
International Journal of Parallel Programming, Vol. 21, No. 1, 1992

Extended Parallelism
Basis Algorithm

Stephen A. Schwab 1'2

in the Gr6bner

Received June 1991, Revised November 1992

This paper presents a new parallel implementation to compute Gr6bner bases
utilizing two different forms of parallelism. A coarse-grain technique developed
by Jean-Phillipe Vidal expands and reduces S-polynomials in parallel. A fine-
grain technique, proposed by Melenk and Neun, constructs a pipeline of
processors to overlap execution of the reduction operations. A hybrid algorithm
that outperforms both of the original approaches is presented. The combined
algorithm requires the user to select the appropriate allocation of processors to
the two styles of parallelism, and uses this static assignment throughout the
computation. The paper also discusses the design and implementation
approaches used to construct an efficient version of this algorithm.

KEY WORDS: Parallel algorithms; shared memory multiprocessors;
Gr6bner bases; computer algebra.

1. INTRODUCTION

Gr6bner bases are one of the basic tools of computational algebraic
geometry, the branch of mathematics which, to oversimplify, studies the
solutions of sets of algebraic equations in affine or projective n space. ") The
significance of Gr6bner bases, which give a normal form to ideals in poly-

t The author was partially supported by an NSF graduate fellowship. This research was spon-
sored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio
45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597 and in part by the
National Science Foundation under grant CCR-87-226-33. The views and conclusions con-
tained in this document are those of the author and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the National Science Foundation or
the U.S. government.

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvannia 15213.

39

0885-7458/92/0200-0039506.50/0 �9 1992 Plenum Publishing Corporation

40 Schwab

nomial rings, as well as an algorithm for computing them, was first
demonstrated by Buchberger. Once a Gr6bner basis is found for the corre-
sponding ideals, it becomes easy to test if a polynomial belongs to an ideal,
if two ideals are equal, if an ideal is contained in another, and so on. The
interested reader is referred to Buchberger's work, (2"3) where one will find
a complete introduction to Gr6bner bases, a description of their computa-
tion, as well as a list of many applications. A self-contained introduction to
both the mathematical theory and applications of Gr6bner bases can also
be found in the tutorial article by Misra and Yap. (4) A complete review of
the various attempts to parallelize the algorithm can be found in Vidal's
paper. (5)

The Buchberger algorithm transforms a set of polynomials into
another set of polynomials, a Gr6bner basis generating the same ideal.
These polynomials have rational coefficients, and indeterminates drawn
from some finite set of variables. While the theory behind the algorithm is
quite complex, the actual computation is relatively simple to describe. This
implementation is based on a version of the algorithm given by Gebauer
and M611erJ 6)

The computation of Gr6bner bases require a great deal of time in
practice. There are several theoretical bounds but they are of limited use in
predicting actual performance because they are based on worst-case com-
plexity which is unlikely to occur in practice. One well known result is a
double exponential lower-bound due to Mayr and Meyer. (7) Even when a
particular instance of the problem does not require time approaching this
bound, it often requires a large amount of computation. One parameterized
family of examples due to Arnborg and Davenport appears to require time
at least exponential in the number of equations, but this is an artificial
example. Our experiments were carried out using examples from the
literature, but a more useful set of measurements would require the ability
to characterize and produce average case examples similar to those typi-
cally encountered when the algorithm is used, for example, in a symbolic
mathematical system to solve a set of equations.

One way to speed up the solution of the problem is to transform the
sequential algorithm into a parallel one and execute it on a multiprocessor.
There have been many attempts over the past few years to develop an
efficient parallel algorithm. Watt, ~8) and Buchberger ~9) were the first to
propose parallel algorithms to compute Gr6bner bases but they did not
implement them, nor attempt to measure or predict their performance.
Ponder (1~ implemented corrected versions of Wart's algorithm but
obtained only limited parallel speed-up. Melenk and Neun (H) designed a
pipelined version of the most time consuming step of the algorithm. They
simulated it and obtained good parallel efficiency for a small number of

Extended Parallelism in the Gr6bner Basis Algorithm 41

processes. More recently, Siegl (12/ modified Buchberger's parallel version of
the algorithm by distributing the basis, which is a set of polynomials,
among the processes. He implemented this version and obtained good
performance for small examples. Senechaud (13~ had already implemented a
similar version of the algorithm, but only for Boolean polynomials. Vidal (5)
was the first to implement an efficient parallel algorithm on a shared
memory multiprocessor.

The work presented here differs from the attempts described so far in
several respects:

�9 The underlying architecture is a shared memory multiprocessor
and the main objects used during the computation are shared
among all processes.

�9 The implementation can be used for problems of size significantly
larger than the other implementations. Also, in general, the parallel
performance achieved is better than that observed in the other
implementations, especially for problems of large size.

�9 This implementation is the first one which combines two parallel
schemes: the coarse-grain level of parallelism similar to what Watt
and Buchberger proposed is complemented by a fine-grain level of
parallelism similar to what Melenk and Neun proposed. After we
discuss these two parallel schemes, we will see how well both
combine in one algorithm.

In Section 2, we present a brief description of the various machines on
which these experiments were performed. In Section 3, we give an introduc-
tion to the Gr6bner basis algorithm. In Section 4, we present the coarse-
grain parallelism of Vidal. In Section 5, we describe the fine-grain
parallelism using reduction pipelines, and point out the key issues in the
implementation. In Section 6, we discuss the combined version of the algo-
rithm and the various scheduling and load balancing issues. In Section 7,
we analyze the various implementations. Section 8 compares this implenta-
tion to the other parallel implementations reported on in the literature. In
Section 9, we conclude with a discussion of additional work and future
directions.

2. M U L T I P R O C E S S O R A R C H I T E C T U R E S U S E D IN T H E
I M P L E M E N T A T I O N

A wide variety of multiprocessor architectures have been described in
the literature over the past few years. The characteristics of these architec-
tures vary widely and are determined by the available technology, the class

42 Schwab

of applications addressed, the trade-offs between processor speed, memory
system complexity and communication costs, and other design decisions. In
this paper, we describe algorithms implemented on three shared memory
architectures.

The Encore Multimax is a classic shared memory multiprocessor using
a central bus for communication between processors and main memory.
Each processor has a local cache and uses a snooping protocol to maintain
cache coherency. The Multimax is suitable for medium and coarse grained
parallel applications. (m The particular machine used in these experiments
had 16 National Semiconductor 32332 processors, each rated at roughly 2
MIPS, and 32 megabytes of shared memory. The local cache size is 64K
bytes, shared between two processors.

The RP3 is a large-scale research parallel processor developed at the
IBM T.J. Watson Research Center. The machine consists of a number
of processor-memory elements connected by an Omega-interconnection
network. Local memory references are handled immediately, while remore
memory references must be resolved over the network. The architecture
provides three types of memory pages: local pages, global pages, and
replicated pages. The machine does not support automatic cache
coherency; instead, cache management is the responsibility of the program-
mer or compiler. (15~ The virtual memory interface allows each page to be
marked as cacheable or noncacheable, as well as allowing the cache to be
flushed under user level control. The current version of the system has
64 ROMP processors. Each processor has 8 megabytes of storage, and a
64K byte local cache shared between two processors.

The Plus architecture (16) is a mesh of processor-memory elements
connected by a deterministic routing network. The routers always send
messages along an L-shaped path in the mesh, so that the message first
propagates vertically, then horizontally to the destination. Remote memory
references are transparently routed to the appropriate destination. In addi-
tion several special features enhance this basic design. Local computation
proceeds while remote writes are being completed, increasing overall
throughput, When needed, a fence operation is used to stall the local pro-
cessor until all remote writes have completed. Also, any page in memory
may be replicated to other processing nodes. Reads from these replicated
pages are handled locally, while writes are directed to the master copy of
the page and transparently propagated to all replicated copies. This allows
the processor which owns the page to write it without stopping, while the
hardware keeps track of these writes and updates the memory of other pro-
cessors which have a copy of the page. Tuning an application to run on
this architecture involves studying reference patterns of the algorithm and
selecting a memory replication scheme that minimizes remote read refer-

Extended Parallelism in the Gr6bner Basis Algorithm 43

ences, while limiting remote writes and overall network traffic. This type of
architecture is expected to perform better than a pure message-passing
architecture because additional hardware supports the remote memory
references, as opposed to a software layer processing these memory
requests. The experiments described in the paper were run on the Plus
simulator, as well as the Proteus (~7~ simulator configured to model the Plus
architecture. A machine with 40 nodes is currently under construction.

There are several key differences between these architectures that
impact on how applications are tuned to these machines. The Multimax,
with a uniform memory system accessed via a common bus, requires no
decisions about where to locate data structures in the machine. Both the
RP3 and Plus support nonuniform memory systems, so data locality is
critical to performance. Synchronization on the Multimax uses a test-and-
set primitive, which requires exclusive access to the bus, making this a
potentially expensive operation. On the RP3 and Plus, atomic opera-
tions such as fetch-and-add are used to implement mutual exclusion. The
RP3 requires that memory locations operated on atomically be uncached,
so that the operation is executed by the memory system, while Plus
implements the same functionality by routing the operation to the master
copy of the page. The cache coherency protocol on the Multimax, and the
replication hardware on Plus, effectively provide reliable and transparent
sharing of data. The added flexibility of the Plus memory system allows the
architecture to better support the data sharing pattern of the application
program. The RP3, which provides no hardware cache coherence support,
requires software support for data which is shared and modified. This
complicates the implementation of parallel programs, and makes porting
of code from one architecture to another more difficult.

These implementations were all written in C and use the C-Threads
package, (~8) which allows parallel programming under the MACH
operating system. (191 The programming model provided by C-Threads is
one of many executing processes sharing a common global address space.
Synchronization is provided through locks for mutual exclusion and condi-
tions for waiting and signaling of events. The model is augmented on the
nonuniform memory access machines to provide for the assignment of
specific threads to specific processors, and for controlling the placement
and replication policy of memory pages.

3. T H E B A S I C A L G O R I T H M

Before presenting the details of how to compute a Gr6bner basis, some
preliminary background on multivariate polynomial computation must be
provided. Computer algebra systems typically manipulate large data

44 Schwab

structures that represent the underlying mathematical objects, such as poly-
nomials. Unlike numerical computations, approximations to real numbers
and the use of error bounds are not sufficient to yield the correct result. To
deal with these issues of precision, variable sized data structures are used
throughout the system, and memory for these structures is allocated and
released as it is needed.

In this implementation, polynomials are represented as dynamically
allocated arrays of bignumber integer coefficients, and exponent descrip-
tors. Each big number integer is in turn a dynamically allocated array of
integers representing the digits of the big number in a large radix. The
exponent descriptors are arrays of integers specifying the exponents of each
variable. The implementation makes extensive use of an explicit memory
allocator using the standard malloe and free C library interface. However,
there is nothing in the implementation which precludes it from using a
garbage-collection based memory allocation scheme, which is often built in
to complete computer algebra systems. An earlier version of this program
was modified to serve as a benchmark for a concurrent garbage-collection
based memory allocator. (2~

One issue not yet discussed is the order in which the terms of a poly-
nomial are stored and, indeed, what the logical ordering of these terms will
be. For univariate polynomials, the common logical order of terms is from
that of greatest degree to least degree, so that a quadratic polynomial is
written 3x 2 + 2x + 1 and not 2x + x 2 + l. It is then natural to describe the
leading term of this polynomial as 3x 2 without ambiguity. Turning to the
case of multivariate polynomials, we find that a polynomial such as
2x2y + 3xy 2 may just as easily be written with its terms in the opposite
order. Because the Gr6bner basis depends on the term ordering, we must
select a particular order in which to list the terms of a polynomial. The
implementation takes care to always store the terms of a polynomial in the
selected order. All of the experiments reported on in this paper where
performed using the reverse lexicographic ordering, described in several
other papers. (3'5) To be concrete, we will present the simpler lexicographic
ordering for terms in a polynomial.

For the purposes of our paper, the key property of any ordering is
that the first, or leading, term of any polynomial is always well defined.
Suppose we are working with the lexicographic order over the variables
x, y, z in that order. The greater term in this order is the one with the
biggest exponent at the first variable where the exponents are different. For
example, x3yZz I is greater than x3y ~z 3 because the exponent of y2 is bigger
than that of y 2. Likewise, yZz3 is smaller than x 1 because the implicit expo-
nent of x in y2z3, is 0, which is less than 1. Armed with a representation
of multivariate polynomials, and a method for ordering their terms, we

Extended Parallelism in the Gr6bner Basis Algorithm 45

now present a sketch of the Gr6bner basis (also called Buchberger's)
algorithm.

The primitive step of the computation, called reduction, involves
deleting the first term of the current working polynomial, called the S-poly-
nomial, by subtraction of an appropriate multiple of a polynomial already
in the set. The result of this reduction is of lower order, but not necessarily
smaller in size or number of terms. A polynomial is totally reduced with
respect to a set of polynomials when no further reduction is possible. Note
that polynomial Q is only selected to reduce polynomial P if its leading
term divides a scalar multiple of the leading term of Q. This means that P
is multiplied by an integer, and not by a monomial.

R~duc4 P, Q):= {

Assert(Q reduces P)

G := LCM(LeadingTerm(P) , LeadingTerm(Q))

Kp := G/LeadingTerm(P)

)~Iq := G/LeadingTerm(Q)

Reduce := Ii~ �9 P - AI~ �9 Q

Reduce(z3y 2 + 2x2y § 3,2x~y 2 + y) :=

G = LCM(z3y 2,2z2y 2) = 2z3y 2

~duc~ := 2 . (x3y ~ + 2 . ~ y + 3) - x . (2~2v ~ + y)

= 4x2y - - xy

The S-polynomial of two polynomials already in the set is computed
by finding the least common multiple of the leading terms, multiplying by
appropriate monomials to make the two leading terms equal, and then

46 Schwab

finding the difference of these polynomials. Intuitively, each polynomial is
scaled by the smallest factor such that the lead terms become equal; sub-
tracting them cancels out the lead terms. This primitive is almost identical
to the Reduce operation, except that both polynomials are multiplied by
monomials.

spoz(P, Q):= (

G := LCM(LeadingTerm(P) , LeadingTerm(Q))

2lip :-- G/neadingTerm(P)

21Iq := G/LeadingTerm(Q)

SpoZ := P - M . . Q

}

SpoI(2x2y + 3xy + 1,3xy 2 + my + 2y + 2) :=

G = LCM(2x2y ,3xy 2) = 6x2y 2

~ = 6x~y2/2x2y = 3y, ;lq = 6m2y2/3xy~ = 2x

SpoI = 3y. (2x2y + 3xy + 1) - 2x -(3my 2 + xy + 2y + 2)

= - 2 x ~ y + 9xy 2 - 4zy - 4x + 3y

The simplest form of the algorithm can now be stated, and is presented
in Fig. 1. Termination is guaranteed by restrictions on the ordering of
terms in each polynomial. For our discussion, it is enough that selecting an
admissible ordering ensures that only a finite number of critical pairs will
be examined. An admissible order is one in which constant terms are the
least terms in the order, and the ordering is preserved under multiplication.
That is, if T 1 -~ T 2 then, T 1 �9 T 3 "~ T 2 �9 T 3 , where the Ti are terms.

The algorithm begins with the input set B, and constructs the set P of
all pairs of distinct polynomials in B. Then, while pairs remain, the algo-
rithm processes a pair from P. This processing consists of computing the
S-polynomial of the pair, and then reducing it with the polynomials in B

Extended Parallelism in the Gr6bner Basis Algori thm 47

Gr6bnerBasis(B) := {
P := {(b~,,bj)]bi, bj E B, i < j }
whi le (P not empty) {

choose and delete any pair (bi, bj) from P.
s := Spol(b,,
whi le (3r E B which reduces s) {

s := Reduce(s, r)
}
i f (s r O) {

P : = P U ({ s } x B)
B : = B U { s }

}
}
r e t u r n B

}
Fig. 1. The GrSbner basis algorithm.

until no further reductions are possible. Sometimes, the S-polynomial
reduces all the way to 0, in which case the algorithm proceeds to the next
iteration of the loop with no additional work. However, if the S-polyno-
mial reduces to a nonzero polynomial, then this new polynomial is added
to the set B. In addition, the new polynomial is paired with each polyno-
mial already in B, and these additional pairs are added to the set P. Even-
tually, the set of pairs is empty, and the algorithm terminates. It should be
noted that while B is a GrSbner basis upon termination, a follow-up step
to transform B into a reduced Gr6bner basis is often needed. (This is
accomplished by reducing each element of the basis by the other polyno-
mials, which in effect means that the final polynomials added to the basis
are used to eliminate those polynomials that were produced earlier, and are
no longer necessary to span the ideal. In addition, a generalized reduction
operation is applied to every term of a polynomial, instead of just the
leading term. This complete reduction of each polynomial in the reduced
GrSbner basis means that the leading term of each polynomial in the basis
is a unique power product of variables, and does not appear in any other
polynomial in the final result.) We have not addressed that step in this
paper, although some of the techniques presented here can also be applied.

Of course, the order in which the pairs are selected is very important
to the practical efficiency of the algorithm. One heuristic is to select the
pair whose S-polynomial has the smallest leading term under the selected
order. In addition, several tests have been developed to delete pairs whose
S-polynomial will reduce to zero. These criteria can be found in Refs. 6 and

48 Schwab

21 and involve testing for certain constraints on the leading terms. The
order in which reductions are performed is less well defined; in this
implementation we use the order in which the polynomials first appear
when searching for a reducing polynomial. Most of the computation time
is spent in the S-polynomial and reduction steps.

The version of the algorithm sketched here purposely delays inter-
reduction of polynomials in the basis until after all critical pairs have been
examined. By performing interreduction immediately after a new polyno-
mial is created, the algorithm can reduce the number of critical pairs to
examine at the expense of operating with polynomials with more terms. To
facilitate the parallel implementation, this technique of keeping the basis
auto-reduced throughout the computation is not used.

The typical computation described here consists of tens to hundreds of
S-polynomial computations and hundreds to thousands of reduction steps.
Because of the very rapid growth in the actual complexity of the problem,
larger inputs will tend to produce polynomials with more terms and larger
coefficients. In our sample executions, we observed that the total number
of S-polynomials actually reduced does not grow as JBI 2, where IBi is the
number of polynomials in the basis, but at a somewhat greater than linear
rate. This is an important difference from some of the earlier parallel
algorithms, in which every pair of polynomials in the basis was used to
compute an S-polynomial.

4. C O A R S E G R A I N P A R A L L E L I S M

Most of the computation time in the algorithm is spent in reducing the
S-Polynomials. Since neither the basis B, nor the set of pairs are changed
during this step of the computation, the algorithm could reduce several
pairs simultaneously on different processors. The only immediate bound on
the parallelism of this technique is that there are only a fixed number of
pairs under consideration at any point in the algorithm.

In this parallel algorithm, the basis of polynomials is an append-only
structure. Once a polynomial is added to the basis, it becomes read-only,
allowing the basis to be replicated to the local memory of each processor
if the architecture supports such a facility. The only other shared data
structure is the set of pairs currently under consideration. One possible
technique would be to have each processor maintain a local set of pairs,
and expand those completely before contacting other processors for work.
Unfortunately, the algorithm's performance depends on the pairs being
expanded in a particular order. Any type of locally maintained structure
would necessitate changing the order of expansion, causing much more
work to be done. For this reason, there is a single, shared set of pairs,

Extended Parallelism in the Gr6bner Basis Algorithm 49

which is protected by a lock which is acquired whenever the set needs to
be modified. When a processor starts execution, it locks the set, removes
and deletes the first pair, unlocks the set, and proceeds with the S-Polyno-
mial expansion and reduction process. When a reduced polynomial is ready
for addition to the basis, the processor locks the set of pairs, updates the
set of pairs to include new pairs between the basis and the additional
polynomial, and appends the polynomial to the basis, replicating it if
appropriate. It then releases the lock, and begins the process all over again.
(This single shared lock is potentially a bottleneck, but is not expected
to become a problem because of two factors. First, the critical sections
protected by the lock are very short when compared to the rest of the
computation. Second, the structure of the problem decreases the utility of
expanding too many pairs at once. This means that relatively few processors
will contend for the lock at one time, as any additional processors will be
executing the pipeline parallelism described in the next section.)

If no pairs are available when a processor acquires the lock, then it
checks to see if all other processors are also waiting. If so, then the algo-
rithm has completed, and a post-processing stage is executed. If other pro-
cessors are still executing, the current processor performs a condition_wait
operation until it receives a signal from another processor that new pairs
are available. Figure 2 illustrates the progress of several processors
executing the parallel algorithm. Note that processors can always read any
polynomial, and need the lock only to add a new polynomial to the basis.

The parallelism exploited by this method is speculative parallelism,
meaning that sometimes a pair will be expanded in parallel that would
have been deleted in the sequential case. Speculative parallelism is the eager
evaluation of a subtask in a computation before the necessity of performing
this work is known. If the subtask had to be performed anyways, the
algorithm benefits from increased concurrency. On the other hand, if the
subtask could have been avoided, some computation time has been spent
uselessly. This reduces the efficiency of the parallel algorithm because some
of the work performed is useless--expanding the S-polynomial of the pair
will produce, after much computation, the zero polynomial. Nevertheless,
most of the pairs expanded in parallel are useful, and decrease the amount
of time needed to find the Gr6bner basis. The algorithm can be viewed as
a search algorithm, with the nodes to be explored being the critical pairs.
A pair which reduces to the zero polynomial is a leaf node. Sometimes,
expanding a critical pair produces many other pairs, which are then put on
the list of work to perform, and as a side effect, we note the polynomial
produced. Other pairs produce only the zero polynomial, and no new pairs
to be expanded. The algorithm terminates when the search space has been
completely explored, either by expanding or deleting each critical pair. Of

828/21/I-4

50 Schwab

course, the introduction of new polynomials in the basis also prunes the
search space, by causing more critical pairs to reduce to zero. One modest
improvement to the algorithm can be made by pruning more frequently,
particularly by checking to see if the pairs being expanded by other
processors could be deleted by a polynomial just now being added to the
basis, If so, then the other processors abort their current work and begin

A. P1 acquires i pair

Polynomials " pairs

, o o o o o o o o

,,,,,'" ~ A 2 , 4

/ / "

A I>2

B. P2 acquires a pair, while PI Ixxforms a reduction

PolyaomiMs Pairs

' ~ ,%. ~k/A2."

s

1
~ e by Po13

C. P1 waits for a Icck before adding a new polynomial to the basis

Polynomials

2 ~

A 1,2

1
reduce by Po13

reduce by Po14

re PoI5

PL~I*

i
reduce by Pol2

Fig. 2.

D. P1 edds Po15 mad creates new pairs while i>2 waits for a lock.

Poly/loolials P~irs

, + �9

i" ..' ,#.."S" .."
e, . t ,

i l
~ d u c e by Pol2 reduce by Pol3

cr~l~ Po16

Coarse Grain Parallelism--processors concurrently select pairs, perform reductions,
create polynomials, and update the set of pairs.

Extended Parallelism in the Gr6bner Basis Algorithm 51

work on a new pair. This reduces some of the penalty associated with the
speculative parallelism.

Because this is a searching algorithm, the parallel algorithm can be
expected to demonstrate super-linear speedup on some inputs because of
the opportunity to expand an important pair earlier than a sequential
implementation would do so. This more or less points out that some of the
speedup is due not to the parallel machine we are executing on, but to the
concurrent structure of the algorithm. This speedup might also occur on a
uniprocessor, if the costs of context switching and memory locality over-
head could be adequately minimized. Of course, an improved selection
strategy for critical pairs can be expected to reduce the effects of parallel
searching on the algorithm. One such improvement in selection strategy
which could be incorporated into a future version of this implementation
has been developed by Giovini et. al. (22)

Typical data runs vary over a wide range, with small inputs taking
milliseconds and modest ones hundreds or thousands of seconds on a
sequential 2-MIPS processor. Larger inputs require much more computa-
tion; an interesting area of inquiry is to determine if larger inputs can be
effectively computed using a larger parallel processor, or if the intractable
nature of the problem dominates on typical inputs as well as artificial
examples. If the opportunity for parallelism grows at least as rapidly as
the amount of computation required for a given problem size, then large
parallel processors will be useful for solving these problems. On the other
hand, if the potential parallelism in the algorithm grows more slowly than
the total computation required, then these large machines will not be able
to significantly increase the size of problem instances which can be com-
puted. As expected, the larger inputs benefit the most from larger numbers
of processors. However, inputs with only a very few large polynomials, or
which produce only a limited number of pairs at any stage in the computa-
tion, benefit less from additional processors. Figure 3 presents the speedup
versus number of processors for two examples from the literature. (23) On a
single Multimax processor, the Rose example requires about 35 seconds,
while the Trinksl example requires only 10 seconds.

In summary, these are the principal characteristics of the coarse-grain
parallelism of the Gr6bner Basis algorithm:

�9 Infrequent access to data structures in the critical sections--the
algorithm spends a small fraction of time updating the set of pairs
and the basis of polynomials while holding an exclusive write lock.
This allows the processors to work efficiently in parallel.

�9 Good Memory Reference Pattern--The algorithm creates and
appends new polynomials to the basis, never changing an old

52 Schwab

~ 16
/ / /

0 . - . o RIB A / ' /

/ . , ~ + ,7,~

�9 / ' ~ /
p

A. o / + ? " o

; , . / ; : ,,

" o s '. i o
: . ' ' d ". :
.'~.',, /
~ " / ~. . ~

i i i i i i e r

2 4 6 8 10 12 14 16

Speedups for Proble~a ROSE

~ 16

14

12

10

/
/

/

PLUS /

~ I M A X /
i i - - - o +I"
A - - + A /

/
/

/
, /

/
/

/

/ / /

/ / . .,t~ - ~h, . ,~t. ~ . . A

/ / .A'

�9 "~ Ja..o. ...'~'.o.-e-.o. ..o-'e~'o.. ~

i i e i = e e p

2 4 6 8 10 12 1~- 16

Speedups for Proble~n TRINKS1

Fig. 3. Grobner Basis speedup curves--voarse-grain algorithm.

polynomial. This means that on distributed memory architectures
such as PLUS, the polynomials may be replicated locally on each
processor. In addition, only the operations on the set of pairs
require a globally shared read/write reference pattern, limiting the
performance penalty of local versus global memory.

Global ordering on work--The algorithm requires that the critical
pairs be processed in a particular sorted order for efficiency
reasons. This prevents a structure in which each processor keeps a
local work queue, and instead requires the algorithm to maintain
a globally ordered work queue.

Speculative Parallelism in a Searching Algorithm--This problem
may be viewed as a parallel search. As such, this parallelism is
often speculative, in that the same work might not be performed
by the sequential version. Because of this speculative nature, the
algorithm may exhibit superlinear speed-up because some of the
important critical pairs may be expanded and reduced earlier in the
parallel computation than in the sequential one.

5. FINE GRAIN PARALLELISM

At the heart of the Gr6bner basis computation is the operation of
reduction, in which one polynomial is used to eliminate the most signifi-
cant term from an initial polynomial. Speeding up this step is critical to
improving the performance of the algorithm.

The source of fine-grain parallelism in the algorithm occurs in the
reduction loop. The key observation of Melenk and Neun (11) is that the

Extended Parallelism in the Gr6bner Basis Algori thm 53

algorithm only branches based on the leading power product of the poly-
nomials. This means that as soon as the first term of any polynomial is
computed, the next step of the algorithm may begin concurrently with the
computation of the remainder of the polynomial.

In this implementation, the pipeline of processors is constructed
explicitly with a processor assigned to computing one reduction, and then
reentering the computation at another reduction step. In contrast, Melenk
and Neun used a Lisp implementation with a dataflow style. Under this
approach, processes block, waiting for a term to be completed, and yield
the processor to perform other work in the algorithm. Since a single big
number multiplication dominates the computation, our implementation
spins instead of context switching to another thread, because the time to
begin work on another reduction is much longer than the time spent busy
waiting. In this way we also avoid the overhead of scheduling each term as
a separate unit of work.

The reduction loop consists of searching the list of polynomials for a
reducing polynomial, then setting up the reduction, and finally performing
it term by term. The critical observation here is that the next iteration of
the loop will examine the terms in the same order as they are produced.

In order to exploit this parallelism, this implementation stores two
synchronization fields with the polynomial. A size field keeps track of the
number of terms and a done flag indicates that this polynomial is complete
or still under construction. The reduction process begins as in the sequen-
tial case with an examination of the leading term and a search for a
reducing polynomial. Then before actually computing the reduction, a
second processor is assigned the task of performing the next loop iteration.
The second processor busy waits, checking for either a new term or a done
indication, while the first processor computes the polynomial term by term.
When the first processor finishes, it will wait once more in a queue to be
assigned additional work. The second processor, meanwhile, waits for a
term to be produced. Once a term is produced, the polynomial is definitely
known to be nonzero, and the second processor will search for another
reducing polynomial. If the search is successful, the second processor will
assign a third processor to consume the next intermediate result, and the
process repeats. If no terms are produced, and the done flag is set, then the
second processor has detected a zero polynomial. There is no need to
update the pairs set, and a new pair may be expanded. If the search for
another reduction fails the second processor begins the update-pairs
routine, in which useless pairs are deleted and the new pairs are added.
This overlaps with the previous computation. This processor then begins
expansion of the next pair. The S-polynomial expansion may be forced to
wait because one of the polynomials in the pair may still be incomplete.

54 Schwab

The code to compute the S-polynomials uses the same synchronization
technique to consume terms as they are produced, overlapping additional
computation and providing better speedup. Figure 4 illustrates the various
stages in the pipelined computation.

There are several issues to point out about this pipelined reduction

(~) ~ start computing first term ~ conti puting term by term
L______A w ~ , . z - J

wait select a polylmmiaI based on the
:..

first term received

~] wait wait

- ~ wait U ~

A B

wait

i

All Reductions Underway
C

:.:

. , :

Finished ~. Update Pairs

C) term
processed term

:.'i~" newly created mrm
poly.o.~

Fig. 4. Pipeline Parallelism--Each processor operates on two polynomials, producing terms
which are consumed by the next processor in the pipe. When no more reductions can take
place, the polynomial is added to the basis.

Extended Parallelism in the Gr6bner Basis Algorithm 55

process. (1) The busy waiting loops all spin on two cached variables. This
means that the busy waiting does not saturate the bus and slow other pro-
cessors down. (2) Once the reduction begins, each processor in the pipeline
consumes terms at approximately the same speed as the previous pro-
cessors produces them; therefore very little time is spent busy-waiting in the
middle of a reduction pipeline. (3) Because the synchronization constraints
flow in one direction only, no synchronization primitives are used beyond
sequential consistency of reads and writes. Sequential consistency (z4'25~ is
the traditional processor memory model in which reads and writes to the
memory system complete in the order in which they are issued by the
processor. New parallel architectures have introduced more efficient, weak
ordering models. (4) There is no speculative parallelism in this part of the
computation. Each reduction must be performed, and this approach simply
overlaps the computation performed by the inner loop as much as possible.

Figure 5 presents the speedup versus number of processors for the
Butcher example from the literature. The software mechanism was not
implemented on the RP3 because of the demand for very tight coupling
between processors, which was unavailable on that machine.

The principal characteristics of the fine-grain parallelism include the
following:

�9 The basic reduction step can be implemented as a pipeline. This
means the next operation may begin as soon as the first term of the
result of the previous operation is computed.

8

/
/

/
/

/
/

/
/

/

/
/

/

/

I | ! I' i)
2 4 6 $ lO 12

]~oocssors
S p ~ d u ~ for Problem BUTCH]ER

Fig . 5. G r o b n e r B a s i s s p e e d u p c u r v e s - - f i n e - g r a i n a l g o r i t h m .

4 J"

56 Schwab

�9 The pipeline uses only a linear communication pattern in which a
processor communicates with its two neighbors. This pattern
should be especially well suited to a mesh architecture.

�9 The pipeline utilizes a small grain size where communication
between processors takes place frequently with respect to the unit
of work. This means that busy-waiting is the best method for
delaying a processor in the pipeline, since other synchronization
primitives are too time consuming.

�9 There is no speculative parallelism is this level of parallelism. The
same work is performed here as in the sequential case. The primary
loss of efficiency is due to the overhead of spinning in a tight loop
while waiting for the pipeline to start processing the next reduction
sequence.

6. C O M B I N I N G THE TWO LEVELS OF PARALLELISM

The two forms of parallelism described earlier combine in a com-
plementary fashion. The coarse-grain method performs many reductions
in parallel; the fine-grain method parallelizes the reduction chains. We
experimented with a number of processor scheduling mechanisms before
choosing the one used in the implementation. One version used a single
work queue, another separate queues with locks, and the final version uses
a fixed ordering among processors. We expect that the two forms of
parallelism are independent, since performing the pair expansions in
parallel, only faster, reduces the average time between pair expansion and
updating the set of pairs. Because of this speedup, the fraction of time spent
in the critical section updating the shared data increases. We believe that
this will not become a bottleneck until hundreds of processors are used, but
varying ratios of processor to synchronization speed across different
architectures may make this an important consideration.

There were several steps taken in choosing the mechanism for
scheduling the processes. These issues are closely coupled with the synchro-
nization techniques used in the reduction pipeline, further complicating the
problem. The first attempt to implement the algorithm used a single queue
of available processors, each of which would be assigned the next reduction
step anywhere in the global computatio n . All synchronization was
implemented using mutex locks and C-thread conditions. The conceptual
goals of this approach was clear: to provide nearly ideal load balancing as
well as high-level synchronization on a tightly-coupled shared memory
multiprocessor. (The Encore Multimax was the first machine on which this

Extended Parallelism in the Gr6bner Basis Algori thm 57

technique was successfully implemented; the PLUS implementation came
latter.) Unfortunately, the time between starting reduction steps was too
short; the central queue became a bottleneck. At the same time, it also
became clear that conditions were too heavy a synchronization primitive to
use for such short duration operations as the term by term reductions in
the pipeline. The first design choice was to replace the pipeline syn-
chronization with only reads and writes. Producers signaled the completion
of a term by incrementing a counter, while consumers busy-waited on the
counter variable until the next term became available. The second design
decision was to replace the single queue of processors with several separate
queues, one for each level of coarse grain parallelism. Processors now
entered these queues and busy-waited on a variable in the queue entry.
When a reduction was assigned, the processor would be dequeued and
would begin the reduction operation immediately, taking on the role of
consumer initially, and then assigning another processor to perform the
next reduction and acting as a producer of terms also. This implementation
allowed some speed-up, but was still slower than expected.

Once again, the problem was the synchronization being too slow.
A better design was to assign the processors a fixed order in the reduction
pipeline. Each processor now consumes terms from only one processor,
and its terms are in turn consumed by just one processor. The dequeue
operation becomes trivial, while the enqueue operation disappears entirely.
This mechanism provides the best performance, but forces some additional
constraints on the implementation. In particular, a processor in the reduc-
tion pipeline can never signal the previous processor to change state or per-
form additional work, because there is no longer any reliable way to solve
the race conditions introduced by this type of synchronization using only
reads and writes. The result is that it is no longer possible to dynamically
move processors between different reduction pipelines. It is difficult to
measure how much performance this costs the overall algorithm, but if
there is large variance in the number of reductions performed in reducing
different S-Polynomials, there would be significant benefit in this type of
load balancing.

Of course, on the PLUS architecture, static reduction pipelines map
perfectly to processors connected by a mesh topology. Each critical pair
expansion is now performed by a row of processors communicating only
with two neighbors. Only updating the basis and set of pairs requires
access to a globally shared memory, which improves performance of the
algorithm on this type of machine.

A second type of load balancing is that of migrating processors
between the coarse-grain method and the fine-grain method. Implementa-
tion issues aside, it is not theoretically clear when to move processors down

58 Schwab

to the fine-grain level�9 A priori, it is impossible to determine whether one
pair will be deleted by expansion of another pair. A statistical measurement
of the fraction of pairs which are useful could be used as one load balanc-
ing heuristic, but a good global load balancing algorithm would have to
examine the actual structure of the basis under construction and then use
heuristics to decide where processors may be used most fruitfully.

In Figure 6, we present performance results for the full algorithm with
both levels of parallelism�9 The Rose example is large enough to benefit
from the fine-grain parallelism, while the Trinksl example is too small to
speedup using this approach�9 The difference between these two problems is
that the polynomials that appear in the first example tend to have 20 or
more terms, while the second example has polynomials with 10 or fewer
terms�9 The fine-grain parallelism only works when there are many terms to
process in each polynomial. The Rose example seems to be more typical of
the type of problems which arise in practice. A large multiprocessor will be
able to handle problems with many more polynomials in their basis�9 Such
problems are also likely to generate polynomials with proportionally more
tezms and larger coefficients. Since the fine-grain parallelism operates more
efficiently as the size of the polynomials increase, these larger multipro-
cessors will show increased speed up from this form of parallelism�9

Tables I and III compare the execution time of the algorithm on the
Multimax when different ratios of processors are assigned to the coarse-
grain and fine-grain parallelism�9 The execution times for the samples Rose
and Butcher are presented in seconds�9 Each line in the table lists the times
for an increasing number of processor groups. Each group executes an
S-polynomial reduction in parallel with the other groups. In each column,

~ 30

:25

20

15

10

S

. . ~ 1 4 9 1 4 9

� 9 A PLUS , �9 � 9 �9 f f

�9 /

�9 . F ./
/ .

/ . A
� 9 1 4 9 , J

/
n n = i
$ 10 15 2x]

S p e e d u p s f o r P r o b l e m R O S E

~ 3C

Fig. 6.

M U L ~] f
�9 * �9 �9 PLUS j

/
/

/
J

/

IS i / J
/

/
/

10i f f
/

~ i n = i i
5 I0 15 2O

S l ~ e d u p s f o r P r o b l e m T R I N K S I

Gr6bner Basis speedup curves-~combined algorithm.

Extended Parallelism in the Gr6bner Basis Algorithm

Table I. Rose Example for Various Combinations of Coarse and Fine
Grain Parallelism (Multimax) a

59

processors per group
groups 1 2 3 4 5

1 35.3 20.2 15.3
2 11.6 8.4 6.5
3 8.6 4.8 3.8
4 5.9 4.0 2.9
5 4.9 2.7 5.3
6 4.7 2.6
7 4.6 3.1

13.3 11.9
5.7 5.6
3.4 14.43

a Execution times in seconds.

Table II. Rose Example for Various Combinations of Coarse and
Fine Grain Parallelism (Plus Simulator) ~

processors per group
groups 1 2 3 4 5 6

1 74.5 42.8 32.3 27.9 24.6 23.3
2 27.4 16.9 13.7 11.4 10.9 10.4
3 15.3 8.7 6.4 6.3 5.8 5.5
4 9.0 5.5 5.1 3.9 3.8 4.2
5 9.2 4.8 3.9 3.2 2.7 2.9
6 7.9 4.3 3.3 2.9 2.8 2.6

a Execution times in megacycles.

Table III, Butcher Example for Various Combinations of Coarse and
Fine Grain Parallelism (Mul t imax) a

processors per group
groups 1 2 3 4 5

1 307.4 185.2 138.2 110.5 96.4
2 175.3 109.7 80.4 67.8 60.2
3 132.0 82.2 62.9 57.0 137.9
4 96.7 55.1 43.8 135.3
5 89.1 54.4 66.5
6 65.9 54.9

Execution times in seconds.

3 The measured value was extremely volatile, with times falling in the range 7.0 to 21.7.

60

Table IV.

Schwab

Butcher example for Various Combinations of Coarse and Fine
Grain Parallelism (Plus Simulator) a

processors per group
groups 1 2 3 4 5 6

1 701.3 404.5 284.4 235.4 198.5 173.7
2 358.2 246.3 176.3 143.6 124.6 110.7
3 293.1 187.7 139.9 113.8 104.7 87.4
4 198.3 145.7 112.2 102.3 98.2 82.8
5 190.6 136.0 ! 19.3 96.6 102.0 88.2
6 296.6 132.8 103.6 93.0 79.6 92.0

Execution times in megacycles.

a different number of processors are assigned to perform fine-grain pipeline
parallelism within each reduction group. For example, in the second line,
the entry under the third column reports the result when six processors
were used, with two separate S-polynomial reductions being performed in
parallel by sets of three processors acting as a fine-grain pipeline. The table
shows poor performance with 14 or 15 processors, suggesting that some
type of limit in the system or algorithm has been reached. The first column
indicates that relatively little improvement is observed beyond five pro-
cessors using only the coarse-grain parallelism. Examination of the other
columns clearly shows the benefit of assigning additional processors to
perform fine-grain parallelism.

Tables II and IV presents the same comparison for execution on the
Plus Simulator. Once again, we observe a gradual drop-off in the execution
times as we move from left-to-right along each row. This is due to the
relatively simple, uniform behavior of the fine-grain parallelism. Each
column, from top-to-bottom, presents entries that exploit more coarse-
grain processor groups, which exhibit faster improvements in execution
times. Clearly, the Rose problem instance is well suited to the speculative
parallelism used by this method. We also observe that the coarse-grain
parallelism combines quite well with the fine-grain parallelism in the
absence of architectural bottlenecks such as a shared bus.

7. A N A L Y S I S

One problem encountered was the difficulty of implementing the fine-
grain reduction pipeline on the RP3. This form of parallelism depends on

Extended Parallelism in the Gr6bner Basis Algorithm 61

transmitting terms from the producer to the consumer as quickly as
possible. While a uniform shared-memory connecting all processors to
memory via a bus provides for instant access to a term as soon as it is
written, the RP3 has a relatively slow global memory accessable through a
routing network. Reads and writes take place one word at a time over this
network, making it difficult to pass terms efficiently between processors.
Ideally, an architecture of this type should support a remote write to
another processor's local memory, allowing a faster exchange of data. In
this way the data would only have to traverse the network once, from
producer to consumer, instead of twice, from producer to global memory,
and then from global memory to the consumer. Another possibility is to
provide a pipelined block transfer of data from local memory to local
memory.

The RP3 memory architecture also made it difficult to store the basis
locally on each processor. Even though a memory region could be
replicated to a set of processors, no provision was made for broadcasting
new data to the replicated memory. In order to achieve this functionality,
each processor would have to check the global data structure and manually
copy the new data to its local memory. While this is consistent with the
philosophy of not providing cache coherency on the machine, it makes the
implementation slower, and more complex, than it otherwise would be.

Finally, no provision was made to provide interprocessor interrupts
directly to the user process. This feature, which allows one processor
to efficiently signal another, could have been used to provide better
synchronization, especially a busy-waiting implementation of the mutual
exclusion algorithm. Note that without this feature, busy-waiting requires
continuous references to the global memory, causing increased contention
for this critical resource, and thereby slowing down other processors doing
useful work.

In contrast, Plus provides a much more closely coupled memory
system through replicated memory. Writing to a local memory location
which is replicated transparently sends a message carrying the new data to
other processors. This allows for efficient fine-grain performance, which is
critical to utilizing larger numbers of processors efficiently. In addition, a
mesh topology is well suited to this problem because the fine-grain form of
parallelism may be arranged as a line of neighbor-to-neighbor communica-
tion. It is necessary to replicate the basis to all processors, but since
updating the basis occurs infrequently, the impact on overall performance
is relatively limited. In a large system with 256 or more processors, the
interconnection network might become overloaded because some processor
would almost always be writing and replicating a new basis polynomial.
One technique to limit this effect would be to split the processors into even

62 Schwab

and odd groups-each processor would store only half the basis, decreas-
ing network load. Each polynomial would, on average, pass through one
additional processor in the reduction pipeline, introducing very little addi-
tional cost. This technique could be generalized to any number of processor
splitting sets, with processors selecting polynomials either deterministically
or randomly.

8, RELATED W O R K

Buchberger has described a distributed-memory algorithm to compute
Gr6bner bases on the L-machine, a parallel machine designed to support
parallel symbolic computation. (9~ The main idea from this work was to
dedicate one processor to manage the set of critical pairs, and use the rest
to distribute and reduce the S-polynomials. The algorithm was described
for both a tree of processors and a ring topology. In addition to distribut-
ing multiple critical pairs to the worker processors for reduction, the
managing processor will also halt a reduction in progress if it becomes
useless due to the addition of a new polynomial to the basis. By using this
policy of eagerly killing off useless computation, the penalty for speculative
computation is expected to be reduced. A more complete analysis of the
effect of including this feature in a parallel implementation is needed to
determine if it actuality improves execution time. No performance numbers
have been reported for this work.

Watt explored the use of remote-procedure call as a primitive for
parallel computer algebra on a network of machines. (8~ This lead to an
algorithm which performed a number of pair reductions in parallel, waiting
for all the reductions to complete before a parallel phase in which all poly-
nomials were interreduced with respect to the rest of the basis. Ponder (~~
demonstrated that this algorithm fails when two polynomials with the same
leading term eliminate this term completely from the basis during the
parallel interreduction. Also, due to the data structures used, the same
S-polynomials could be expanded and reduced to 0 several times during
execution. Ponder modified this approach to parallelize only the critica!
pair reduction or the basis interreduction, executing the other phase
sequentially. This resulted in a correct implementation, but very little
parallel speedup. In addition, the theoretical constraints used to eliminate
many critical pairs with only minimal computation were not included in
this implementation. Two other parallel approaches where also studied by
Ponder_ The first involved finding GrSbner bases for subsets of the input
and then merging the results together in a divide-and-conquer paradigm.
Unfortunately, the merge step was prohibitively expensive. The second
approach was to speculate by running multiple independent computations,

Extended Parallelism in the Gr6bner Basis Algorithm 63

each using a different ordering. Since the time to compute the result may
depend on the selected ordering, this could result in a fair speedup,
although this was not demonstrated. A better technique may be to start
with a partial term ordering, and select a specific refinement of the ordering
as needed by the computation. By using speculative parallelism to evaluate
several refinement orderings in parallel, an efficient algorithm could be
developed.

Siegl (26) and Senechaud (13) have implemented distributed versions of
the algorithm. Siegl selected Strand88 as an implementation language, and
demonstrated an efficent algorithm on a linear topology. S-polynomials
where reduced in parallel as they moved from processor to processor until
reaching the end of the list of polynomials, stored one to a processor. The
next processor then adds itself to the list, and stores this new polynomial.
At the same time, new polynomials move up the line of processors, reduc-
ing the old polynomial stored there. In this way, critical pair expansion and
interreduction are performed concurrently. Reported speedups ranged from
1.5 to 8.3, which were quite good considering that the structure of the algo-
rithm allowed maximum theoretical speedup of only one-half the number
of polynomials in the basis, and the examples where small. Unfortunately,
the actual running times were quite slow, because of the inefficiency of
Strand88 for implementing the basic mathematic and reduction operations.
Senechaud restricts the algorithm to Boolean polynomials, where the only
coefficients and exponents are 0 and 1. A limited degree of speedup was
reported, perhaps because the criteria for eliminating useless pairs was not
implemented.

Gradually, the work in this area is evolving from the proposal of
parallel algorithms based upon expected performance and bottlenecks to
the refinement of parallel implementations based upon actual execution
behavior. Als0, as the architectures and language tools available for
parallel computation improve, more sophisticated implementations that
match the requirements of the Gr6bner basis computation to the primitives
available are being developed.

9. C O N C L U S I O N

The computation of Gr6bner bases can be carried out in parallel.
Taking advantage of better algorithms, larger machines and scalable archi-
tectures will allow much larger problems to be solved, as long as they do
not exhibit the intractable behavior of some of the artificial examples. There
are two different parallel techniques combined in this implementation,
demonstrating that better overall performance can be achieved in this way,

64 Schwab

as opposed to relying on only one method of parallelism. The cost of this
is added complexity in the algorithm, especially in the areas of load balanc-
ing and scheduling of processors. In addition, this implementation appears
very suitable for one type of nonuniform access shared memory machine.
Future work should address how much and what type of resources can be
favorable exploited by this algorithm as well as other symbolic computa-
tions. In addition, experimental evidence and theoretical insight need to be
combined to provide good heuristics for migrating processors between the
two methods of parallelism, and better software tools and implementation
techniques are needed to actually make such an implementation of the
algorithm perform efficiently on larger machines.

The main contributions of this work include:

�9 Demonstrating that two distinct types of parallelism may be com-
bined in this algorithm to produce a more efficient implementation.

�9 Examining the methods and issues involved in scheduling pro-
cessors between the two parallel methods.

�9 Utilizing more processors by implementing an algorithm that can
effectively run on an architecture other than a bus-based shared
memory multiprocessor, which is limited in size.

There are several other directions in which to pursue the Gr6bner
basis algorithm. One is the implementation on a massively parallel
architecture, such as the Connection Machine. Both implementation issues,
such as the methods of coercing a decidedly MIMD algorithm with
speculative parallelism into a deterministic SIMD form, as well as theoreti-
cal issues, such as the complexity of the algorithm over stronger computa-
tion models with unit time primitives for integer multiplication and reduc-
tion need to be considered. Another promising area to investigate is the
technique of using multiple orderings in the same computation, or of con-
structing or modifying the ordering as the computation unfolds, to increase
performance. A third issue of concern is the behavior of the algorithm on
completely distributed machines, including large hypercubes and general
network-connected distributed systems. Finally, a survey of the practical
uses of the algorithm, and case studies of real world problems solvable by
utilizing Gr6bner bases are necessary to determine where to concentrate
future effort in improving implementations of the algorithm. The Proteus
version of the implementation is available via ftp from ftp.cs.cmu.edu, in
the file/afs/cs/user/schwab/ftp/grobner.tar.Z. This version of the code runs
on DecStation5000 and DecStation3100 workstations.

Extended Parallelism in the Gr6bner Basis Algori thm 65

ACKNOWLEDGMENTS

Many thanks to Jean-Phillipe Vidal for implementing the first parallel
version of the algorithm on the Encore Multimax, and for his encourage-
ment in studying this problem. Also, I want to thank Edmund Clarke for
his support in pursuing this research, as well as help in presenting it to
many visitors at Carnegie Mellon and the research community at large.
Finally, thanks go to David Long, Spiro Michaylov, and Brian Bershad for
their help in revising and editing earlier drafts of this paper.

REFERENCES

1. Robin Hartshorne, Algebraic Geometry: Graduate Texts in Mathematics, Volume 52,
Springer-Verlag, New York (1977).

2. Bruno Buchberger, An Algorithm for Finding a Basis for the Residue Class Ring of a
Zero-Dimensional Polynomial Ideal (German). Phi) Thesis, University of Innsbruck,
(1965).

3. Bruno Buchberger, Gr6bner bases: An Algorithmic Method in Polynomial Ideal Theory,
(ed.), N.K. Bose, Recent Trends In Multidimensional Systems Theory, D. Reidel
Publishing Company, pp. 184-232, (1985).

4. B. Misra and C. Yap, Notes on Gr6bner Bases, Information Seiences, 48:219-252 (August
1989).

5. Jean Philippe Vidal, The Computation of Gr6bner Bases on a Shared Memory Multi-
processor, Technical Report CMU-CS-90-163, Computer Science Department, Carnegie
Mellon University (August 1990).

6. Riidiger Gebauer and Michael M611er, On an Installation of Buchberger's Algorithm,
Journal of Symbolic Computation, 6(2, 3):275-286 (1988).

7. Ernst W. Mayr and Albert Meyer, The Complexity of the Word Problems for Com-
mutative Semiigroups and Polynomial Ideals, Advances in Mathematics, 46:305-329
(1982).

8. Stephen M. Watt, Bounded Parallelism in Computer Algebra, PhD Thesis, University of
Waterloo (May 1986).

9. Bruno Buchberger, The Parallelization of Critical Pair/Completion Procedures on the
L-Machine, Proe. of the Japanese Symp. on Functional Programming, pp. 54-61 (February
1987).

10. Carl Glen Ponder, Evaluation of 'Performance Enhancements' in Algebraic Manipulation
Systems. Ph.D thesis, University of California, Berkeley (August 1988).

11. Herbert Melenk and Winfried Noun, Parallel Polynomial Operations in the Large
Buchberger Algorithm, Computer Algebra and Parallelism, Workshop at the TIM3
Laboratory, U~iversity of Grenoble, France. Academic Press, London {June 1988).

12. Kurt Siegl, A Parallel Version of Buchberger's Algorithm in STRAND88, Technical
Report RISC-Linz 90-17.0, Johannes Kepler University, Linz, Austria (1990).

13. Pascale Senechaud, Implementation of a Parallel Algorithm to Compute a Gr6hner Basis
on Boolean Polynomials, Computer Algebra and Parallelism, Workshop at the TIM3
Laboratory, University of Grenoble, France, Academic Press, London, pp. 159-166 (June
1988).

14. Encore Computer Corporation, Multimax Technical Summary (1986).
15. IBM. Research Parallel Processor Prototype Principle of Operations.

828/21/145

66 Schwab

16. R. Bisiani and M. Ravishankar, PLUS: A Distributed Shared-Memory System, Proc. of
the 17th Ann. Symp. on Comp. Archit. IEEE Computer Society Press (June 1990).

17. Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl,
Proteus: A High-Performance Parallel Architecture Simulator, Technical Report
MIT/LCS/TR-516, MIT, Laboratory of Computer Science (1991).

18. E. C . Cooper, C-Threads, Technical Report CMU-CS-88-154, Carnegie Mellon
University, Pittsburgh, Pennsylvannia (June 1988).

19. R. V. Baron, R. F. Rashid, E. Siegel, A. Tevanian, and M. W. Young, MACH-I:A Multi-
processor Oriented Operating System and Environment, New Computing Environments:
Parallel, Vector and Symbolic. S lAM (1986).

20. David L. Detlefs, Concurrent, Atomic Garbage Collection. PhD Thesis, Carnegie Mellon
University (October 1990).

21. Bruno Buchberger, A Criterion for Detecting Unnecessary Reductions in the Construction
of Gr6bner Bases, Proc. of EUROSAM 79, Lectures Notes in Computer Science, 72:3-21
(1979).

22. A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. "One Sugar Cube, Please"
or Selection Strategies in the Buchberger Algorithm, Proc. of the lnt'l. Syrup. on Symbolic
and Algebraic Computation, ACM, New York, pp. 49 54. (July 1991).

23. W. Boege, R. Gebauer, and H. Kredel, Some Examples for Solving Systems of Algebraic
Equations by Calculating Groebner Bases, Journal of Symbolic Computation, 1:83-98
(1986).

24. 24. Sarita V. Adve and Mark D. Hill, Weak Ordering--A New Definition. The 17th Ann.
Int'L Symp. on Comp. Archit. (June 1990).

25. L. Lamport, How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. 1EEE Trans. on Computers, C-28:690-691 (September 1979).

26. Kurt Siegl, Gr6bner Bases Computation in STRAND: A Case Study for Concurrent
Symbolic Computation in Logic Programming Languages. PhD Thesis, RISC-LINZ,
Johannes Kepler University (November 1990).

