
Communication Efficient Matrix Multiplication on Hypercubes

Himanshu Gupta P. Sadayappan

Department of Computer and Information Science

Ohio State University

Columbus OH 43210

Abstract

In this paper we present an efficient dense matrix multi-

plication algorithm for distributed memory computers with
a hypercube topology. The proposed algorithm performs

better than all previously proposed algorithms for a wide

range of matrix sizes and number of processors, especially
for large matrices. We analyze the performance of the al-

gorithms for two types of hypercube architectures, one in
which each node can use (to send and receive.) at most one

communication link at a time and the other & which eaeh
node can use all communication links simultaneously.

Keywords Matrix multiplication, distributed algorithms,

interprocessor communication, hypercubes, 3-D grids.

1 Introduction

Dense matrix mnltidication is used in a varietw of armlica-

tions and is one of ~he core components in mky sc&tific

comput at ions. The standard way of multiplying two mat ri-

ces of size n x n requires O (n3) floating point operations on
a sequential machine. Since dense matrix multiplication is

comput ationally expensive, the development of efficient al-
gorithms for large distributed memory machines is of great
int crest. Matrix multiplication is a very regular computa-
tion and lends itself well to parallel implementation. One

of the efficient approaches to design other parallel matrix or
graph algorithms is to decompose them into a sequence of

matrix multiplications [3, 9].

One of the earliest distributed algorithms proposed for
matrix multiplication was by Cannon [2] in 1969 for 2-D

meshes. Ho, Johns son, and Edelrnan in [8] presented a vari-
ant of Cannon’s algorithm which uses the full bandwidth of
a 2-D grid embedded in a hypercube. Some other algorithms

are by Dekel, Nassimi, and Sahni [3], Berntsen [1] and Fox,

Otto, and Hey [4]. Gupta and Knmar in [5] discuss the
scalability of these algorithms and their variants.

In this paper we propose two new algorithms for hyper-
cubes. The algorithms proposed in this paper are better
than all previously proposed algorithm for a wide range of
matrix sizes and number of processors.

The rest of the paper is organized as follows. In Sec-
tion 2 we state our assumptions and discuss the comrnuni-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice Is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

cation models used. In Section 3 we discuss the previously

proposed algorithms. In Section 4 we present the new al-
gorithms. In Section 5, we analyze the performance of the

algorithms on hypercubes for three different communication
cost parameters. We present our conclusions in Section 6.

2 Communication Models

In this paper we analyze the performance of the various algo-
rit hms present ed for hypercube architectures. Throughout

this paper, we refer to a 2-ary n-cube as a hypercubc and all
the logarithms used are with respect to the base 2. We con-

sider hypercube maebines with one-port processor nodes as

well as machines with multi-port processor nodes. In case of
the one-port hypercube architectures, a processor node can

use at most one cormmmication link (to send and receive)

at any given time while in the multi-port architectures a
processor node can use all its communication links simulta-

neously.

The time required for a processor node to send a mes-

sage of m words to a neighboring processor node is mod-
eled as t~ + tw m, where t,is the message start-up cost and

tw is the data transmission time per word. All the algo-
rithms presented in this paper run on a virtual 2-D or 3-D
grid of processors, Any collective communication pattern in-
volved in an algorithm presented in this paper is along a one-

dirnensional chain of processors. In case of a virtual 2-D or
3-D grid embedded into a hypercube, eaeh one-dimensional

chain of processors is in itself a hypercube of smaller di-
mension [6]. In our analysis of communication overheads

we use some of the results presented by Ho and Johnsson

in [7] for optimal broadcasting and personalized communi-
cation in hypercubes. Table 1 summarizes the results used
in this paper. It should be noted here that the reduction

communication, in which a data set is reduced by applying

operators such as addition or subtraction, is the inverse of
the broadcast operation with respect to communication,

3 Distributed Matrix Multiplication Algorithms

In this section we present the well known distributed algo-

rithms for multiplying two dense matrices A and B of size
n x n. The characteristics of the algorithms presented in

this and the following section have been summarized in Ta-
ble 2 and Table 3.

SPAA 94-6194 Cape May, N.J, USA
@ 1994 ACM 0-89791-671 -9/94/0006..$3.50

320

Hypercubes

Communication type

t, term
tw term

One-port’ Multi-portZ (Af ~ log IV)

One-to-All Broadcast log N M log N M

One-to-All Personalized Broadcast log N (N - l)M [N -l)ivf

log N

All-to-All Broadcast log N (N - l)M (N –l)M

loiI N

All-to-All Personalized Broadcast 10E N Y’= N

Table 1: Optimal broadcasting and personalized

words.

E

Aoo Aol Aoz -403

Alo AII A12 A13

A20 A21 A22 A23

communication on an N-processor hypercube. M is the message length in

4430 A31 A3z A33

Figure 1: Matrix A partitioned into 4 x 4 blocks,

3.1 Algorithm Simple

Consider a hypercube of p processors mapped onto a fix &
2-D mesh. Matrices A and B are block partitioned into @

blocks along each dimension as shown in Figme 1. The
sub-blocks Aij and B;j are mapped onto processor Pij, the

processor in the i:h row and jth column, O s i, j < ~, of the

2-D mesh. Thus, each processor initially has ~ elements of

each matrix.

The algorithm consists of two communication phases. In

the tirst phase, all processors in each row independently en-
gage in an all-to-all braadcant of the sub-blocks of matrix

A among themselves. In the second phase, all processors

in each column independently engage in an all-to-all broad-
cast of the sub-blocks of matrix B. At the end of these two

phases, each processor pij has all the required sub-blocks of

matrices A and B to compute the block Cij of the result
matrix.

Each phase of the algorithm involves an all-to-all broad-

cast of messages of size ~ among W processors in each row

01 COl~ and hence takes ts log@+ tw $(1 – >) time

_JL(l -*)on a one-port hypercube and ta log @+ tw ~l.g ~

on a multi-port hypercube (see Table 1). On a multi-port
hypercube architecture, the two commsmication phases can

occur in parallel. This algorithm is very inefficient with re-

spect to space as each processor uses ~ words of memory.

3.2 Cannon’s Algorithm

This algorithm is designed for execution on a virtual 2-D
grid of processors. Matrices A and B are mapped naturally
onto the processors as in Algorithm Simple. Cannon’s al-
gorithm executes in two phases. The tirst phase essentially

skews the matrices A and B to align them appropriately. In

this phase sub-block Aij (Bij) is shifted right (down) Circu-

larly by i (j) positions along the row (column) of processors.

Thus Aij(Bij) is transferred to pi,(j+i)rnod~ (Pfi+ j)mod~,j).

The second phase is a sequence of (W – 1) sluft-multlply-

add operations. During each step Aij (Bij) is shifted right
(down) circularly by one processor and each processor mul-

tiplies the newly acquired sub-blocks of A and B and adds

the result to the sub-block Cij being maintained.

Consider a 2-D grid of processors embedded into a phys-
ical processor hypercube. The communication time re-

quired for the initial alignment on a one-port hypercube is

2 log W(t, + t~ ~) while the second phase takes 2(@ –

1) t.+ 2 ~ (@ – 1) tw time as each shift-multiply-add opera-

tion takes 2(t,+ tw$).Incase of the multi-port hypercube

architectures, both the A and B sub-blocks can be commu-
nicated in parallel, halving the time required. The greatest

advantage of this algorithm is that it uses constant storage,

independent of the number of processors.

3.3 Ho- Johnsson- Edelman Algorithm

The second phase of Cannon’s algorithm has the same per-
formance on 2-D tori and hypercubes. It can be fiuther

improved on hypercubes by using the full bandwidth avail-
able, provided the sub-blocks of matrices A and B are large
enough. Such a variant was proposed by Ho, Johnsson, and

Edehnan [8]. This algorithm is different from Cannon’s only

for multi-port hypercubes. We present here only a brief
sketch of the algorithm taken horn [9]. See Algorithm 1.

The reader is referred to the original paper for details.

On a virtual W x @ 2-D grid embedded into a P

processor hypercube, the data transmission time for the

shift-multiply-add phase of Cannon’s algorithm is improved

by a factor of log@ the total number of communication
links on any processor along either grid dimension. This al-

gorithm is applicable only when each processor has at least
log @ rows and columns, i.e., when ~ > log@

3.4 Berntsen’s Algorithm

In [1], Berntsen presents an algorithm for a hypercube. Con-

sider a processor hypercube where p s ns la. Matrix A is
split by columns and B by rows into ~ sets. Each set

1Using a Spanning Binomial Tree (SBT)
2Using 10gN trees concurrently

321

Al~orit hm 1: Ho-Johnsson-Edelrnan

Initial Distribution Each processor Pi,j contains Aij
~d Bij .

Program of processor Pi,j

for k = 1, log p
f

Let jk = (k’ bit ofj) .2k

Let ik = (k’h bit of i) .2k

Send Ai,l to Pi,jeik

Receive Ail/ from Pi,j ~ik
/* ~ is the bit-wise exclusive-or operator ‘/

Send Bi,j to pjh@i,j

Receive Bi,j from Pjk ~i,j

end for

Let gl,k be the bit position in which log {pbit gray

codes, left shifted by 1 bits, of the kth and (k + I)th

numbers differ.

fork =1, @

Cij = 6’ij + Aij X Bij
forall 1 = O, logfi– 1

Send A~,j to pi j@~9#,k

Receive A~,j from pi,j82.1,.

/“ where A~,j is the l’h group of

COIUIIIIIrI of Ai,j */

Send B~,j to pi@2sl,k,j

Receive B~,J horn pi~zst,k ,j

/“ where B~,, is the l’h group of rows of Bi,j */
end forall

end for

Figure 2: Ho- Johnss.on-Edehnan Algorithm

contains & rows or columns. The hypercube is divided
.-

into @ subcubes each consisting of P213 processors. The

m ‘h subcube is delegated the task of calculating the outer

product of the mth set of columns of A and the mth set

of rows of B using Cannon’s algorithm, Each set of rows

(columns) of B (A) is block partitioned as shown in Figure 1
into ~ x ~ blocks for mapping onto the respective sub-
cube processors. Each sub cube calculates the outer product

using Cannon’s algorithm, with each processor performing
a submatrix multiplication between submatrices of A of size

~ x ~~ md rmbmatrlces of B of si~e * x &. After

computation of these @ outer products, an all-to-all re-

duction phase occurs among the corresponcl.ing processors

fkom each subcube, which takes blog ~+ t. %(1 – -&)

time on a one-port hypercube. On a multi-port hypercube
architecture the data transmission time can be reduced by
a factor of log W as compared to a one-port hypercube by
using the techniques presented in [7] (see Table 1) so that

2
—(1 - +).the time required is tslog W + tw ~ 10gl~

One of the drawbacks of this algorithm is that the algo-
rithm starts with A and B distributed differently and the
result obtained is not aligned in the same manner as A or
B.

3.5 DNS Algorithm

Dekel, Nassirrri and Sahni in [3] presented an algorithm for

virtual 3-D meshes which uses n3 processors, We consider

here the more generalized version of the algorithm which

can use upto n3 processors by allowing a processor to store

a sub-block rather than an element of a matrix, Consider a

3-D grid of dimensions ~ x W x M embedded into a hy-
percube of p processors. Initially matrices A and B are both

mapped naturally, block partitioned, onto the z = O plane
(the shaded region in Figure 3) such that processor Pi,j,o

contains the sub-blocks Aij and Bij. The algorithm can

be viewed as consisting of three phases. The first phase in-
. .

volves each processor pi,~,o transrruttrng Aij to P.,j,j an d Bij

to Pa,j,i. The second phase consists of two one-to-all broad-

casts among sets of +@ processors with pi,j,j broadcasting

Aij along the @rection to pi,. ,j and pi,j,i broadcasting Bij
along the Airection to P.,j,i. At the end of this phase,
each processor pi, j ,k muhipfies the sub-blocks A,k ~d Bkj

acquired during the first two phases. The last phase is an

all-to-one reduction (by addition) which occurs along the

>direction.

On a one-port hypercube architectme, each of the initial

two phases takes 2 log fi(t, + ~ tw) time. The point-

to-point communication of the su~-blocks of A and B in the
first phase cannot be overlapped on a multi-port architecture

as they both occur along the Airection. However, in the
second Dhase the two one-to-all broadcaa ts can occur in Dar-.
allel. The reduction phase, being the inverse of a one-to-all

broadcast of messages of size +$, takes log @(t,++& tw)

time on a one-port hypercube and log fits + ~ tw time

on a multi-port hypercube (see Table 1). -
In [3], Dekel, Nassimi, and Sahni also propose an al-

gorithm, a combination of the above basic DNS algorithm
and Cannon’s algorithm, which calculates the product of
the submatrices using Cannon’s algorithm on a square sub-
mesh of processors, saving overall space. More formally, the

hypercube is visualized as a W x ~ x ~ 3-D grid of su-
pernodes where each supernode is a square mesh of W x ~

processor elements involved in computing the product of the

submatrices of A and B using Cannon’s algorithm. The

two new algorithms presented in the next section have been

shown to be better than the basic DNS algorithm in terms of

the number of message start-ups as well as the data trans-

mission time and hence the combination of any proposed

new algorithm with Cannon’s algorithm would yield an al-
gorithm better than the combination algorithm of the DNS
and C-on. Hence, we present only the basic algorithms
in this paper.

4 New Algorithms

In this section we present two new algorithms designed for
hypercubes. In order to explain the rationale behind the
algorithms, we present them in various stages.

4.1 3-D Diagonal Approach

We first present a 2-D version of the 3-D Diagonal scheme
and then extend it to the 3-D Diagonal algorithm in two
stages.

3Each set is a one-dimensional row of processors forming a 2-ary
subcube.

322

Figure 3: DNS Algorithm

A*oA*

[

A*2

E

. ..0

(a)

(0,0)

1

4 *(q.l:

1

B.+

B1 *

B7 *

u
(b)

~

‘.
“ ~i

2 ““.,
I *,i “.

1
‘.,

‘.,/)j holds A . .
~j A*j, ~i ,, ~~ ,;

‘., J,
‘.

(c)

Figure4: 2-D Diagonal Algorithm (a) Partitiotig of A(b)

Partitioning of B (c) The two phases of the algorithm

4.1.1 2-D Diagonal Algorithm

Consider a 2-D processor mesh of size q x q, laid out on the
z-y plane. Matrix A is partitioned into qgroups of columns
and matrix B is partitioned into q groups of correspond-

ing rows as shown in Figure 4. Initially, each processor

Pj,j, on the diagonal of the mesh) cont~s the ~th group

of columns of A and the jth group of rows of B. The set
of processors p.,j is delegated the task of computing the

outer product of the columns of A and rows of B initially
stored at pj,j. This isachieved byhavingpj,j scatter (one-

to-all personalized broadcast) the group of rows of B and

broadcast (one-to-all broadcast) the group of columns of A

along the direction. After computing the outer products,
each processor doing equal amount of computation, the last

stage consists of reducing the results by addition along the
@rection and the result matrix C is obtained along the
diagonal processors, aligned in the same way as matrix A
was initially distributed. See Algorithm 2.

The above algorithm can be easily extended to a 3-D

mesh embedded in a hypercube with A* ,i and Bi,. being ini-
tially distributed along the third dimension, z, with proces-
sor p;,i,k holding the sub-blocks Ak,i and Bi,k. The one-to-

Algorithm 2: 2-D Diagonal

Initial Distribution: Each diagonal processor p~,i

holds the ith group of columns and rows of the

matrices A and B respectively.

Program of processor P:,j

If (i = j) then
Broadcast A.,j to all processors P.,j

/* A.,j is the jth group of COIUIIUM of A,

initially stored at pj,j ‘/

fork= O,q–1

Send Bik to Pk,j

/* Bi,. is the iih group of rows of B, initially

stored at pi,i and Bik is the kth group of

COIUIXUM of Bi,. */
end for

endif
Receive A. ,j ~d Bji horn Pj,j
Calculate I.)i = A.,j X Bji
Send 1.,i along the @irection to pi,i

If (i = j) then

fork =0, g–1
Receive ~.,i from Pi,k
C.,i = C*ti + I.,i

endfor

endif

Figure 5: 2-D Diagonal Algorithm

all personalized broadcae t of Bi,. is then replaced by point-
to-point communication Of Bi,k fIOIII Pi,i,k tO Pk,i,k, followed

by one-to-all broadcast of Bi,h by ph,i,k along the z-direction
to pk,;,s. Apart from the initird communication of blocks of

B, all other communication patterns along with their direc-

tions remain the same as in the 2-D diagonal scheme.
One of the problems with the above discussed 3-D ex-

tension of the 2-D diagonal approach is that the initial dis-
tribution assumed is not the same for matrices A and B.

One obvious way to get around this problem is to fist form
the transpose of matrix B before executing the actual algo-

rithm. In the next section, we present a variant of the above
discussed 3-D diagonal scheme which computes the matrix
product of matrices with identical initial distribution with-

out any additional communication overhead.

4.1.2 The 3-D Diagonal Algorithm

A hypercube consisting of p processors can be visualized as

a 3-D mesh of size ~ x ~ x ~. Matrices A and B are

block partitioned into p
z/3 blo& with @ blocks ~ong ‘a&

dimension as shown in Figure 1. Initially, matrices A and
B are assumed to be mapped on to the diagonal mesh cor-

responding to the 2-D plane z = y (the shaded region in
Figure 6), with processor Pi,i,k conttig the blo~s Ak,i

and Bk,i. In this algorithm the 2-D plane v = j has the re-
sponsibility y of calculating the outer product of A* ,j, the set

of columns initially stored at the processors pj,j,k, md Bj,*,
the corresponding set of rows of B. The algorithm consists of
three phases. Point-to-point communication of Bk,i by %,i,k

to pi,k,k forms the first phase of the ~gorithm. The second

323

1.Fm,[Phz$e (Point10Pointcomrn,)

2 .SecmdPhase (Oneto All BrodmsL5)

3 .’IWHIPhase (All m onemdwtio.)

S“b$mPL<&h andc refef to thelmll’iccx
involvedin tie rqediw pha.w,

Figure 6: 3D Diagonal Algorithm

Algorithm 3: 3-D Diagonal

Initial Distribution: processor pi,i,k contains Aki

and Bka

%OglY17?J Of p?’0Ce8~Or pi,j,k

If (i = j) then

Send Bki tO pi,k,k
Broadcast Aki to au processors P.,j,k

endif

If (j’ = k) then
Receive Bji horn Pi,i,k

Broadcast Bji toallprocessors Pi,j,.

endif

Receive Akj horn pj,j,k ad Bji COM Pi,j,j
Calculate Iki = Akj X Bji
Send lki to pi,i,h

If (i = j) then

forl=O, fi-1
Receive Ik,i fkOIn f%,l,k

~k,i = Ck,i ~ Ik,i

endfor
endif

Figure 7: 3-D Diagonal Algorithm

phase consists of one-to-all broadcaata of blocks of A along

the Airection and the newly acquired blocks of B along the
direction. b other words, processor pi,i,k broadcasts Ak,i

to P.,i,k and every processor of the form pi,h,h broadcasts
~~,i to pi,h,x. At the end of the second phase, every pro-
cessor p;,j,k has blocks Ak, j and Bj,i. Each processor now
calcnlat es the product of the acquired blocks of A and B.

After the computation stage, the reduction by addition of

the result submatrices along the @rection constitutes the
third and the final phase. The result matrix C is obtained

aligned in the same manner as the source matrices A and B.

See Algorithm 3.
The fist phase of the 3DD algorithm, being a point-to-

point communication phase of messages of size p%, takes

log W(t. + tW ~) time on a one-port hypercube archi-

tecture. On a one-port hypercube architecture the second
phase, which consists of two one-to-all broadcasts, takes
twice as much time as the first phase. On a one-port hyper-
cube the third phase, an all-to-one reduction of messages of

Figure 8:
p=8.

Figure 9:
p=8.

Ao,f(o,o) Ao,t(o,I) Ao,t(I,o) Ao,f(l,l)

4,t(o,o) -4,j(o,I) A,m,o) Al, f(l,l)

Partitioning of matrix A for 3-D A1l.Trans when

Partitioning of matrix B for 3-D A1l.Trans when

size &, can be completed in the same amount of time as

the first phase. On a multi-port hypercube the one-to-all
broadcasts of A and B blocks in the second phase can occur

in parallel and the data transmission times of each commun-
ication pattern can be reduced by a factor of log ~ (see

Table 1),

4.2 3-D All Approach

In this section we present another new algorithm designed

for hypercube architectures. The algorithm presented in the

previous section forms the basis of this algorithm. First we
present an algorithm which assumes difFerent initial distri-
butions for matrices A and B (transpose of B aligned with

A) and then in the following subsection present the variant
which works with identically aligned matrices.

4,2.1 3-D A1l.Trans Algorithm

This algorithm is essentially the 2-D Diagonal algorithm ex-
tended to the third dimension, where the columns (rows)

of A (B) are mapped onto each column of processors per-

pendicular to the z = 0 plane (as opposed to only the diag-
onal columns). Consider a 3-D grid having ~ processors
along each dimension embedded into a hypercube. Matrix

A is partitioned into @ x p=f 3 blocks as shown in Figure 8,

while B is partitioned into p2 /3 x @ blocks as shown in Fig-
ure 9. Each processor Pi,j,k contains sub-blocks Ak,j(i,j) and

~t(i, j) ,k, where f(i,j) is defined as (i o ~ + j). We present

an algorithm which computes A x B given this initial dis-
tribution. In this algorithm, the transpose of matrix B is
initially identically distributed as matrix A.

The algorithm consists of three phases. In the fist phase,
each processor pi,j,k sends Bf(i,j),k tO Pk,j,k, i.e., each row

of B is scattered along the direction in the Z-Z plane it
initially belongs. In the second phase, all processors engage

in an all-to-all broadcaat of the sub-blocks of matrix A they
contain, along the *direction and processor Pk,j,k engages
in a one-to-all broadeastof the sub-blocks Bf(*,j),k, acquired

in the first phase, along the Airection. During the fist two

324

Algorithm 4: 3-D A1l.’Trans

Initial Distribution: Each processor p;,j,b contains

A~,f(i,j) ~d ~t(;,j),~. See Fig. 8 & 9.

%Ogl’aTn Of prOCe8S01’ pi,j,k

Send Bj(i,j),k to pk,j,k
If (i = k) then

f.rl=O, fi-l

Receive Bf([,j),k from pl,j,k

Broadcast Bj(*,j),k along the .d.irection to all
processors pi,j,.

endif

Broadcast Ak,~(i,j) along the ~direction to all

processors p.,j,k

Receive Bt(.,j),i from Pi,j,i
fori=O, ~–1

Receive Ak,~([,j) hm Pl,j,k

1= ‘-’(Ak,f[i,j) x Bt(l,j),i)Calculate Ik,i = ~l=o

forl=O, ~–1

Send I~,i to Pi,l,k
/* I~,i is the 1“ group of COl~S of Ik,i when

rb,i is spfit into @ groups by cohrrms “/

forl=O, fi-1

Receive ~~,i from pi,l,b

Cb,f(i,j) = Cb,t(i,j) + ~~,i
endfor

Figure 10: 3-D A1l.Trans Algorithm

phases, each processor acquires ~fi sub-blocks of both the.-
matrices A and B. Specifically, each processor pi ,j,k acquires

Bt(.,j),i ~d Ab,f(.,j). Hence each processor pi,j,k can com-

pute Ik,i where matrix I, the outer product computed by

the plane y = j, is assumed symmetrically partitioned along

rows and columns into ~ x ~ blocks. The last phase

ensures that the result matrix C is obtained aligned in the
same way as the source matrix A by reducing the corre-

sponding blocks of the outer products by addition along the
@irection. Hence the last phase involves an all-to-all re-
duction along the @irection.

The first phase, being an all-to-one communication, the

inverse of one-to-all personalized broadcast, along the m

direction, takes t410g ~ + tw+& (1 – +) time on a one-

port hypercube. The second phase consists of a one-to-all

broadcast of sub-blocks of B containing p+ data elements,

which takes log *(t, + tw~)time and an all-to-all broad-

cast of sub-blocks of A containing ~ data elements, which

takes t,log ~ + tw~ (1 – ~) time on a one-port hyper-

cube. The last phase is an all-to-all reduction phase, which
is the inverse of an all-to-all broadcast of messages of size

~, and takes t,log @+ tw~(1 — ~) time on a one-port

hypercube. On a multi-port hypercube architecture the two

broadcasts in the second phase can occur in parallel and

the data transmission times can be reduced by a factor of
log ~, the total number of communication links on every
node along a virtual grid dimension, by using the techniques
presented in [7] (see Table 1).

4.2,2 The 3-D All Algorithm

One possible drawback of the 3-D A1l-Trans algorithm is
that the initial distributions required for the matrices A and

B are not identical. In this subsection, we present the 3-

D All algoritbrn, a variant of the 3-D A1l.Trans algorithm,

which starts with identical initial distributions of the matri-

ces A and B and computes the result matrix C with even

lower communication overhead,

Following the same notations as in the previous subsec-
tion, in the 3-D All algorithm each proceszor Pi,j,k initially

cent ains sub-blocks Ak,~(!,j) and Bk,~(i,j), with matrices A
and B being partitioned Identically, as shown in Figure 8,

The main dHerence between the 3-D A1l-Trans algorithm

and the 3-D All algorithm is in the first phase of the algo-
ritbrn which requires proper movement of the data elements

of matrix B. The fist phase of the 3-D All algorithm consists

of an all-to-all personalized communication of sub-blocks of

B along the @rection, where each processor pi,j,k transmits

B;,t(i,j) , the l~h group of rows of Bk,j(i,j)t O ~ 1 < ~, to

processor Pi,[,k. The only other difference is that in the sec-
ond phase the newly acquired sub-blocks of B are all-to-all
broadcaut along the z-direction, as opposed to the one-to-all

broadcast in the 3-D A1l-Trans algorithm. All other commu-

nication and computation steps are exactly the same as in
the 3-D A1l-Trans algorithm. See Algorithm 5.

Proof of correctness

Starting with the initial distribution with each processor

?%,j,k cont~g Ak,f(i,j) ad Bk,t(i,j)~ the fist phase en-

sures that each processor p;,j,b gets B~,t(i,l) for d O ~ 1<

W, where B~,f(i,l), as defied earlier, is the j’h group of rows

of Bk ~(i,l) when it is partitioned into W groups of rows. ~

B is ;isualized as partitioned @to p blocks as in Figure 9,
then the set of dat a elements B: ~(i,.) is essentially B/(k,j),i.

The newly acquired blocks of tie matrix B and the initial

blocks of the matrix A are all-to-all broadcast along the z

and z directions respectively in the second phase. Hence, by
the end of the second phase, each processor Pi,j,k acquires

Bt(.,j),i ~d Ak,f(.,j). During the computation stage, a 2-D

plane, y = j, calculates in a distributed fashion one of the
outer products, I, corresponding to A*,t(*,j) ad Bt(*,j),*.
A processor pi,j,b calculates .lh~ where I is assumed sym-
metrically partitioned into @ x W blocks as in Figure 1.
There are ~ such outer products calculated, one by each

z-z plane. It is easy to see that the block Ik ,i is the same
as the group of sub-blocks ~b,f(i,.) if I is visualizer as P~-

titioned into p sub-blocks sirrular to the initial distribution

of the matrix A (Figuze 8). In the final reduction phase
each processor pi,j,k needs to send Ik,j(i,l) to Processor Pi,l,k

for all O ~ 1 < ~. Thus, each processor Pi,j,k D2Ceh’W

~k,f(i,j) fhrn each Z-Z plane and hence getting the required
data elements from all of the fi outer products computed.
❑

The fist phase of the 3-D All algorithm can be completed

in log W(t,+ tw~) time on a one-port hypercube and in

t,log ~ + tw~ time (see Table 1) on a multi-port hyper-

cube since it is an all-to-all personalized communication of

messages of size ~ in a one-dimensional line of @ proces-

sors forming a subcube. The second phase now consists of

two all-to-all broadcasts of meszages of size ~ along differ-

ent dimensions, with each taking t,log ~+ tw % (1 – ~)

325

Algorithm
One-port Hypercubes Multi-port Hypercubes

Communication overhead (a,b) Communication overhead a,b Conditions

Simple (logp,2+(l -+) (;logp, *(1 – +)) n= > plog~

(2(@– 1)+ logp,

Cannon (@-l+ ;lWP$~(l-*+*)) -

5(2 -> + ~))

(@–l+; log P!

Ho et. al. n> fi.logfi

$(i&- *+*))

(2(*- l)+logp, (w–l+:@P?

Bernt sen

5(3(1 – +) + @

nz > plog @

SW)) S((1 + *)(1 – +)+ *3W))

DNS (!#ogP!@lW P)) (@.13P!4~) nz > p2t3 log *

3DD (;lWP$+JI($l%P)) (1WP,3*) nz > p213 log @

3D A1.1.Tmns (+ lWP! ~(3(1 - +) + *logP)) (1Q3P, *(*(1 -+)+ 1)) n2 ~plogfi

(l%P, *(*(1 - +)+ +))

3D All

na > p41a log @

(;1OI4P> $(3(1 -*)+ *))
1

(log P? *(* (1 - *)+ *)) n2 >plogfi

Table 2: Communication overheads for various algorithms on hypercubes with one-port and multi-port architectures. Com-
munication time for each entry is t8a + twb.

326

Algoritbrn Conditions Overall Space used

Simple p~n2 2n2 +

p<nz 3n2

p<nz 3nz

p < ns12 2n2 + n= G

u —.. - p<n= 2n1 @

p<n3 2n2 ~

Algorithm 5: 3-D All

Initial Distribution: Each processor Pi,j,k contains

‘%t(~,j) ~d ~k,f(i,j). See Figure 8.

Progmm of processor pi,j,k

forl=o, fi-1

Send ~~,t(i,j) to Pi,l,k

/* ~~,f(i,j) b the lih group Of rows Of Bk,t(i,j) */

endfor

forl=O, @–1

Receive ~~,t(i,l) from pg,l,k

endfor

Broadcast B: ,(i,.) along the .drection to all

processors pi,j,.

Broadcast Ak,t(i,j) along the adirection to ~

processors p*,j,h
form= O, fi-1

Receive Ak,t(m,j) from Pm,j,k

Receive l?~,f(i,~) from pi,j,m

~~ ~~:~~~~~l~n~a~t~w~ig~~~-~i)’i if B is visualized
,.

. */
endfor

‘= ‘-1 (Ak,~(m,j) x ‘t(~,j),iCalculate Ik,i = ~~=o)
forl=O, fi-1

Send .l~,i to Pi,t,k
/* I~!i is the ith group of COIUIZUM of Ik,i when Ik,i

is spht into ~ groups by columns */
forl=O, ~–1

Receive l~.i horn pi,l,~

Figure 11: 3-D All Algorithm

(0,0,0) x

1-FIn[Phaw (All 10All Fwswal,zed)

2 -SecondPhast (All 10All Brcedcam)

3 -Thud Phase (All l,) All K&UOil)

Suk”pu a.bandc refer10III. mmtcm
m“olwl mIll. re,pectlvaphases.

Figure 12: 3D All Algorithm

E
Cannon

Ho et. al.

Berntsen

DNS

II 3DD

II

Table 3: Some architecture independent characteristics for
various algorithms.

time on a one-port hypercube. The third phase, being an

all-to-all reduction phase, the reverse of all-to-all broadcast-

ing of messages of size ~, takes the same amount of time

as an ail-to-all broadcas~ in the second phase. On a multi-
port hypercube the data transmission time can be reduced

by a factor of log ~ by the techniques presented in [7] (see

Table 1). Also, on a multi-port hypercube the two all-to-

all broadcasts during the second phase can be overlapped.
The fhll bandwidth of the hypercube can be used by multi-

port processors only if the size of each message is greater
the number of communication links on anv node alone that

dimension. This imposes some conditions” on the -urn
size of the matrix required to be able to use all the links.

For this algorithm the condition imposed by the fist phase

viz. $ > log @ dominates the other conditions. When

~<logfibut$ ~ log ~, multiple ports can be used

only for the second and third phases.
For a given matrix of size n x n, the 3-D All algorithm

can be applied on upt o n312 processors, since the maximum

number of processors which can reside on an z-g plane is
n. A slight modification namely, mapping a 3-D grid of size

@ x e X W onto a processor hypercube, can iillow us. .
to use upto nz processors. Though the communication time
reduces in terms of the number of start-ups required, the

overall space requirement increases to n2 W + n2 ~.

5 Analysis

In this section we analyze the performance of the algorithms
presented in the previous two sections, for one-port hyper-
cubes and multi-port hypercubes. The communicant ion over-
heads and other characteristics of the algorithms have been

summarized in Table 2 and Table 3. In our analysis, we
compare the performances of the Cannon, Berntsen, Ho-

Johnsson-Edehnan, 3DD and 3D All algorithms. Algorithm
%rsmle has not been considered since it is the most inefficient

algo;itiun with respect to the space requirement. From the
tables, it can be easily seen that the 3DD and 3D All algo-

rithms perform at least as well as the DNS and 3D A1l-Trans
algorithms respectively, for both the architectures discussed,
irrespective of the values of n, p, t,, t~. The results are based

on analytical reasoning and statistics generated by a com-
puter program on the basis of the expressions in Table 2. We
present graphical results for three different sets of values of

t,and i~. In Fig. 13 and Fig. 14, each region of the pa-

ramet er space is marked with the algorithm which performs
the best in that range of n and p.

327

r’
2(X)

I!_

t~= 150

3DD ; tw=3

I

/’

P“
,’

t’ 3-D All

r’

!’
,’

(4,0) L 103

(a)

x

12(XItl
3DDr/ Cannon

L

:1
[~=o.5

:1 tw=3:,

I
~1’

P / ,,’
!/ 3-D All
;/
!,’

/’
f“

Cannon

L
x

r200 \ I
3DDi ; Is=10

:,:, tw=3
;,

I
:/

P!

,’ 3-DAll

/’

/’/

(4,()) A 1(x)

(b)

Is = 150,10 ,().5

tw=3

3-DAll

(4,()) L I(M 1(K) 10,WIA

(c) (d)

ALL SCALES ARE x - The regmn where none of

LINEAR. the algorithms apply.

Figure 13: Performance analysis for one-port hypercubes

5,1 Hypercubes with one-port processors

From the expressions of communication overheads for the
various algorithms given in the Table 2, it is easy to see

that the 3D All algorithm performs better than the 3DD,

Bernt sen’s and Cannon’s algorithms for all values of p greater
than or equal to 8, irrespective of the values of n, t, and tw,
wherever the 3D All algorithm is applicable. In the region
n2 ~ p > nfi, the 3DD algorithm should have less commu-

nication overhead than Cannon’s Algorithm for large values
of the ratio ~.

The graphs in Figures 13 (a)-(d), generated by a com-
puter program support our above analysis. The 3D All al-
gorithm has the least communication overhead in the region

n312 ~ p. In the region nz > P > n3’2, the 3DD algorithm

performs the best over the whole region for t, = 150, tw = 3
while for very small vah2es of t,,Cannon’s algorithm per-

forms better over most of the region. The 3DD is the only
algorithm applicable in the region n$ ~ p > n2.

5.2 Hypercubes with multi-port processors

In case of multi-port hypercubes, the Ho- Johnsson-Edelman

algorithm, wherever applicable, is better than Cannon’s al-

gorithm. From Table 2, we see that the 3D All algorithm will
always performs better than the 3DD algorithm wherever
both the algorithms are applicable. Similarly, the 3D All al-
gorithm has better performance than Berntsen’s algorithm
for all values of p greater than or equal to 8, independent of
n, t,and t~. The Ho- Johnsson-Edelman algorithm might

perform better than the 3D All algorithm for very small val-
ues of p when both are applicable, but 3D All should tend to
be better for larger values of p or t,because of the number

r
2(x) * /

L

t~= 150
; tw=3

3DD;

I 1’
P’

,1 3-DAll
1’

,’

.’
t’

(4,()) a 1(M)

(a)

x

lr

3DD Cmnrm

/

L

2(M) / ‘
:;, , t~=o. s

: tw=3

I

P//
;: ,! 3-D All
j ,1

/: /’
,. ,

,.”,‘
,

(4,0) L l(x)

(c)

ALL SCALES ARE

LINEAR

r-x
2(x) I

L__

3DD; (S= 10

[W=3
/

I

P“
1’ 3-D AO

1’
1’

/
,

/
,’

(4,0) & 1(N)

(b)

lIJXI

t [$= 150,10,05”

L..-
tw=3

I
P

3-D,40

20
1(x) & lo,(m)

(d)

x - lle regmn where none of

the al~onthms apply,

Figure 14: Performance analysis for multi-port hypercubes

of start-ups in the Ho-Jobnson-Edelman algorithm being of

O(@.
In Figures 14 (a)-(d) presented, we see that 3D All,

wherever applicable, performs the best among the four al-
gorithms. In the region n2 ~ p > nfi, Cannon’s algorithm

has an edge over the 3DD algorithm for very small values of

t,.

6 Conclusion

In this paper we have analyzed most of the existing popular

algorithms for dense matrix multiplication on hypercubes
and designed two new algorithms. We compared the com-

munication overheads of the various algorithms on hyper-

cubes with one-port processors and hypercubes with mnlti-

port processors. One of the proposed algorithms, 3D ALL,

has the least communication overhead whenever applicable
for almost all values of p, n, t, and tvinthe region p ~ nfi.
In the region nfi < p < n3 the other proposed algorithm,

3DD, performs the best for a major part of the region.

References

[1]

[2]

[3]

J. Berntsen. Communication efficient matrix multi-
plication on hypereubes. Parallel Computing, 12:335-

342,1989.

L. E. Cannon. A cellular computer to implement the
Kahnan Filter Algorithm. Teehnical report, Ph.D. The-
sis, Montana State University, 1969.

E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and

graph algorithms. SIAM Journal of Computing, 10:657-
673, 1981.

328

[4] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix algo-
rithms on a hypercube I: Matrix multiplication. Parallel

computing, 4:17-31,1987.

[5] A. Gupta and V. Knmar. Scalability of Parallel Al-

gorithms for Matrix Multiplication. Proceedings of the

1999 International conference on Parallel Proce#uing,

vol. 3, pp 115-123.

[6] D. P. Bertsekm and J. N. Tsitsiklis. Parallel and Dis-
tributed Computation. Prentice Hall, 1989.

[7] S. L. Johnsson and C. T. Ho. Optimum broadcasting
and personalized communication in hypercubes. IEEE

Transactions on Computers, 38(9):1249-1268, Septem-
ber 1989.

[8] C. T. Ho, S. L. Johnsson and A. Edelrnan. Matrix
multiplication on hypercubes using fi.dl bandwidth and

constant storage. In Proceeding of the Sizth Distributed

Memory Computing Conference, 447-451, 1991.

[9] J. W. Demmel, M. T. Heath, and H. A. Van der Vorst.
Parallel Linear Algebra. Acts Numerics. Vol. 2. Cam-

bridge Press, New York, 1993.

329

