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Abstract

We present a parallel Knuth-Bendiz completion algorithm

where the inner loop, deriving the consequences of adding a

new rule to the system, is multi-threaded. The selection of

the best new rule in the outer loop, and hence the completion

strategy, is exactly the same as for the sequential algorithm.

Our implementation, which is within the PARSA C-2 parallel

symbolic computation system, exhibits good parallel speed-

UPS on a standard multi-processor workstation.

1 Introduction

1.1 Overview

This paper discusses data-structures and algorithms for par-

allel Knuth-Bendix completion of plain term-rewriting sys-

tems [17]. We work under the general restriction that no

change of the completion strategy is allowed when going

parallel. We thus attack a facet of the completion process

which is known to be hard to parallelism, but whose par-

allel form can be used by other versions which follow other
strategies. Our main contributions are that we achieve over-

all speed-ups of about 3 on 4 processors and that we use a
systematic high-level parallel divide-and-conquer approach.

Our work is within the well-defined framework of the

PARSAC-2 parallel symbolic computation system [21] which
also contains a number of parallel algebraic algorithms (cf.

[22]). All parallel constructs are provided by the S-threads

parallelisation environment [23], which is itself built upon a

standard threads (lightweight processes) interface supported

by most modern operating systems. Our hardware architec-

ture is a shared memory multiprocessor such as a typical

parallel workstation. The parallel algorithms use no further

application level assumptions on the architecture (such ~
the number of processors etc. ) and do not contain low-level

code such as explicit task schedulers or assignment of tasks
to processors.

In order to achieve meaningful results we started with
the high-quality sequential implementation of completion in
the ReDuX system [8], which we parallelised gradually.
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Despite these restrictions we obtained good speed-ups on

a standard 4 processor SPARC server. We think that our

results are significant because it had been argued before [31,

37] that the inner completion loop could not be profitably

parallelised and that the parallelisation must include low-
level code such as a specific scheduler. In addition we re-used

most sequential code and worked on a portable interface

relying largely on standard UNIX.
We now proceed as follows. After motivating our work

and relating it to other work in the area, we give an account
of the completion process and of our parallelisation frame-
work in Section 2. Section 3 states our parallel completion

algorithm. Section 4 explains how our sequential term data-

structures were modified to allow their simultaneous use in

multiple threads. Section 5 contains empirical data about
the performance of our parallel completion algorithm. Sec-

tion 6 presents our conclusion of the work.

1.2 Motivation

Completion, both in its term-rewriting and its polynomial

ideal form, is an important computational process [4]. In-
cidentally, the relationship between both forms is by now
well understood [6, 5, 7] so that advances with one version

can frequently be transferred to the other; for parallelisa-
tions this has already been done to some extent in [10, 37].

The completion procedure is however notoriously hard to

parallelism. This is due to several overlapping effects.
First, completion is a chaotic process in the sense that

it is extremely data-dependent and its course of action, and

running time, are impossible to predict from the input data.

Any parallel form must cope with unpredictable and dynam-

ically changing amounts of parallelism and memory, and no
fixed schedules or processor allocations are possible.

Second, completion is extremely strategy dependent and

highly tuned sequential strategies do exist. Since parallel

forms are likely to change the completion strategy, possibly
dependent on dynamic scheduling decisions, it is difficult to
tell what portion of a parallel speed-up or slow-down is to be
attributed to the change in strategy as opposed to parallel
processing per se. It is particularly easy to produce artificial

speed-ups by starting with a bad sequential strategy and

implicitly changing to a better strategy in the parallel form.

Any parallel algorithm should be measured against a high-
quality sequential version and it should gracefully degrade
into this sequential form as processors are taken away from
under it. -

Third, completion is at its core

(cf. [31]) and therefore is inherently

a closure computation
sequential in the sense
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that the n-th generation of consequences necessarily depends

on the n – 1st generation. The amount of parallelism in
the process is essentially limited by the size of the genera-

tions of consequences. This applies particularly to converg-

ing processes. If the number of consequences (and hence

the amount of parallelism) is great, the completion process
may be diverging. If the process converges, the number of
consequences (and hence the amount of parallelism) must
somehow be limited. As we shall see in Section 5, the num-

ber of consequences to be considered is typically small dur-
ing large stretches of a converging completion run, but is

several orders of magnitude larger in the remaining tight

SDOtS.

‘ Still, because completion is an important computational

method, it is interesting to explore to what degree it can be

speeded up in practice through parallelisation, Because of
the many facets of completion, it is important to parallelism

the process at all levels of granularity. Most theoretical work

has so far focussed on extremely fine-grained subproblems
such as parallel matching; practical work has focussed on
the coarse-grained end of the spectrum where it is easier to
get speed-ups. In this paper we attack the middle ground

where speed-ups are already difficult to obtain, especially

when programming at a high level of abstraction.
The most salient advantage of our strategy compltant

parallel completion is that it produces predictable and de-

terministic speed-ups, independent of the completion strat-

egy. If processors are added, the code will run faster ss long
as there is enough parallelism; if processors are taken away

it will gracefully degrade to sequential performance. The

same strategy is followed regardless of the scheduler, the
number of parallel processes, the number of other processes

on the system, or the number of its processors. All parallel
experiments are therefore reproducible. This is important

for evaluating parallel data structures and for investigating
optimal parallelisation grain sizes.

Also, completion attempts can be broken off and restarted
wit h predictable behavior. In addition our fine- grained par-

allelisation speeds up those completion cycles in which a

large number of consequences must be processed. Therefore

interactive completion of new unknown problems is partic-

ularly supported by our method.

1.3 Other Work

Slaney and Lusk [31] have examined the parallelisation of
the general closure computation and have experimented with

coarse-grained outer loop parallelisation. Their findings pro-
vide a useful framework and reference point for work on par-
allel completion, but completion is also significantly more

complex than plain closure (cf. Section 3),

Even more coarse-grained, Avenhaus and Denzinger [1]
run several incarnations of the completion procedure con-

currently. Each uses a different strategy and periodically all
of them compare their progress and exchange useful results.
The combined process frequently exhibits large super-linear
speed-ups due to the strategy refinement.

Yelick and Garland [37] have obtained significant speed-
ups with a parallel completion procedure on a 6 processor
workstation. They concluded that, in order to get good
results, it was impossible to start with a sequential imple-
mentation. They assembled a parallel implementation by
clustering the application of transition rules (cf. Figure 1)
until they had tasks of a suitable grain-size. Then they

lGrobner basis completion always terminates in theory, but fre-
quently does not terminate in practice.

executed the tasks using an application-level scheduler. Op-

timisations, such as locking tasks onto processors, were re-
sponsible for a significant portion of their speed-ups.

Other research has focussed on algorithms for extremely

fine-grained tasks such as parallel matching [28] or rewriting
a term by a set of rules [15]. The parallelism in these pro-
cedures is in all likelihood far below a profitable grain size
on our set of examples.

Our work is placed in between coarse [1] and very fine
grained parallelism [28]. Note that all these results, includ-
ing ours, can in principle be combined to an algorithm that

is parallel on several levels of granularity.

For the related Grobner Basis algorithm this has been

done to some extent by Schwab [30]. He combined the

coarse-grained parallelisation done by Vidal [35] with the

fine-grained parallel polynomial reduction technique devel-
oped by Melenk and Neun [26] and achieved better speed-

ups than each individually. Both Schwab and Vidal use tools
that are similar to ours (viz. a shared memory machine with

C Threads under Mach), but unlike ours their coarse-grained
parallelisation is not strategy compliant. It is not known to
what extent precisely their speed-ups are due to strategy

changes, but their data show significant super-linear effects.

2 Background

2.1 Term Rewriting Systems

We assume the reader is familiar with term-rewriting sys-
tems and completion procedures. For general introductions
to term rewriting systems see [14, 27, 16].

A term is made up of variables, constants and function

symbols (operators). Each operator f has a fixed arity as-

sociat ed with it. Terms are defined recursively: All vari-

ables and constants are terms. lf f is a n-ary operator and

tl, . . . , t~ are terms, then f (tl, . . . . t~) is a term. Nothing
else is a term. The set of constants and function symbols is

called the signature.
The basic operations on terms are instantiation and tests

for (structural) equality, matching and unification. A term

t’is an instance of t if it can be obtained by substituting

terms for the variables in t; we write t’= tu where a is

the instantiating substitution. A term s matches another

term t if all variables in s can be substituted by terms such

that the new instance of s is equal to t.Two terms s and

t unify if their respective variables can be substituted in

such a manner that s and t have a common inst ante. A
substitution p is a most general unifier of s and t if sp = tp
and all other common instances of s and tare also instances
of SLL

A rewrite rule is a pair 1 ~ r of terms. It may be ap-

plied to reduce a term t if t contains an inst ante of 1. Then

t reduces to t’where in t’this instance of 1 is replaced by

the corresponding instance of r. A set of rewrite rules is a
term-rewriting system (TRS) 12. A term rewriting system ‘R

should have the termination property. That is, starting with
any term t there is no infinite sequence of reductions using

rules from %?.. The termination property of a term-rewriting

system is undecidable in general, but there are powerful cri-

teria to ensure this property; see [13] for an overview. A

second important property is confluence. When reducing a

term tby a confluent term rewriting system, the sequence of
the rule applications does not matter: if a term is reachable

by one sequence, it is reachable by any other sequence as

well. A terminating and confluent term rewriting system is

called canonical because it eventually reduces each term to
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a unique and irreducible normal form.

An equation is a pair s + tof terms. Equations may be

applied to terms both from left to right and from right to
left. Thus s ++ t corresponds to the (non-terminating) term

rewriting system {s + t, t -+ s}. A set of equations together

with a signature is called an algebraic specification. A term

completion procedure compiles on success a set of equations

& into a canonical term rewriting system R.. It does so by

repeatedly applying the inference rules in Figure 1 [2] to
a pair (&; ‘R) of equations and rules. It succeeds if starting
with (2; 0) a pair (0; 7Z) can be derived where ‘R is canonical.

Delete:
faJ{s++5};R~

(E;7?,)

Simplify:
(&u{s++*};7?~
(SU{S+)U};R) ift+~u

Orient:
&u{s*t};7?

{t;nu{.+t}; ifs+ta

Compose:
(&;m-J{s+t})
(S;RU{S.-W}) ift+~u

Collapse:
(&;’Ru{s-+t}) if

{

s+~ubyl-+r~l?
(&u{u*t};R) where (s, t)D (1,r)b

Deduce:
(&;77,)

(&u{. ttt};R) ifs+--~u-+~t

~ >~+ is a terminating term ordering.

D is a terminating ordering on term pairs.

Figure 1: Completion inference rules

Let 1 -+ r and 1’ + r’ be two rules where 1 contains a

subterm s which unifies with 1’ such that the most general

unifier of s and 1’ is p. Then lp can be reduced ~y each
of the two rules and the two terms resulting from the two

different one-step reductions are called a critical pair. Knuth

and Bendix [17] showed that a terminating term rewriting

system is confluent iff all critical pairs are confluent and that
only critical pairs must be considered as new equations in

the deduce inference rule of Figure 1,

2.2 Multi-Threaded Symbolic Programming

In traditional operating systems, each process has an ad-
dress space and a single thread of control. The thread of

control is an active entity, moving from statement to state-

ment, calling and returning from procedures. A thread of

control is an execution context for a procedure, much w a

process is an execution context for a complete program. A

threads system allows several threads, i.e. procedures, to be
active concurrently. A threads system can be implemented

at the user level, but most modern operating systems, such

as Mach, Solaris 2.x or 0S/2, provide kernel threads [34].

New threads can be created by a fork operation, Fork-

ing a new thread is similar to calling a procedure, except
that the caller does not wait for the procedure to return.

Instead, the parent continues to execute concurrently with
the newly forked child; on a multiprocessor system this may
result in true parallelism. At some later time, the parent
may rendezvous with the child by means of a join operation
and retrieve its results (if any).

PARSAC-2 [21] is built upon a minimal threads abstrac-

tion called C Threads [12]. C Threads are directly supported

by Mach and (at least to the extent that we need them) can

be easily implemented using Solaris 2 or Posix threads, or,

in our case, using the threads provided by PCR [36] which

in turn needs only System V UNIX.

A C Thread is an execution context for a C procedure,

providing a private register file and a private C stack. For

efficient parallel symbolic computation this is not enough: a

private portion of the heap is needed together with an ap-
propriate (parallel) garbage collection facility. In PARSAC-

2 this is provided by the S-threads system [23] which is a
one-to-one extension of C Threads. S-threads has been de-
signed such that most sequential SAC-2 algorithms will ex-

ecute unmodified as a single S-thread; however the parallel

list-processing context imposes a slight execution penalty.

S-threads has been successfully employed to parallelism a

number of algebraic algorithms (cf. [22]).

The original S-threads memory management scheme dis-

tributes the SAC-2 heap to threads as paged segments of
cells. Heap transfer between threads is possible on the page

level only.
The corresponding S-threads garbage collection method

is very independent of the underlying threads system be-
cause it does not assume that all threads can be stopped by

a user. Its effectiveness relies critically on a novel scheme
called preventive garbage collection [24]. If a functional pro-
gramming style is used and global side-effects are avoided,

then upon procedure exit preventive garbage collection is

able to collect the garbage produced inside the procedure

on its own heap segment.

During Knuth-Bendix completion, however, partial mod-
ifications are made to very large critical pair queues. For rea-

sons of efficiency, these queues are updated via side-effects

and preventive garbage collection is not applicable.
Therefore, the memory management of S-threads was

changed to use the PACLIB [29] scheme. Since it works on

the cell level, cells allocated by one thread can be weaved
into a global data-structure via side-effects. The F)ACLIB
scheme assumes that all threads can be stopped by a user.

Since each S-thread is mapped one-to-one onto a C thread,

limitations of different C Threads implementations may show

up in S-threads. This might include high fork/join times

or a strict limitation on the number of concurrently active
threads. In order to insulate the application from much of

the vagaries of the C Threads system, S-threads was en-

hanced once more to virtual S-threads [25]. VS-threads is
a user-level threads system with lazy threads creation. Its
goal is to provide a virtually unlimited amount of extremely
light-weight threads that are multiplexed on top of kernel-

supported threads with real concurrency. The architecture
allows the programmer to separate logical concurrency of the

algorithm from the real concurrency of the parallel system.

VS-threads has the same semantics as S-threads. How-

ever, VS-threads keeps its own run-queues of micro-tasks,
and it manages a small pool of C threads which it employs

as workers. On each fork, a record containing the fork pa-

rameters is put in the run-queue. These tasks can be asyn-

chronously stolen by idle workers and executed as S-threads.
However, if a join finds that the task was not yet stolen, the
parent S-thread executes the task as a procedure call. Thus

the number of available threads is virtually unlimited, and
at the same time there is a significant reduction in the num-
ber of C-thread context switches through lazy evaluation of
virtual threads. Furthermore, an abundant amount of log-
ical (virtual) parallelism is dynamically reduced to a small
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amount of real parallelism that the kernel can support, and
the grain-size of the remaining threads is increased by exe-

cut ing child tasks as procedures.
An abstract rendition of our parallelisation methodology

wKlch can be described as divide-and-conquer in combina-
tion with virtual tasks, is roughly as in the piece of code in

Figure 2. A given list C of uniform data, e.g. a list of criti-

cal pairs or rewrite rules, is either processed sequentially if

it is too short and the work it represents falls below a pre-
determined grain-size, or it is split into two equal parts Cl,

C7, with C = Cl o C2. In the latter case, me recursive call

is forked in parallel for the list CZ and one recursive call is

done bv the parent thread itself for the list Cl. After com-
puting-the re~ult for

results are merged.

Hard example (Word

{
Word C, Cl, C2,

Cl, the result for Cz is joined and both

args [] )

. . . .
Word argsl [...], args2[. ..], rl, r2;

sthread.t sth;

c = args[Ol; . . . . /* unpack input parameters

if Large(C) /* check grain-size: fork?

{
SPLIT-LIST (C, . . . . &Cl, &C2) ; /* split C

argsl[OI = Cl; . . . /* pack parameters for Cl

args2[Ol = C2; . . . /* pack parameters for C2
/* fork thread sth for C2

sth = sthread-f ork(example, args2, . . . ) ;
rl = example (argsl) ; /* rec. call for Cl

r2 = sthread-join(sth) ; /* join thread sth

r = MERGE-LIST(rl, r2, . ..) ; /* merge results

}
else{ . . . . } /* process C

return (r) ; /* return result

}

*/
*/

*/
*I
*I
*I

*I
*I
*I

*/
*I

Figure 2: Parallelisation scheme

Together with the VS-threads environment, this divide-
and-conquer approach to parallelisation has a most desirable
effect. Tasks generated early on have large grain-sizes and

these are the tasks that are stolen by initially idle workers.

Tasks generated later on have smaller grain-sizes, but those
tasks are likely to be executed as procedure calls, with an or-

der of magnitude lower overhead. Thus we enjoy a dynamic

adjustment of grain-size, with mostly large-grain S-threads
executing concurrently when there is much work to do, and

fine-grain S-threads executing only when workers would re-

main idle otherwise. Note well that all grain-size adjustment
and task scheduling is done automatically within VS-threads
and remains transparent to the application programmer.

3 Parallel Knuth-Bendix Completion

The inference rule characterisation of Knuth-Bendix com-
pletion leaves many decisions open that determine how to
actually perform the completion. A regime which fixes the
order and the manner in which the inference rules are to be

applied is called a completion methodology. Figure 3 shows
a first abstraction of the one we use.

Steps (2)–(8) form an outer loop in which the best equa-
tion is selected and turned into a new rule. Steps (4)-(8)
contain inner loops in which new equations are derived and
old rules and equations are reduced. The exact order in

which equations are turned into rules is of the utmost im-

portance both in the term case and for polynomials. This is
called the completion strategy and in our case it is encapsu-

lated in the exact method after which the minimum of the
equations is determined. Minute changes in this strategy
can have huge effects (positive or negative) on the duration
of completion. E. g. we must find the minimum of the equa-
tions (critical pairs) in & w. r. t. an ordering which is total on

the equations. Simple quasi orderings (like those based on

counting the symbols in each pair) are not sufficient: Chang-

ing the ordering of pairs in & which are equivalent w. r. t. the

quasi-ordering (e. g. have the same number of symbols) may

result in a different completion behaviour.

This completion methodology was chosen in ReDuX be-
cause the completion strategy can be fixed easily in proce-

dure Fmd.Mm and because ordering decisions (which may
be very difficult) are minimised which favours interactive
use.

The procedure can be parallelised on the level of the

outer loop (adding equations concurrently), on the level of

any of the inner loops, or below (e.g. by parallelising the

reduction of a single term). As a general rule of thumb,

the greater the grain-size of parallel tasks, the greater the

efficiency of the parallelisat ion. It is therefore clear that,

given a choice, the outer loop rather than the inner loops

should be parallelised; this has been argued by Slaney and
Lusk [31].

However, when equations are added concurrently by sev-
eral tasks, before the consequences of the last addition are
known, the completion strategy depends on the order in

which the tasks are scheduled which is in general irrepro-
ducible and beyond the control of the programmer. In par-

ticular, it is virtually certain that the same code will execute

a different strategy when run on a different number of pro-

cessors. There are many reasons to keep the strategy fixed

between completion runs. Completion of a new TRS fre-
quently succeeds only after a suitable ordering and strategy

have been developed in several (aborted) completion exper-

iments. Having the strategy change uncontrollably between

the experiments would be disruptive. Furthermore, it is dif-
ficult to pinpoint the reason for speed-ups (or slow-downs)
if strategy effects interfere with parallelisation effects.

We therefore parallelised on the inner loop level, since

low level parallelisation is too fine-grained for our examples
in our environment.

The algorithm COMPLETE can of course be further im-

proved if the following loop invariant is enforced in step (2):

All rules in 7? and equations in & are fully (inter) reduced.
Then collapse, compose and simplify apply only to those

rules and old equations which are reducible by the newly
oriented rule 1 + r. Also only simplified equations may be

deletable. A further improvement which is also implemented
in our plain completion procedure is a simple application of
the subconnectedness criterion [20] which allows to remove

all equations in $ which were derived from a collapsed rule.
To enforce a common strategy in the sequential and the

parallel case we need step (3) aa a synchronisation point.
I.e. after each round, & and 7? must be the same for the two
versions of the algorithm. Experimental experience showed

that 90% of sequential completion time is spent in steps (6)–
(8) (cf. section 5). The time spent in steps (2) and (3) is
generally much below the minimal amount needed for an
effective parallelisation. If we parallelised steps (4) and (5)

we would face the following difficulties: (a) we must either
synchronise the use of 7? or (b) we may use outdated copies
of Z which might lead to a different strategy because 1? is
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73 i- COMPLETE(&, >)

[Completion procedure.

&is a set of equations and > is a terminating term order-
ing. Then upon success 7? is a canonical term rewriting

system with =R = =&.]

(1) [Initialise.] 7?:= 0.

(2) [Stop?] if& = @then return 1? and stop.

(3) [Orient.] E:= F’ind-Min(&); a + b := First(t’);

S := Red(t); if a > b then {1 := a; r := b}
elsif b > a then {1 := b; r := a} else stop with

failure;

R:=7?U{1+T’}.

(4) [Collapse.] while the collapse-inference rule ap-
plies do

(S;7?) := Collapse((&; ‘R)),

(5) [C$~~ose.] while the compose-inference rule ap-

(s;7?) := Cor?zpose((s; k!)).

(6) [Deduce.] Compute all critical pairs P of 1 -+ r
and rules in ‘R. & := &U Pa.

(7) [Simplify.] while the sirnpli~rinference rule aP-

plies do

(&; 7?) := szmplzfy((&; 73)).

(8) [Delete.] while the delete-inference rule applies
do

(s;73) := Delete((t; n));
cent inue with step 2. ❑

0Here we identify pairs and equations.

Figure 3: Algorithm COMPLETE

not confluent yet. Therefore we decided to parallelism only
steps (6)–(8) of the completion.

For the parallel procedure we reorganised step. (6)-(8)

into two independent procedures:

1. computing a list of non-trivial normalised critical pairs

between a copy of 1 + r and R. and

2. updating the old equation list w. r. t the subconnect-
edness criterion, simplification and deletion.

Both procedures are started simultaneously and each is

parallelised using the divide-and-conquer scheme sketched

at the end of Section 2 in Figure 2. Note that during the

divide and conquer processes the minimal elements of the

resulting critical pairs can be found in parallel too. Then

only the minimal pairs of the two procedures need to be

compared in step (3).

4 Data Structures for Parallel Term Rewriting

In this section, we first explain the most important aspects of
the data structures of the sequential ReDuX System which
were first designed in [18] and then we describe the modifi-

cations necessary for the parallel implementation.

ReDuX terms are represented as directed acyclic graphs
(DAGs) with unique representation of variables (and con-
stants). The representation of variables and operators is

baaed on scoped property lists. The ‘most local’ properties

of an object occur at the front of the list and the ‘global’

properties are at its end. Therefore the argument list of an

operator occurrence is stored in the first field of the list de-
noting this term. The symbol (e. g. the operator, constant,

variable) together with all signature information is stored

in later fields. Thus the signature information of operators,

constants, and variables can be shared by all occurrences of
these symbols. Likewise, each incarnation oj a variable (i. e,

a variable occurring in a rule or term) starts with a binding

field representing the binding property. This field indicates
whether the variable is currently bound (by a substitution)

and if this is the case the field points to the bound term. This

accounts for an implicit representation of substitutions and

allows for efficient equality tests, matching, unification and

is particular well-suited for efficient normalisations [19, 33].
Data structures for parallel programs should support easy

access to shared resources from several parallel tasks. The

access to these resources should be granted with as little

synchronisation overhead as possible. The solution to this
problem is very easy if we can enforce a functional program-

ming discipline which does not allow the modification of
(shared) input parameters.

During the parallel completion procedure described in

the laat section the rule set 7? is shared by all parallel threads.

This creates a problem because efficient algorithms for the

base operations like matching, unification and subterm re-

placement temporarily modify the rules as they are applied
to terms by changing the binding property of variables. The

tasks we want to perform in parallel are normalisations and

critical pair computations.

Since the minimal grain size for efficient parallelisation
is much larger than the time spent in a single normalisation

or critical pair computation, we perform several normalisa-

tion (or critical pair computation) tasks in parallel. In the
sequential normalisation and critical pair computation pro-
cedures all side effects are hidden to the outside by undoing

all temporary substitutions and thus these procedures have
a functional behaviour. However in a parallel environment

also temporary side effects which modify global shared mem-

ory must be hidden from other threads with access to the

same global data.

In particular, we must change the representation of sub-

stituted variables. This is realised by introducing an addi-
tional level of indirection for variable bindings: Each vari-

able in a rule (or term) is labelled in its binding field by
a fixed integer which is unique within the rule and indexes
an entry in a binding table. The table associates a variable
(index) with (a pointer to) a term. The table is now a pa-

rameter to the matching and unification procedures, It is

realised aa a local array declared in the normalisation and
critical pair computation procedures calling Match or Unify.

Thus the table is allocated on the C stack in private thread

memory.

Figure 4 depicts the situation where the variable z (with

index 3) of the term ~(z, g(z)) is bound to j(y, z). Instead

of a direct pointer from X3 to the bound term ~(y, z) as it is
conveniently used in the sequential implementation, we now

consider variable bindings relative to the context in which
the variable is used. Thus terms of a rule consist of term
schemes rather than actual terms and they ‘materialise’ only
when they are applied (or used in a context like critical pair

computations).

With this technique we can avoid copying global data if
only one global object i~ umd (~ub~tituted) at a time in a
parallel thread. In case a thread accesses and modifies the
variable bindings of more than one global item at a time, all
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Figure 4: Variable bindings for t{z3 + f(y, z)}

but one of the items must be ‘coloured’ in order to associate

one binding table (of corresponding ‘colour’) to each item.

Since ‘colouring’ is a real change of global data, items which
are to be coloured must be copied.

Luckily, during the Knuth-Bendix completion this situ-

ation occurs only in the critical pair computation process
when the subterms of two rules are to be unified. We de-

cided to always work with a (single) coloured copy of the
newly oriented rule 1 + r and the original rules in 7?,. Note
that this does not lead to extra copy-overhead compared to

the sequential procedure if we copy the newly oriented rule

because it must be copied anyway to obtain the critical pairs

of the rule and itself.

Using the modifications described above, we could reuse

all software for the basic operations from the sequential sys-
tem after changing the macros to access the variable bind-

ings.

5 Experimental Results

We implemented the parallel completion procedure on a

Solbourne 5/704 with 48 Mbyte of main memory and four

33 MHz SPARC processors on a common bus. The Solbourne
operating system is an enhancement of SunOS 4.1.1 to allow

for parallel processing but it does not support kernel threads.

We implemented the C Threads interface on top of the user
level PCR environment [36] and loaded VS-threads [25] on

top. For our experiments we ported ReDuX to the SACLIB

[3] and PARSAC-2 environments. ReDuX was translated
to C using the ALDES-to-C Compiler produced by Michael

Sperber [32].
In addition to plain completion, ReDuX contains ex-

tensions for inductive completion and for rewriting modulo
equational theories (such as associativity-commutativity).

Our parallel code still contains the data-structures and hooks
necessary for these extensions.

Table~ 1 and 2 and Figure 5 prewmt the result~ (time~

in see) for several completion experiments. Columns 2 of

Tables 1 and 2 show the times of the sequential ReDuX im-
plementation and columns 3–6 give the timings for the par-

allelised code run on 1–4 processors. Comparing columns 2
and 3 reveals a 3–770 penalty for using the parallel environ-
ment. According to our experiments the following grain sizes
resulted in the best speed-ups: A single thread performed
the normalisation of at least two equations or computed the
critical pairs of a new rule and at least six old rules.

Figure 5 shows the runtimes of all experiments normalised

seq. parallel on

TRS 1 proc. 2 proc. 3 proc. 4 proc.

P6 111.8 119.6 I 72.9 I 56.1 47.4

P7

D16

Z22
Z22W
z22t

M14
M15

423.7

25.3

83.8
1432.6
3037.4

551.2
753.8

434.8

26.9

87.0
1470.7

3145.8
580.5
790.1

262.2

15.7

50.4
832.2

1729.0

343.8
468.3

192.7
11.8

36.5

584.4
1215.1

253.5

352.1

158.6

10.1

30.0
461.1

960.9
211.7
287.4

Table 1: Total completion procedure (times in see)

I II seq. I parallel on

TRS

m
Z22 79.8
Z22W 1381.5
z22t 2971.3
M14 501.2
M15 687.0

1 proc. 2 p;oc.

109.7 I 63.8

404.1 233,9
25.7 14.6
82.9 46.2

1418.2 782.0
3075.4 1662.9

530.1 294.5
722.3 401.9

3 proc.

46.7

165.0
10.8
32.5

537.0
1147.0
204.6
286.1

4 proc.

38.6

131.5
9.0

25.8
415.7
893.2
162.4
219.0

Table 2: Parallelised part of completion (times in see)

to one with regard to the sequential implementation which

is denoted as ‘O’ processors.

The overall speed-ups for the total completion (Table 1)
are 1.5–1.8 for two, 2.0-2.5 for three and 2 .4–3. 2 for four pro-

cessors compared to the sequential implementation. Looking
only at the parallelised part (Table 2), we get speed-ups of

1.7–1.9 for two, 2.4–2.7 for three and 2.8–3.4 for four pro-
cessors compared to one processor.

The TRSS for experiments P6 and P7 are taken from
[11] and that for Z22 is taken from [1]2. D16 contains

the three group equations and the relations of the dihe-

dral group (a, b; a16, bz, ba = tib). Z22W is the same group
as Z22 but specified using an explicit binary group oper-
ator and an inversion operator. Z22t is the extension of

2Note that we used different strategies than the other authors.

Runtimes .ormal ised to 1 [complete code)
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Figure 5: Normalised overall completion times
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Figure 6: Experiment Z22

Z22 with an additional generator. M 14 and M15 are in-
stances of a scalable TRS Mn with n + 1 unary operators

and one binary operator and the equations g(g(z, y), j(z)) +

9(%9( Y,~)), 9(9(% Y), ~) ++ 9(~,~), 9( fi(~), Y) + fi(Y))
g(Zj~(fi(fi+lmodn (Z)))) 4+ ~i+lmodn(~) for O < i < n – 1.

Figure 6 describes the experiment Z22. The topmost

plot shows a completion profile: The upper graph denotes
I&l (y-axis) and the lower graph is I’RI (y-axis) which are

measured at step 2 in each round (x-axis) of the outer loop

of COMPLETE. The profile given for Z22 is in our expe-
rience typical. We see that only a rather small portion of

the completion procedure provides the potential for good
inner loop parallelisation. Therefore we cannot expect op-

timal speed-ups. The other plots show runtimes, speed-ups

and efficiencies. Again ’0’ processors denote the sequential

implementation. The graphs marked with (t) describe the

whole completion process and the graphs marked with (p)

describe the prallelised part.

For a detailed description of the experiments and addi-
tional experimental data the reader is referred to [9].

6 Conclusion

We have shown that the inner loops of the completion proce-
dure can be parallelised with parallelised speed-ups of up to

three on a four processor workstation. Our programs use the

fork/join paradigm in a threads environment. In our imple-
mentation, the parallel inner loops do not affect the comple-

tion strategy; they can be used in outer loop parallelisations

which may give greater speed-ups but do affect the strategy.

Our results present some hope that similar speed-ups are

also possible for the inner loop of Buchberger’s algorithm.

Our speed-ups can probably be improved further by (1)

specializing the code for plain completion, (2) swit thing to

an operating system with native threads, (3) writing an ap-

plication specific scheduler, (4) using our parallel inner loop
within multiple parallel outer loops.
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