of this computation is already known to
be in O(M (n) log n), the work required for the entire com-
putation over small fields can be reduced to O(M (n) log n)
without changing the required parallel time, as has been
claimed.

Theorem 3.1 will be proved using a bound on the den-
sity of nonsingular matrices in F“ x” that is slightly better
(for small q) than the bound that is commonly used. This
bound will be established in the next subsection, using a
slightly more elaborate application of techniques that have
been used already to establish prior bounds. The improved
bound will be used to prove Theorem 3.1 in the subsection
after that. Theorem 3.3 will proved at the end of Section 3.

3.1 The Density of Nonsingular Matrices over
Small Fields

Let r~(n) be the probability that a uniformly chosen matrix
in F“x” is nonsingular. It is well known that Tq(n) ~ } for
allnifq =2, andthat r.(n) zl-~ifq 23. It is easy
to adapt a proof of these bounds to show, as well, that

{

~fi, if q = 2,

~q(n) Z [
3

~, ifq =3, (3.3)

*, ifq =4.

Lemma 3.5. Ij~i ER and O<z; <1 forl<i~n, then

fi(l-Z*) ~ l- fiZi.
i=l i=l

Proof. If ~=1 xi ~ 1 then the lemma is trivial, since the
left hand size is positive and the right hand size less than or
equal to zero. Otherwise both quantities are positive, so it
is sufficient to show that

lnfi(l – ~i) ~ in
()

n
l–~~i

i= 1 i= 1

If O<z<l then

ln(l-z)=-~~zj
j~l “

This can be used to express each of the above logarithms as
an infinite sum of symmetric polynomials in z 1, z2, . . ., ~n.
The above inequality is then a consequence of the fact that

(~?=i ~a)’ ~ x~=l 4 for j >1, whenever ~i >0 for all i.
❑

It is well known (and easy to argue) that

(3.4)

for every prime power q and every positive integer n. Now
it follows by the lemma that, for every integer m between O
and n,

Set bq(m) = (~~ (1 – q-’))(l - l/(q”’(q - l))); it has
(Lbeen shown that rq n > bq(m) whenever n ~ m ~ O. Since

rq(n) ~ Tq(n + 1) for all q and n, it is easy to see that
Tq(n) > bq(m) for n < m as well. Now, it is easy to check
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3.2 Proof of Theorem 3.1

Since the matrix A is nonsingular, there ia exactly one ma-
trix Y c F“x” such that Z = AY, for any given matrix
z E F“x”. Thus it is sufficient (indeed, equivalent) to
prove that if the entries of a matrix Z E F“ ‘“ and vector
v G F“xl are uniformly and independently chosen horn F,
then the probabilityy that Z is nonsingular and the n vectors
V, ZV, Z2V, ..., Zn- 1u are linearly independent is at least Pq
when ]Fl = q.

Once again, vectors v, Zu, Z2U,... , Zn-lu can only be
linearly independent if the minimum polynomial ~z of Z
has degree n. A matrix Z satisfies this condition, and is
nonaingular, if and only if f z has degree n and f z (0) #O.

Fix one polynomial ~ = z“ + ~m.lz”-l + . . . + flz +
fo ~ F[~] SUChthat f(0) # O. Following the notation of
Wledemann [10], let ~(t) be the proportion of polynomials
in F[z] with degree less than n that are relatively prime to f,
so that there are exactly q“@( f ) polynomials g E F[z] with
degree less than n such that gcd(i, g) = 1. Since ~ has
degree n, a matrix Z c F“”” has minimum polynomial ~ if
and only if Z is similar to the companion matriz Cj for f,

[ I
o . . 0 0 -fo

10..00 -fl
01..00 -f2

Cj= . . . . . . . cF’’xn. (3.5). . . .

0 ~ :~::
00..:10
0 0 . . .

It ia well known that the number of nonsingular ma
trices similar to any given nonsingular matrix W equals
the number of nonsingular matricea in F“ x” divided by the
number of nonsingular matrices that commute with W. In-
deed, if U and V are nonsingular matrices in F’x” then
U-lWU = V-lWV if and only if U = CV for some non-
singuhr matrix C such that C’W = WC.

It is also known that the only matrices in F“ xn that
commute with a companion matrix Cf belong to the algebra
F[Cf ] G Fnx”. This algebra is isomorphic to F[z]/(f ) — so it
has size q“ and includes exactly q“~( f ) invertible elements.

Thus there are exactly q“~( f ) nonsingular matrices
in Fnx” that commute with Cf, and there are exactly

~~(n)qnz /(q”@(f )) = q“z-m ~ matrices in F“xn with
minimum polynomial f.

Now, fix any one matrix Z with minimum polynomial f.
As argued by Wkdemann [10], the number of vectors v 6
F*X1 SUChthat V, ZU, Z2V,. . . . Z“-lv are linearly indepen-
dent is exactly q“@(f ). Thus, the number of pairs (Z, v)
of matrices Z E F“ x” and vectors v 6 F“ x 1 such that Z
has minimum polynomial f, and v, Zv, Z2V,.,., Z“-l v are

linearly independent, is exactly (q”’-” ~) . q“@(f) =

qn2Tq(n).
Since thisquantity is independent of the choice of f, the

number of pairs (Z, v) of matrices Z E F*X’ and vectors u c

F*X 1, such that Z is nonaingular, and v, Zv, Z2V,... , Z’-lv

are linearly independent, is the product of g“’7* (n) and
the number of monic polynomials f c F[z] with degree n

such that f(0) # O — that is, (q”’ rq(n)) q’- 1(q – 1) =

9‘2+--1 (q – l)~q(~). since thereare q“z+” choices of Z

and u, the probability of randomly selecting a matrix Z E
F“x” Wd v c F“ x 1 that satisfy the above conditions is ex-

actly (1 -~) ~.(n)

It now follows that P2 z ~~ since 72(Ta)Z ~fi; P3 ~

fisince~s(~) Z fiiP~> ~since~A(n)Z ~;and
pq ~ (1- ~)(1 - ~) since ~g(n) ~ (1 - ~) forq~ 5.

3.3 Proof of Theorem 3.3

Theorem 3.1 impli= that if a matrix Y ia uniformly chcP
aen from Fnx”, and a vector v is uniformly and indepen-
dently chosen from F“ x1, then the probabk~ty that ~ = AY
is noneinguhw and vectors v, fiv, ~2v,. ... ~“-lv are lii-
early independent ia (1 - ~) r~(n). Clearly, thw is also

the probability that ~ ia nonsingular and column vectors
u, lTti, (A=)%, . . . . (AT)”- lU are linearly independent —
or, equivalently, that the matrix ~ is nonsingular and row
vectors UT, u=~} uT~2, . . . . uT~”- 1 are linearly indepen-
dent, if the matrix Y is chosen uniformly and randomly
from F’ x” and the vector u is chosen uniformly, indepen-
dently, and randomly horn F“x 1.

Now suppose that ~ is uniformly and randomly cho-
sen from Fnxn, that A = AY, and that a pair of vec-
tors u and v are chosen uniformly and independently
horn F“x 1. The pro~ability that either i is singular or vec-
tors v, Jv, i%, . . . . A’-*v =e linearly dependent (or both)
is at most 1 - p~. Recall that the matrix K“ is defined
to have columns v, ~v, ~2v,. . ., ~“-iv — so this bounds
the probability that, at least-one of ~ and Kv is singu-
lar. The p~obability ~hat A is singular or row vectors

T T~, #A2, . . . . uTAn–lu ,U are linearly dependent is also
at moat 1 – p~. The matrix ~“ has been defined to have
rows u T,UTA, . . . ,UTI’-1 (from bottom to top), so this
also bounds the probability that at leaat one of A and I?u
is singular. Clearly, the probability that one or more of ~,
K“, and ~a is singular is at most 2(1 - p~), since thw con-
dition would imply that eith~ ‘at l~t one of ~ and K, is
singular,” or “at least one of A and KU is singula~” or both.
It follows that the probability that all three of A, Kw, and
~U are noneingular is at least 1 – 2(1 - p~) = 2p, -1.

It has already been noted (in Section 2) that if Ku and
K. are both nonsingular, then the sequence

J-v, UTAV, U=A%, . . . . UT2V, . . .

has a minimum polynomial with degree n. Thus, ~ ia non-
singular and this sequence has a minimum polynomial with
degree n with probability at least 2p~ -1, as claimed in
Theorem 3.3.

It remains only to show that this probability is also at
least ~p~. In order to prove thw, we will consider the fol-
lowing events, assuming as usual that A is nonsingular, and
~ = AY, where the entries of the matrix Y c Fnx” and vec-
tors U,V E Fnxl are selected uniformly and independently
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from F (Recall that ji is the minimum polynomial of the

matrix ~, and that @( ~A) is the proportion of polynomi-

als with degree less than the degree of ix in F[z] that are

relatively prime to ~~ ):

EO: ~ and K. are nonsingular.

El: ~ and KV are nonsingular, and @(fX) < ~pq.

E2: A is nonsingular, ~A has degree n, and ~(~~ ) < ~p~.

E3: ~ and K“ are nonsingular, and @(f A) 2 ~p~.

E4: ~, K“, and ~u are all nonsingular, and @(fi) ~ $p~.

It has already been shown that the probability Pr(EO) of
event EO is greater than or equal to pq. Since event EO is
the disjoint union of events El and E3, Pr(El) + Pr(E3) =
Pr(EO) ~ p~.

Since event El can only occur if the minimum polynomial
of ~ has degree n, El implies E2, so that El = El A E2 and

Pr(El) = Pr(El A E2)

= Pr(El [ E2) Pr(E2)

< Pr(El I E2).

The conditional event “El I E2° is the event that for a (ran-
domly chosen) vector u, the vectors u, fiv, ~2v,. . . . ~“-2v

are linearly independent, provided that fA has degree n
and @(}X) < ~pq. This clearly h= probability less than
or equal to ~p~, since the probability that such a vector v
can be found for any fixed matrix ~, whose minimum poly-
nomial fx has degree n, is @(f A). Thus Pr(El) s ~pq, and
Pr(E3) = Pr(EO) – Pr(El) ~ P* – ~p~ = ~pq.

By essentially the same argument, Pr(E4 I E3) z ~pq,
for this is the probability that a vector u can be found such
that ~ti is nonsingular, provided that ~ is nonsingukr, has
a minimum polynomial f i with degree n, and 0( f X) ~ ~p~.
Thus (since event E4 implies E3),

Pr(E4) = Pr(E4 A E3)

= Pr(E4 I E3) Pr(E3)

Since event E4 clearly implies that ~, Kv, and ~~ are all
nonsingular, it follows that the probability that ~ is nonsin-
gular and the minimum polynomial of the sequence

U1’v, UTAV, UTA%, . ,uTAiu, . .

h= degree n is also at least $p~, ss desired.

4 An Explicit Parallel Algorithm for Matrix Inver-
sion

Suppose again that A E Fnxn is nonsingular. It !s easy to
find matrices X, Y E F“ xn such that the matrix A = XAY
is nonsingular and hss a minimum polynomial with degree n,
and vectors v, v E F“x 1 such that the minimum polynomial
of the sequence

UTV,UTAV, UTA2V,. ,UTA’U,.

also has degree n. In particular, as noted in Section 2, one
can choose X and Y using either of the constructions of
Kaltofen and Pau [6], [7], and then select u and v uni-
formly and randomly (and independently) from F“” 1, if
[Fl 6 fl(n2); one can use the construction described in Sec-
tion 3 otherwise.

Suppose, then, that ~ has a minimum polynomial

fA = z“ + f..lz ~-I + . . . + flz + fo, that f(0) # O (SO

that A is nonsingular), and that u, v are vectors in F“ x1
such that the minimum polynomial of the above sequence
@s degree n as well. Conaider the “Krylov” matrices
Ku ~Kv cs F“ ~ n introduced in Section 2, so that Km has rows
uTAn-l, uTA’’-2, . . . . u~~, UT (from top to bottom), and
K. h% columns v, ~v, ~2v,.. ., ~“-lv (from left to right).
Then K“ and K“ are both nonsingular and have the Toeplitz
matrix T given in (2.3) as a product:

Ku K“ = T. (4.1)

Let C, ~ be the companion matrix for jx (as shown in
equation (3.5)). Since the matrix K“ is nonaingular, the
following matrix identity is correct, and easily verified by
comparing the actions of the matrices shown on the vectors
V,AV, A%,. . ,A’’-lv.

~ = K. C, AK~l. (4.2)

Now, equations (4. 1) and (4.2) provide a way to compute
the companion matrix C’fA born ~, ~“, K“, and the inverse
of the Toeplitz matrix T.

C,A = K~l~Kv (by (4.2))
(4.3)

= T-lKUAK”. (by (4.1))

This clearly implies that ~ = ~~ lTCf ~K; 1, and this

allows us to express the inverse of ~ as a product of ~u, K“,
and the inverses of the Toeplitz matrix T and companion
matrix Cf A~

~-1 = KV@T-l~U. (4.4)

Finally, since A = XAY~ it is easy to recover the inverse
of A from the inverse of A:

A-l = Y~-lX = YK.C~~T-lKuX. (4.5)

Thus, A-1 can be computed from A as follows.

1.

2.

3.

4.

Choose condkioners X, Y E F“x n and vectors u, w c
F“ xn using one of the constructions described by
Kaltofen and Pan ([6], [7]) if IFI E fl(nz), or as de
scribed in Section 3 otherwise.

~:= XAY

Compute the vectors ~iu and (~~)iu for O s i ~ n– 1.
Use these to construct the matrices ~u, K“ E F“xn

~~:ibed above, and the Toeplitz matrix T = kuK” E

Attempt to compute T-1; report failure, and stop, un-
less this step succeeds.
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5. C := ‘T-l ~u~”; this ia the companion matrix for the
minimum polynomial of J.

6. Compute the inverse of the companion matrix C.

7. Return A-l = YK~C-l’T-lx”X.

Steps 1, 2, 5 and 7 can each be performed using
time O(log n) and work O(M(n)). Step 3 requires two
%rylov matrix” computations, and can be performed in
time O(log2 n) and using work O(M(n) log n). It will be
shown in the next subsection that step 4 can be reduced
to the problem of solving a constant number of Toeplitz
linear systems, so that thii step can be performed in time
O((log n)3+0(1)) and using work O(M(n) log n) if the char-
acteristic of F is positive and less than or equal to W, or
time 0(log2 n) with work O(M (n) log n) otherwise. Finally,

if the companion matrix C, A is nonsingular then ii(0) # O
and the inverse of CjA is easily generated: In particular, if

fx = z“+fn-lzn–l +... +flz+fo, so that fo = fx(0) #O,
then it easily checked that

-fl/fo : : :“” o

!]

-f2/fo .00

C;; Al::””.:;.
–in-2/fo o 0 . . . 1 0
–~fiyofo o 0 ..- 0 1

00.-.00

Thus the entries of C~~ can computed from the coefficients

of f A using constant time and work 0(n2).
It follows that the above “explicit” algorithm for mw

trix inversion can be implemented at essentially the cost
required by the best currently known algorithm for solving
dense linear systems — namely, time O((log n)3+0(1)) (or
0(log2 n) if the characteristic of F is at le~t ~ and work
O(M(n) log n).

4.1 Explicit Parallel Inversion of a Nonsingular
Toeplitz Matrix

A formula of Gohberg and Semencul can be used to compute
the inverse of an n x n Toeplitz matrix T from its first and
last columns} provided that the top left entry of this matrix
is nonzero — see Gohberg and Semencul [5] (in Russian),
or, for example, Brent, Gustavson and Yun [2] or Kaltofen
and Pan [6] for a statement of this vemion of the “Gohberg-
Semencul formula.” Unfortunately, an algorithm based on
this formula would include a division by zero if the top left
entry of T-1 is zero.

Fortunately, Gohberg and Semencul state an additional
formula whkh can be used to compute T-1 from the first
and last column of the inverse of an (n+ 1) x (n+l) matrix ~
that has T as its principal n x n minor — provided that the
top left entry of the inverse of T is nonzero.

In particular, suppose the matrix T is as shown in equ~

tion (2.1), let a-l,azn-l E F, and suppose

[

am–I an-z . . . ao a-l
an an_l .-. al ao

1““
T= : : . . . ; :

a2n-2 a2n_3 . . . an-l an–2
a2,n_1 a2.n_2 . . . an an-l,

‘[: J-J ,~F(n+l)x(n+l)

for

“r?]‘d‘=[:1
Theorem 4.1 (Gohberg and Semencul). If solutions

z=

rvol
xl gll

and ~ = .

-xnJ

Ast for the systems of equations f’z = e. and py = e.,
when eo and em are the first and last columns of the identi~
matriz of onier n + 1, and if zo # O, then

T-l=L(L=.UV–LV.UZ),
Z(J

where

u. =

LV =

and

u= =

- w o

I VI Vo
,.

“.

‘h-2 Lh3-3 “““ VO
-W-l V? I-2 . . . gll glo~ I

. .

1
.. . . .. .

Zn Zn-1
o Zn

1’
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This theorem is also stated* and used by Brent, Gus-
tavson, and Yun [2].

Now, in order to reduce the problem of computing T-1
to the problem of solving a small number of nonsingular
Toeplitz linear systems, it suffices to argue that it is easy to
choose elements a– 1 and az~-. 1 from F such that the corre-
sponding matrix ~ satisfies all the conditions of the above
theorem. Brent, Gustavson, and Yun have done this already.
In particular, they consider the matrix T@ ● FI”+l)x (-+1)
resulting from the selection azn– 1 = /3 and aO = O,

where

“=E:11Q=[:18=I:I=T-lQ

and -y = an–l – r$T–l co = a.–l – r~s.
Clearly, det T@ = v det T and (since TP is Toeplitz)

Cramer’s rule implies that the top left entry of T~ 1 is
detT— = ~ whenever -y # O.detT@

Now,

.,-1. .
~ = an–l – l’~S = –90fl– ~8jU2.–l–j +an-l.

j=l

Since T and co do not depend on @, and sinces = T- lCO, the
entries so, sl, . . . . s.– 1 me independent of 13as well. Thus,
7 is either linear in /3 or independent of ~, and is only inde-
pendent of@ if so = O.

The following result follows from Lemma 4 in [2].

Lemma 4.2 (Brent, Gustavson, and Yun). If T and s
are as above and T is nonsingular then so # O.

It follows that ~ is singular for at most one choice of ~
in F. Otherwise, ~ is nonsingular and has an inverse whose
top left entry is nonzero, so that T can be used to compute
the inverse of T. Thus, the problem of inverting T can
be reduced to the solution of Toeplitz linear systems, in a
deterministic manner, by attempting to solve four systems,

T’oz = eo, Toy = en, Tlz = eo, Tly = en.

If the first two systems have solutions then (by the more
commonly used version of the Gohberg-Semencul formula)
To is nonsingular and, as argued above, the top left entry of
T{ 1 must be nonzero. Otherwise (if one or both of the fist
two equations do not have a solution), it is guaranteed that
T1 is nonsingular and has an inverse whose top left entry is
nonzero. Thus, one can always either set T = TOor T = T1
and then apply Theorem 4.1 in order to invert T’.

Alternatively, if IFI = q ~ 2, one might simply choose
/3 uniformly from F. Then it suffices to solve two Toeplitz
systems, provided that one is willing to accept a probability
of ~ of failure.
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