
JUC2Computation of Gcd-free Basis and
Application to Parallel Algebraic Numbers Computation.

T. Gautier and J.L. Roth

Institute for Scientific Computation
LMC-IMAG

ETH-Zentrum IFW
Institut Fourier, BP 53X

CH-8092 Ziirich, Switzerland
100, rue des Math4matiques

Email: gautier@inf.ethz.ch
38041 Grenoble Cedex 9, France

Email: Jean-Louis. Roch@imag.fi

Abstract

We establish that the problem of computing a gcd-free basis
for a set of polynomials is in AfC~ for any arbitrary field F.
This leads to a proof that arithmetic for a simple algebraic
extension is in N@. This result is applied to improve the
complexity of the parallel deterministic algorithm to com-
pute the Jordan normal form of a n dimensional matrix in
time 0(log2 n).

1 Introduction

The computation of the Jordan normal form of a matrix has
many applications such M computing matrices functions,
solving matrix equations or dfierential equations and sys-
tems. The Jordan form has been widely studied from a the-
oretical point of view [10], aud sequential polynomial time
algorithms are known [20, 14, 13]. From a parallel point of
view, the first fast parallel algorithms [17, 13] are random-
ized. Those results have been improved in[21, 22] where
algorithms are given to compute the Jordan normal form in

parallel arithmetic time O (log3 n) using nQl) processors for
any field F.

The later algorithm [22] is bssed on algebraic number
computation in a parallel D5 [7, 8, 9] srithmet ic manner
and computes the symbolic Jordan normal form w defined
in [17]. The main tool involved in parallel D5 arithmetic is
the computation of gcd-free bases [16] of polynomials. Using
al orithms proposed in [17, 1], this computation requires

tO log3 n) arithmetic steps which dominates the cost of the
computation of the Jordan form in [21].

This paper is devoted to a new algorithm that computes
a gcd-free basis in parallel arithmetic time O (log* n), for
any field F. The method we propose, based on a WSak-
representation of polynomials, improves the algorithm [16]
by moving costly gcd operations outside the recursive step.

PA.S(.’0 97 Wailea, Maui, Hawaii. USA
0-89791-95l-3/97i7

Our algorithm proves that the problem is in N@. This re-
sult is applied to algebraic number computation in a parallel
D5 arithmetic manner. A parallel model of computation is
presented and we give bounds on the complexity of simulat-
ing it with PRAM arithmetic over a field F. We conclude
this paper by reviewing result on computing Jordan normal
form and we demonstrate that this problem is in Ncj.

2 Fast Gcd-l%e Basis Computations

Let F be an arbitrary commutative field. The computa-
tional model used in this section is the arithmetic PRAM
model. We say that a problem lies in NC! [4, 11] if there
exists a parallel algorithm which solves it in time is bounded

by O(log~ n) using nQ1) processors for all inputs of size n.

2.1 Introduction

This section aims at proving that computation of a gcd-j%ee
bosis for a set of polynomials P = {Pl,.. ., P. } in F[X] with
deg(~i Pi) = d is in NC~ when d is considered to be the size
of the input.

We recall bssic definitions from [16] which define a gcd-
j%ee basis of a set of polynomials.

Definition 1 . Let P= {Pi,, P~}, euch P, E F[X]. -4
set Q = {Ql, . . ., Q~} is called a gcd-free basis for P if

i)

ii)

In section 2.5 we present our algorithm to compute a
gcd-free basis in two main steps :

Coarse factorization : from the set P we compute a set
7? of pairwise relatively prime factors which we call a
pseudo gcd-free basis for P. Such a baais can be quickly
computed using a weak-representation of polynomials.

Highest power common divisor decomposition :
thii step computes a gcd-free basis Q for P from
7? by determining factors from which we compute a
decomposition satisf@g criterion ii) of definition 1.

31

Thk steps are in NC* compared to the degree d of the
product of the Pi.

Let us define some notations used in the following com-
plexity analysis. We use F to denote the algebraic CIG
sure of the field F. A parallel algorithm is of complex-
ity O(t(n), p(n)) if it requires parallel time” O(t (n)) using
O@(n)) processors for all inputs of size n.

Using [6] O(log d, dlog log d) is the complexity to
multiply two polynomials. The complexity of divi-
sion is [2] O(log d, d log d). Using algorithm [3] the
complexity of computing gcd of two polynomials is
0(log2 d, d’ log log d/ log d). We denote by M(d), D(d)
and G(d) the numbers of processors in this last three
complexities. Over an arbitrary field, the complex-
ity of com uting the gcd of k polynomials [11, 3] is

r0(log2 d, kd log log d/ log d). We assume that this last com-
plexity can be written aa 0(log2 d, kG(d)).

Let us now to present the three main tools used to prove
the complexity and the correctness of this algorithm.

2.2 Multiple multiplicity flee decomposition

The results in this section are a short presentation of the
results in [21, 22].

Given two polynomials P and Q in F[x], we can write
P = p x gcd(P, Q) x w(P, Q), where ~(P, Q) is the greatest
divisor of P relatively prime to Q and p is a polynomial
which is relatively prime to w(P, Q) such that all irreducible
factors (in a splitting field) of p are divisors of gcd(P, Q).

Proposition 1 [21] Given two polynomials P and Q of de-
gree at most d in F[x], the parallel wmplezity of computing
w(P, Q) is 0(log2 d, G(d)).

Proof. The proof is based on the fact that ~(P, Q) =
P/ gcd(P, Qd). •1

Proposition 2 [21] Given a polynomial P of degree d in
F[x], the multiple multiplicity fiwe decomposition (up to a
wnstant) of P consists of d polynomials PI, P2, ..., I’d such
that for all i the roots of multiplicity i in P are roots of
multiplicity i in Pi (in a splitting field), and P = c ~~=1 Pi,
c ● F. The complexity of the computation of all the Pi is
O(log2 d, d2G(d)) .

Proof. Letus recall the proof in [21]. For any root A of P,
the multiplicity of A in P is the order of z in P(r + A). If
we rewrite P as

where the a~ are polynomials in F[zl, then for any fixed i,
the roots of P which are roots of ao,. . ., ai-1 but not of ai
are the roots of multiplicity i in P. Defining

qi =gcd(P, aO1. ... ai), O~i~d,

the roots of q; are roots of P with multiplicity in P strictly
greater than i. Thus, Pi = P/w (P, ~(qi-1, qi)) for d 1 S
i s d is the multiple multiplicity free decomposition of P.

Using the algorithm for the gcd of many polynomi-
als in [11, 3] for q; and applying proposition 1 for prime
part computations, the computation of multiple multiplic-
ity free haa complexity O (log2 d, d’ G(d)), which concludes
the proof. ❑

2.3 Highest power common divisor

In this section we consider the computation of the highed
power of a common divisor for a ~ of polynomials. ‘This
will be used during the second step of the tinal algorithm.

In the following of part 2, let 7J = {PI,... ,Pn} be a set
of n polynomials in F[x] with deg Pi = di. We assume that,
for each 1< i ~ n, all roots of Pi have the same multiplicity
mi. Let C be a common divisor of PI,..., Pn of degree c
such that all roots of C have the we multiplicity m. In
a splitting field, we can write C = C’”, where all roots of
~ are of the same multip~city equal to one. Our goal is to
compute the polynomial C’ = ~g E F[z] with the gr~atest
g c N such that ea@ Pi can be writ~en as Ci x (Cg):i,
ti~ 1 where gcd(Ci, Cg) = 1. We call Cg the highest power
wmmon divisor of C for the set P.

Let P = ~~=1 Pi and d = deg P. Then we have the
following proposition,

Proposition 3 Given C, the computation of ~g ● F[z],
g c IN and all ti e N can be done usin only gcd operations

4in F[z] with complexity O(log’(nd), nd G(d)).

Proof. Since for each 1 < i < n, all roots of Pi have
the same multiplicity m;, there exists u; E N - {O} such
that gcd(Pi, Cdi) = ~“i . Moreover, for all 1 ~ i < n,
~ui is in F[z and is computed with parallel complexity

\0(log2 d, G(d) .
Using proposition 2, for each 1 ~ i ~ n, we can compute

~i by a multiple multiplicity free decomposition of @4. Thw
step has complexity O(log d(log d + log n), nd2G(d)).

By hypothesis, each integer O < tii < d has O(log d)
bits. So the computation of the n Bezout’s coefficients Jivi,
fi; E {–1, 1}, SUChthat ~~=1 di~;ui = gcd(ul, . . ~,uk) = g,
where O ~. vi s d, can be done using the extended gcd
algorithm m [18] (see also [19, 15]). The running time is
O(log dlog n) using O(n log log d Af(log d)) processors, Note
that g is the maximal power in the sense previously detined.

The computation of each (@’i)Vi, 1 ~ i ~ n, can be done
in O (log’ d, n M(d2)) by repeating squaring algorithm. By a
binary tree of multiplication if& = 1 or division if di = -1,
the computation of

i=l

h= complexity O(log dlog n, nM(d2)).
Thus, using the fact that 10 d + log n = log d), the

f \algorithm haa the complexity O log2(nd), nd2G(d) .
❑

2.4 Pseudo gcd-free basis computation

Before presenting our final algorithm, this section introduces
an algorithm to compute a pseudo gcd-fkee basis from whkh
a gcd-free basis is easily recovered using previous sections.

Detkition 2 Let P = {P,, ~~-, P-} a set of polynomials
in F[z], and di = deg Pi, 1 ~ i ~ k. Let P = ~=lPi
and d = deg P. A pseudo gcd-free basis Q for P is a set
{QI,.. , Q~ } of polynomials in F[z] which satisfies the cri-
teria:

i) For all 1 ~ i < j ~ m, gcd(Qi, Qj) = 1.

ii) In a splitting field, for each mot r of P there ezists
j G IN such that r is a root of Qj.

“*

iii) For all 1 ~ i ~ n, 1 < j s m, either QjlPi or
gcd(Pi, Qj) = 1.

Let us remark that criteria ii) and iii) of the previous
definition correspond to a weak form of the criterion ii) of
definition 1, in which no assumptions are made about the
decomposition o P; into products of polynomials Qj.

Studying the algorithm in [16] to compute a gcd-free ba-
sis, at moat two points can be improved. To avoid costly gcd
operations in the recursive merging step, we will work with
a weak-representation of polynomials. This weak represen-
tation allows us to move all gcd operations to the beginning
and to the end of the algorithm [16]. Moreover, dkcard-
ing unit elements at each step is done by divisibility tests
instead of primality tests: elimination of unit element is im-
portant to ensure that the number of polynomials handled
during the computation remains polynomial.

Definition 3 Let P and B be two polynomials in F[X] such
that any root of B is root of ~. A weak representation of
B relative to P is a pair [B; B], when. B = {B],. ~ ,Bk},
Bi 6 F’[x], 1< i s k, E E F[z] and satisfying:

● i,Jgcd(B) = gcd(Bl, , ~k) = B,

Pl~fi + (Vb E ~,X - blP * not (X - b! gcd(A, B)))
s gcd(A, B) = 1

because any root of A or B is a root of P by definition of
weak represent ation.

Conversely, it is sufficient to remark that if gcd(A, B) =
12then any irreducible factor of P divides either A and thus
B (since B is relatively prime to-A) or B and thus ~.

Besides, for ~y root a E F of P, we have V.(P) s
max{V’(~), V.(B)} $ Va(~E). So Pl~@. n

The next proposition proves that two pseudo gcd-free
bases of P can be merged by an arithmetic circuit of depth
O (logz d) in which pnmality teats (gcd operations) are re-
placed by divisibility tests.

Proposition 5 Let d = {A:, i = l..~} and B =
{Bi, i = 1..s} be two gcd-j%ee bases of P. For all 1 ~ i ~ r,
~et[Ai; ~i] be a weak-representation of Ai relative tOP, and
for 1< j s s [Bj; ~j] be a wenk-reprwentation of 13j relative
to P.

Under the hypothesis of proposition ~ for each wed rep-
resentation polynomial, the set C of weak representation
polynomials dejined by

● ii) gcd(B, ~) = 1, {[di uBi; ~i6j], Vi,j, 1 s i ~ r,q S j < s : not(Pl~i#j)]

● iii) Va E ~, (P(a) = O) * ((B x ~)(a) = O)

In such a representation the set of roots of P is split into
two subsets: the one corresponding to the roots of B and
the other one to the roots of polynomials in ~.

Note that the such a representation is not unique. Given
a set of polynomials {PI, Pm} and P = Hi Pi, for all
1 ~ ; ~ n a weak representation of Pi relative to P could be
[{pi}; w(P, Pi)k] for auY k 21. Likewise a weak represen-
tation of w(P, Pi) relative to P could be

[{W(P, pi)}; pi] or [{FP(P, Pi)}; P/p(P, Pi)].

Under some assumptions about the multiplicity of roots
of P into two polynomials A and B, the following proposi-
tion leads to the replacement of primality tests by divisibility
tests. F@ a polynomial P in F[z], V.(P) is the multiplicity
ofa GFin P.

Proposition 4 Using the notation of definition 3, let A
and B be two polynomials in F[x] with weak representations
[A; ~] and [B; ~] dative to a polynomial P-in F[:]. If for all
roots a E-F of A and for all roots b E ~ of B, V.(A) ~ V.(P)
and Vb(B) ~ Vb(P), then

P@~ e gcd(A, B) = gcd(A, B) = 1.

Proof. Let a E F be any root of P. Due to the definition of
weak representations of A and B, gcd(A, ~) = gcd(B, @ =
1. Thus, we have

X – al~~ + not (X – algcd(A, B)). (1)

is a pseudo gcd-free basis of P. Morwver, each wed reprw
sentation polynomial in C satisfies the hypothesis of propo-
sition 4.

Proof. Let Cll and CU be ~o polynomials of C wit! w@-
representations [Ail U Bi] ; Ail Bjl] and [Ai2 U Bi2; Ai2Bj2].
Then gcd(C/1, CIZ) = gcd(Ail, Bil, Ai2, Bi2) = 1 because
Ail = gcd(Ai]) and Aiz = gcd(A:z) are relatively prime by
definition of the pseudo gcd-free basis A.

Let a any root of P; then there exist two unique integers
i and j such that a is a root of both Ai = gcd(Ai) and Bj =
gcd(Bj). SO gcd(Ai, Bj) is not equal to one and following
proposition 4, [Al U Bj; ~i~j] is in the set C. Moreover, due
to the uniqueness of i and j, there exists a unique integer 1
such that a is a root of Cl.

It is evident that elements of the set C are weak represen-
tations of pairwise relatively prime polynomials. Moreover,
each element in the resulting basis satisfies the multiplicity
hypothesis of proposition 4.

Thus, C is a pseudo gcd-free basis for the set {A UB}. •!
Proposition 5 allows us to prove the next lemma:

Lemma 1 The computation of a pseudo-gcd free basis for a
set P is in JMC~and its complexity is 0(log2(nd), nd2G(d)).

Proof. The algorithm consists in reamsively merging two
b= using weak-representation polynomials.

At the beginning we consider the set of the following
pseudo gcd-free bases:

{[{R };PP{P, R)], [{PAP,pi)}; p/PP(p, pi)], 1< i <~}

At the end of the algorithm, we must recover polynomials
from their weak-representation. Thu is done by computing
the gcd of many polynomials using algorithm [11, 3].

The complexity of the algorithm is dominated by the
complexity of this last step.

using (1), we obtain:

33

The number of elements in the resulting basis is at most
d the degree of P. The depth of the binary tree of merg-
ing is O(log n), at each step the degree of polynomial ~i~j
squares. Thus the final degree of this polynomial is at most
O(nd) the complexity in the recursive merging at each step
is bounded by O(log(rui), dD(nd)).

The number of polynomials handled in weak-
representation growths = the degree of polynomials
~~Bj . Thus, the complexity of computing at most
d gcd of nd polynomials of degree d is bounded by
O(logz(nd), nd2G(d)), which concludes the proof. c1

2.5 Fast gcd-free basis algorithms

We can now prove the first main theorem of th~ section :

Theorem 1 . Let 7J = {P,,..., P~} be a set of polynomi-
als in F[z], P = ~ Pi and d = deg P, such that for all i,
all wets of Pi have the same multiplicity. The complexity
oj wmputing a gcd-jree basis Q = {Q I,..., Qm } for P is
0(log2(nd), nd’G(d)) .

Proof. First we compute 7? = {RI, I?k} a pseudo
gcd-free basis for P using proposition 5. Let Ii =
{j such that RilPj} and denote by PI, the subset of P SUCh
that R divides Pj, for all j E Ii. For any fixed i, 1 ~ i < k,

(ki)} theusing proposition 2, we can compute {r~l), ”.. , r~
multiple multiplicity free decomposition of Ri. By defini-
tion, for any 1 < j ~ ki, all roots of r~) have same mul-

tiplicity j and ri‘i) is a common dkiaor for the set PIi. So
using proposition 3, we can compute for all j, 1 ~ j < ki

-~) of r:) for the set PIi jthe Klghest power common dMsor ri

the multiplicity g:) of roots of F!) and the power ty)6 IN.
-J t:)

Finally, for all Pj G PI,, we CaUwrite Pj = Ci,j x (r’i)

with ci,j and ?:) relatively prime.
So, we have built a gcd-free basis for P. In fact, let

Q={F~),l~isk,lSj<ki}

and m = card Q. By construction, for 1 ~ i ~ n, 1 ~ j ~ m,
we have Pi = Ci,j x Q~i,~ where C’i,j and Qj are relatwely
prime polynomials. Setting ea,j = O if Qj does not divide
Pi, we can write

*

j=l

where C~ E F,
Due to the operations involved in the computation of

the pseudo gcd-free baais, the complexity of this algorithm
is O(logz(nd), nd2G(d)). c1

The next theorem treats the general case:

Theorem 2 . Let P={ Pi,.. , P~} be a set of polyno-
mials in F[x], P = fl Pi and d = deg P. The wmplezity
of computing a gcd-jfee basis Q = {Ql, ..., Q~ } for P is
O(log’(r@, nd2G(d)) .

Proof. First of all, for all 1 < i ~ n, we compute
‘ki)} the multiple multiplicity free decomposition@: I),pi

of Pi. Then, a~plying theorem 1, we compute a gcd-free bw
sia for the set ~~), 1 < i ~ n, 1 ~ j ~ ki}. The complexity
for this two steps is O(log’(nd), nd2G(d)). c1

3 Parallel A1gebraic Number Computations

In this section we define a model of computation, called the
A-PRAM, for parallel algebraic number computations. Our
approach is to represent algebraic numbers over arbitrary
commutative fields F like the D5 method [7, 8, 9, 5]. The
main aim of this section ia to give bounds on the simulation
of the A-PRAM model over an arithmetic PRAM over F
in the following sense given a parallel program A on arith-
metic PRAM over F with parallel complexity O(t,p), our
goal is to give bounds on the complexity of the evaluation
of A for any entries of size n on an arithmetic PRAM over
F(A), for all roots A of a polynomial P in F[X] of degree d.

3.1 Introduction to D5

Using D5, computing in ~ reduces to the construction of a
tower of subfields

FcFlc... cFnc~

such that each Fi is a simple algebraic extension of Fi - 1 by
a root .Ai of a univariate polynomial Pi with coefficients in
Fi_ 1 [8]. Fi is denoted Fi-l (Ai). The common way that
algebraic extensions appear in computer algebra is to rep
resent elements of Fi as polynomials in F~_1[A]/P(A). The
problem ia that generally Pi is not irreducible and charac-
terizes not only one root Ai but a set of roots. Therefore,
the result of a computation may not be the same for all the
roots of Pi, typically for the boolean outputs ~f 7=O gates
(i. e. test to zero) of an arithmetic circuit over F. As ~ ex-
ample, let A denote a root of P = Z5 – 2X3 -z’+ 2 in Q, the
algebraic closure of the field of the rationals. The output of
the gate A’ – 2 L O may be true or false, depending on the
chosen root A of P. ThM leads to an automatic discussion,
called splitting in D5, which reduces to a partial factorizw
tion of P. Notice that this partial factorization does not
require polynomial factorization but only polynomial gcd
computations, and thus is in NC .

In the sequential implementation of D5, the test A2 –
2‘= O of the previous example returnx “true if A is a root of
Z2 – 2“ else ‘false if A is a root of Z3 - l“.

The evaluation of a sequential program using algebraic
number arithmetic of D5 leads to a splitting tree[5, 9] such
that each node corresponds to a split, the root node corre-
sponds to the beginning of the evaluation and each edge is
attributed by definition of handling roots.

Splitting that occurs permits a parallel evaluation of the
program by separate threads of control since the comput-
tiona involved in each subtree are independent. A basis for
the parallel implementation can be founded in [5], where
implementation of continuations are studied. As a result,
several independent threads of control are created and may
be mapped onto ditTerentprocessors as on a shared memory
parallel computer. Let us remark that parallelism of the
evaluation only occurs due to the splitting into independent
subcases of algebraic numbers.

The evaluation of parallel program using D5 arithmetic
has been studied in [12], both horn theoretical and prat-
ical points of view. In addition to the need of continua-
tion, the parallel case requires synchronisation mecaniama.
In the following A-PRAM model of computation, this few
ture is incorporated in the model: it can be implemented
in a lazy fashion using inherent synchronisation of parallel
programs [12] or by using a weak coherency management
protocol for global shared memory.

34

3.2 Parallel D5

In fact, in the framework of parallel complexity, psmdlel
evaluation must consider the problem of synchronizing si-
multaneous splitting due to the explicit parallelism of a pro-
gram. Consider the previous example and iwmme that two
independent tests AZ - 2‘= O and A – 1?= O are evaluated in
parallel. In such a case, we must ensure globaf definition
of splitting that occurs. We will show that it relies on the
computation of a gcd-free besis.

The next section describes a model of computation that
treats simultaneous splitting and gives bounds on parallel
complexity evaluation of program using a parallel D5 arith-
metic. Because of the possible exponential growth of repre-
sentation when considering a tower of k extensions due to
arithmetic over polynomials with k variables, we focus on
the problem of simultaneous splitting during evaluation of a
parallel program over a simple algebraic extension.

3.3 Parallel model of computation

The A-PRAM model is based on a set of d synchronous
arithmetic PRAMs over F[X] and is designed to handle com-
putation over F(A), for all roots of a polynomial P in F[X]
of degree d. Four main features are detined:

●

●

●

●

an ezecution contezt which contains the definition of
the root A,

a function, called split, which has as a side effect the
modification of the execution context,

a synchronous mechanism that manages simultaneous
splits,

a dump mechanism that copies the state of a machine
to another machine.

Initially, one PRAM runs the parallel program. Other
PRAMs are reserved for the continuation of the evaluation
after splittings.

Like the D5 representation, the representation of an
element of F(J) is an element of F[X]/P. We assume that
arithmetic operations (+, –, x) on F[X]/P are unit cost,
as are the inversions (1/) and “equal to zero” tests (?= O).

More precisely, the function split can be used to
implement the ~ O operator. Let Q(A) (Q E F[X]) be
the result of an arithmetic expression which is to be
compared to zero. By the way that D5 operates, the result
of Q(A) 7=O is true if A is root of PI = gcd(Q, P) and ~alse
if A is root of P2 = w(P, Q), the prime part of P relative
to Q. Given such a test Q(A)’= O, the A-PRAM calls
split(PI, P2) which returns either 1 or 2 depending which
new definition (F’l or P2) hss been chosen. The side ef-
fect is the modification of the execution context by PI or P2.

If different operations split are performed simultaneously
by different processors, the synchronization mechanism en-
sures consistent modification of the execution context and
staxts new evaluations of other machines (see figure 1).

-------------------- ,

-------- ------ --------------------- . -------------- -..

~ a,.‘. ~.,\ .
..4 ,’.

I“”&
., ,!

,,
,,
,,
,1
,!
,,
,,
,,
,,
,,
,!
,,
,,

m ;,::,,,,::,,
,!

‘.t’l I
... ,’

,4 .’., ,,.

“&
..........:,,.::,,,,::
m‘.,’. .. .’

+ .’

““”&...
------------------ ---------- L------- , ------------------

Figure 1: Illustration of continuation processes of multiple si-
multaneous splits.

3.4 Managing simultaneous splittings using gcd-
free basis

In case of simultaneous splitting, let (@i), P\i))i=l.,~ be the
set of the 2k polynomials that correspond to the k splittings
of P. To recover a consistent definition for the execution
context from these polynomials, we compute a gcd-free ba-
sis.

Let (Qj)jsl,.~ be a gcd-free basis of the set

(P~i), P~i))~=l. Since, for each i, P;’) and P~i) are relatively
prime and they detine the same set of roots aa P, then for
all 1 < j < m, either Qj(P~i) or QjlP~i). Always one of
these cases occurs.

Each polynomial that occnrs in a splitting allows the
defiition of a common execution context such that all local
split function calls can return a correct value for this context.

Continuing the example given in the introduction of this
section, the splitting polynomials of the test tI = A2 – 2‘= O
are P~l)(z) = Z2 – 2 (and the test is true) and P$)(z) =
z’ – 1 (and the test is false). Likewise, for the t~t tz=

A– 1 % O, the polynomials are P~2)(z) = z – 1 and P~2)(z) =
z’ -X2 – 2s – 2. A gcd-t%e basis of these olynomials is

1’Ql(z) =Z2–2, Q2(Z) =x–l, Q3(z) =Z +x+1 SUCh
that P(l) = Ql, P~l) = Q2Q3, P~2) = Qz and P~2) = Q1Q3.

For each polynomial Qi, values of the teats t1and t2 are:

{

tl = true

{

tl = false
tz = false

if Q1(A) = O,
t2 = true

If QZ(,4) = O,

{

tl= false
and

tz= false If Q3(A) = O.

3.5 Simulation complexity

During simultaneous splittings, several caaea are generated.
Each subcase runs with an independent esecution contest on
a new parallel machine.

The costs to simulate the A-PRAM on a PRAM over
F are decomposed into the coat of gcd-free basis comput~
tions, costs to recopy the computation state, and the cost
to support polynomial arithmetic.

The problem that we consider is the following. Let A be
a parallel program on PRAM over a field H and let O(t, p)

35

be its complexity for any input of size n. Let t. be the
greateat number of additions or subtractions performed by
one processor and let pa be the greateat number of processors
that simultaneously execute such an operation. Define tm
and pm (respectively t$ and pt) for multiplication operation
(respectively for tests or divisions). Then t isbounded by
ta+tm+tt ~dpbypa+pm+~i.

Theorem 3 The time of the ezecution of the progmm A on
the A-PRAM model, with A a root of P of degree d in input,
is bounded by

O(to + trnlog d + t, log’(dp,))

using a number of prvcessor bounded by

O(p.d + pmM(d) + ptti2G(d) + td2p).

Proof The main point concerns the case of test for zero op-
erations. Other costs comes from complexity operations for
realbing arithmetic operationa on F[z]/P on an arithmetic
PRAM on the field F.

Using the algorithm given by theorem 1, the cost to com-
pute a gcd-free basis of 2pt polynomials from pt simultaneous
splittings ia O(log’(dpt), ptd2G(d)) .

The number of registers to be recopied for the contin-
uation mechanism is bounded by O(tdp): the work of the
parallel program times the number of coefficients in each
polynomial,i. e. d+ 1 memory registers for each polynomial.
The complexity to recopy its registers on at most d machines
is O(log(tdp), td2p) . c1

3.6 Application to Jordan normal form computa-
tion

As direct consequence of the previous theorem, we can de-
duce the next corollary.

Corollary 1 The complexity to compute the symbolic Jor-
dan normal of a matriz of onier n over a field F is in NC%.

Proof. For the complete proof, please see [21]. The main
idea of the aIgorithm [21, 22] is to split the characteristic
polynomial of the input matrix using its geometric structure
(generaUzed null-space computation). The last step refines
the splitted polynomials using a gcd-free baais computation
and gives the parallel time complexity of the algorithm.

Thus, using our gcd-fke basis algorithm we improve the
complexity of thw algorithm to Nc% instead of NC%. ❑

4 Conclusions

Deahng with algebraic numbers is a central problem in com-
puter algebra. We have given complexity bounda concerning
parallel D5 arithmetic in the case of conjugated roots of a
same polynomial. These bounds are based on gcd-free ba-
sis computations and we improve known results. Futur work
will be to improve parallel work complexity of the algorithm
with the same time complexity.

Acknowledgments

The authors thank Gilles Viilard for useful discussions.
The content of this paper has been studied during the

PhD thesis of the first author, which was bound to LMC-
IMAG, Grenoble.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

36

BEN-OR, M., KOZEN, D., AND RMF, J. The complex-
ity of elementary algebra and geometry. JCSS 92, 2
(1986), 251-264.

BINI, D., AND PAN, V. Improved Parallel Polynomial
Division. SIAM J. Comput. 22, 3 (1993), 617-626.

BINI, D., AND PAN, V. Polynomial and Matriz Com-
putations. fundamental Algorithms, vol. 1. Birkhiiuser,
1994.

BORODXN,A. On relating time and space to size and
depth. SIAM J. Comput. 6, 4 (1977), 733-743.

BROADBERY,P., G6MEZ-DfAZ, T., AND WATT, S. on
the Implementation of Dynamic Evaluation. In Proc.
of ISSA C’95 (Montr6al, Canada, 1995), ACM Press.

CANTOR, D., AND KALTOFEN, E. On fiwt multipli-
tion of polynomials over arbitrary rings. Acts Inf. 28,
7 (1991), 697-701.

DELLA DoRA, J., DICRESCENZO,C., AND DUVAL, D.
About a new method for computing in algebraic num-
ber fields. In Proc. EUROCAL ’85 (1985), LNCS 204,
Springer Verlag, pp. 289-290.

DUVAL, D. Diverses questions relatives au calcul formel
avec des nombres algdbriques. .Th??se de Doctorat
d’Etat, Universit6 Joseph Fourier, Grenoble, lbnce,
1987.

DUVAL, D. Algebraic Numbers: An Example of Dy-
namic Evaluation. Journal of Symbolic Computations
(1994), 429-445.

GANTMACHER, F. Tlvforie des Matrices. Jacques
Gabay, 1957.

GATHEN, J. v. z. Parallel Algorithms for Algebraic
Problems. SIAM J. Comput. 13, 4 (1984), 802-824.

GAU~~ER, T. Calcul Fomael et ParullWsme : wncep-
tion du systdme GIVARO et application au cnlcul clans
les extensions alg~brique.m PhD thesis, Institut N-
tional Polytachnique de Grenoble, fiance, 1996.

GIESBRECHT,M. Nearly optimal algorithms for canon-
ical matrix forms. SIAM J. Comp. 2?4 (1995), 948-969.

GIL, I. Contribution d l’aighbm linkaim formelle.
Formes nomaales de matrices et applications. PhD the
sis, Institut National Polytechnique de Grenoble, 1993.

ILIOPOULOS,C. Worst-cma complexity bounds on al-
gorithms for computing the canonical structure of inite
abelian groups and the Hermite and Smith normal
forms of an integer matrix. SIAM J. Comput. 18, 4
(1989), 658-669.

KALTOFEN, E. Sparae Henael liing. In PTVC. EU-
ROCAL ’85, vol. 2 (1985), vol. 204 of LNCS, Springer-
Verlag, pp. 4-17.

KALTOFEN, E., KRISHNAMOORTHY,M., AND SAUN-
DERS, B. D. Fast Parallel Computation of Hermite
and Smith Forms of Polynomial Matrices. SIAM J.
Alg. Disc. Meth. 8, 4 (oct. 1987), 683-690.

[18] MAJEWSKI, B., AND HAVAS, G. The complexity of
greatest common divisor computations. In Algorithmic
Number Theory (1994), vol. 877 of LNCS, pp. 184-193.

[19] MAJEWSK1, B., AND HAVAS, G. A solution of the ex-
tended gcd problem. In Prac. of ZSSAC’95, Montreal,
Canada (1995), ACM Press, pp. 248-253.

[20] OZELLO, P. Calcul e~act des fownes de Jordan et de
I%benius d ‘une matrice. PhD thesis, University Scien-
tifique Technologique et M6dicale de Grenoble, 1987.

[21] ROCH, J., AND VILLARD, G. Parallel computations
with algebraic numbers, a case study: Jordan normal
form of matrices. In PARLE’9J, Athens Greece (1994),
VO1. 817 of LNCS.

[22] ROCH, J., ANDVILLARD, G. Fast parallel computation
of the jordan normal form of matrice. Parallel Process-
ing Letters 6, 2 (1996), 203–212.

37

