Fast Rectangular Matrix Multiplications and
Improving Parallel Matrix Computations *

Xiaohan Huang!!!

and

Victor Y. Panl?

(1 Ph.D. Program in Mathematics
Graduate School and University Center, City University of New York
33 West 42nd Street, New York, NY 10036, USA

Internet: xhuang@email.gc.cuny.edu

(2l Department of Mathematics and Computer Science
Lehman College, City University of New York
Bronx, NY 10468, USA
Internet: vpan@Ilcvax.lehman.cuny.edu

Abstract

Galil and Pan, 1984, reduced parallel evaluation of the in-
verse, the determinant and the characteristic polynomial of
a matrix and solving a nonsingular linear system of equa-
tions to sequential multiplication of rectangular matrices.
We asymptotically accelerate the known algorithms for the
latter problem to yield an improvement of the current record
asymptotic bounds on the deterministic arithmetic NC pro-
cessor complexigy of the four former ones, from order of
n?81 to O(n?%"). The improvement of rectangular ma-
trix multiplication has also impact on the record complexity
estimates for polynomial factorization in finite fields.

1 Introduction

Computing the inverse, the determinant and the character-
istic polynomial of an n x n matrix and solving a nonsingular
linear system of n equations are among the most fundamen-
tal problems of matrix computations. Their first NC solu-
tion was given by Csanky in his seminal paper [Cs76]. Under
the EREW PRAM model of parallel computing, Csanky’s
algorithm can be implemented by using O(log? n) time and
O(n**') processors, provided that O(n“) arithmetic op-
erations suffice in order to multiply a pair of n x n ma-
trices ( current record bounds are 2 < w < 2.37547--.
[CW90] ). The processor bound was later improved first to
O(n*%5) [PS78] and then to O(n*%*=5()) for a positive
é(w) [GP89).

*Supported by NSF Grant CCR 9625344 and PSC CUNY Award
667340.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or
a fee. PASCO’'97, Wailea, Maui, Hawaii; ©1997 ACM 0-89791-
951-3/97/0007. . . US$3.50

11

Our present work was motivated by the paper [GP89],
which reduced the parallel solution of the cited fundamental
problems of matrix computations to sequential rectangular
matrix multiplication. Based on the known results for the
latter Eroblem, Galil and Pan reached the processor bound
O(n*®") for the former problems. In our present paper,
we focused on the improvement of the known solution algo-
rithms for sequential rectangular matrix multiplication by
means of extending the effective techniques of [CW90] de-
veloped for square matrix multiplication.

This enabled to yield the desired improvements of both
sequential rectangular matrix multiplication and, therefore,
the parallel complexity bounds for matrix computations,
for which we support the time bound O(log? n) by using
O(n**%") arithmetic processors. Our improvement of rect-
angular matrix multiplication has further theoretical appli-
cations, in particular, to improving the known estimates for
the complexity of the factorization of a univariate polyno-
mial over finite fields, which we will report in a separate
paper. Like [CW90], we deal with algorithms that only give
asymptotic improvement of the known complexity bounds
for very large n, so the algorithms are not assumed to be
practically used. Our complexity bounds are determinis-
tic; they can be improved substantially, to the level of n“
for processors, by using randomization ( see [P87], [KP91},
[KP92], [KP94], [BP94], and [P96] ).

2 Definitions and Some Background

In this section, we will first recall the definitions and record
complexity estimates of [GP89] for parallel solution of the
three following problems:

1) compute the determinant and the characteristic poly-
nomial of a given n x n rational, real, or complex matrix
4;

2) solve a linear system Az = b;

3) invert A.

Definition 2.1: P(n) is the minimum number of arith-
metic processors supporting O(log? n) parallel time bound



for solving problems 1), 2) and 3) under the EREW PRAM
model of parallel computing; P(*, m,n,p) is the minimum
number of arithmetic processors supporting O(log(mnp))
parallel time bound for multiplication of m x n by n x p
matrices; P(x,n) = P(*,n,n,n).

The following theorem and its corollary are from {GP89):

Theorem 2.1 The solution to Problem 1) and 2) can be
computed by using O(log®n) parallel steps and simultane-
ously
P(detrn) = ma'x{P(*’nllzslnrnl.zs))P(*)no'E:"2)’70'8)}
processors.
The solution to Problem 8) can be computed by using
O(log? n) steps and

P(n) = min max{P(det,n), P(*,u+1,v, n?), P(s,n, nu,n)}
v, %

processors, where the minimum is over all pairs v and u such
that
vu<<n+l1<(v+1l)u.

Substitute the bound P(*,n) = O(n?*™®) and obtain

Corollary 2.1 The solutions to Problems 1), 2) and 3 ’)
be computed by using O(log® n) steps and P(n) = O(n*%!)
arithmetic processors.

Now, we are motivated to seek some improvements of the
known algorithms for rectangular matrix multiplication. We
will first recall some definitions and background material.

Given a pair of m x n and n x p matrices X = [z;,;)
and Y = [y;.x}, the problem of computing the m x p matrix
XY is called m x n by n x p matrix multiplication and is
denoted < m,n,p >. Here and hereafter, we will assume
that the subscripts i, j, and k range from 0 tom -1, n—1,
and p — 1, respectively. Hereafter, A(m,n,p) denote the
minimum number of arithmetic operations required for
<m,n,p>.

Definition 2.2: bilinear algorithms for matriz multiplica-
tion. Given a pair of m X n and n X p matrices X = [z; ],
Y = [yj,), compute XY in the following order: First evalu-
ate the linear forms in the z-variables and in the y-variables,

Lq = Zfijqx‘j ) qu = Efj.quﬂl ) (21)
43 ik
then the products P, = L,L; for ¢ =0,1,---,M — 1, and

finally the entries Z TijYsk of XY, as the lmear combma—

tions
Zzuka = Z fthq q

q=0

(2.2)

where fijq, fju, and f," are constants such that (2.1) and
(2.2) are the u}entltles in the mdetermma.tes :c.,, Yik, for
i=01,-.-m-1;, =01, -1, k=01,---,p—-1.
M, the total number of all multlphcatlons of L., by L, is
ca.lled the rank of the algorithm, and the multiplications of
Ly by Ly are called the bilinear steps of the algorithm or
bilinear multiplications.

12

Let M(m,n,p) denote the minimum M in all bilinear
algorithms for < m,n,p >. Hereafter, we will focus on esti-
mating M(m,n,p) from above, motivated by the following
known bound (cf. e.g. [Pan]):

A(m*,n*,p*) = O((M(m,n,p))*) as h—o0. (23)
We also have the following simple and well-known estimates
(cf. e.g. [Pan]):

M(m,n,1) =mn

M(m,n,p) < M(m/q,n/q,p/q)M(q,9,q)

for any g that divides m, n, and p.
that

(2.4)
(2.5)
Furthermore, we recall

M(m,n,p)

= M(m,p,n)
= M(n,m,p) =

M(p,n,m)

M(n,p,m)
M(p,m,n)

(2.6)

(cf. [P72) or [CWSL]);
M(n,n,r(n)) = n® + o(n)
if r(n) = o(log n), n — oo (cf. [BD76));
A(n,n,n") = O(n?**)
for any € > 0 if r < 0.197, n —+ oo (cf. [Co82]);
A(n,n,n") = O(n***)

for any ¢ > 0 if r < 0.294, n = oo (cf. [Co]).
By extending (2.5), we obtain that

M(m,n,p)

q.’:

O(¢“) max(mn, np,pm)/q®,
min(m,n,p) = oo,

provided that M(q, q,q) = O(g").

Let us next recall or introduce some basic concepts and
definitions concerning matrix multiplication and recall some
basic results.

The notation L —+< m,n,p > indicates the existence of
a bilinear algorithm requiring L essential (bilinear) multipli-
cations in order to compute the indicated matrix product.
If the algorithm is an “any precision approximation (APA)

algorithm” [BCLR], we write L < m,n,p >. If k dis-
joint matrix products of the size < m,n,p > are computed
(sharing no variables), we write L = k < m,n,p >.

In this paper, we study the problems of matrix mul-
tiplication of the form < n",n*,n® > with positive inte-
gers n and non-negative rational numbers r, s, and ¢. Let
O(n“("**)) denote the bilinear complexity of < n”,n’,n* >,
that is, O(n“("*)) bilinea.r multiplications suffice for solv-
ing the problem < n”,n’ n* >. The exponent w(r,s,t)
will be ca.lled the ( matnx multiplication ) exponent for
< n",n*,nt >. Due to (2.6), we have

w(r, s,t)

= w(t,r,s8)
= w(rts) =

= U(S, tr T)
w(s,rt) =

w(t,s,r). @7
Therefore, it suffices to estimate any one of the six latter
exponents for given n, r, s and ¢.

The exponents w(r, s,t) satisfy the following homogene-
ity equation: w(ar,as,at) = aw(r, s, t) since

( w(ar, aa,at)) — O(( a)u(r X t)) - O( aw(r.l.t)) .



There is the straightforward information lower bound:
w(r,s,t) > max{r +s,8+t,t+r1}. (2.8)

If r = s = t, then < n",n*,n* > represents the problem
< n",n",n" > of multiplication of a square matrix by a
square matrix. Computing its bilinear complexity is reduced
to computing the exponent w(r,r,r) = r - w(1,1,1), that is,
to computing w(1,1,1), by homogeneity. Current record
upper bound w(1,1,1) = w < 2.376 is due to [CW90).

If two values among r, s and ¢t are equal to each other,
say, if r = s # ¢, then

<n",n',n'>
represents the problem of multiplication of a square matrix

by a rectangular matrix. Computing its bilinear complexity
is reduced to computing the exponent

w(r) ri t) =T w(l7 17t/r))

that is, to computing w(1, 1,t/r), by homogeneity. We recall
the upper bound

w(1,1,t/r) =2+0(1) for t/r <0.294, [Co},

which matches the lower bound w(1,1,¢/r) > 2 of (2.8), up
to the term o(1).

If r, s and t are distinct from each other, < n",n*,n’ >
represents the problem of multiplication of a rectangula.r
matrix by a rectangular matrix. In addition, < n",n*,n" >
(s # r) also represents the problem of multiplication of rect-
angular matrix by rectangular matrix. In this paper, we
will present algorithms for multiplication of matrices of such
sizes.

We will need the following basic results.

Theorem 2.2 (Schdnhage [Sc81]) Assume given a field F,
coefficients a; j n,i, Bik.hls Thihi 38 F(A) (the field of ratio-
nal functions in a single indeterminate X ), and polynomials
fq over F, such that

L
Z (Za..;ur ‘,) (Zﬁ;.khlﬂ,k) (Z’ﬁ.uz )
I=1 \4,j,h ik igh
m n
= Z (iizx(ﬁ)vﬁ”(’h’)) +Z’\gfs(x(.';)vy;(hk)’ Zy i

=1 j=1 k=1 9>0

is an identsty in xf’;), yl(h,,), zﬁh'), A. Then, given ¢ > 0,

one can construct an algorithm to multiply N x N square
matrices in O(N37+) operations, where T satisfies

L= E(m;.n;.p;.)f
Y

Theorem 2.2 enables us to estimate w(r, s,t) from above
as soon as we obtain a bilinear algorithm for a disjoint ma-
trix multiplication, in particular, for k disjoint problems
<m,n,p>.

Theorem 2.3 (Salem and Spencer [SS42]) Given ¢ > 0,

there exists M, ~ 2/ such that for all M > M., there is

a set B of M/ > M'~° distinct integers, 0 < b; < bg <
- < by < M[2, with no three terms in an arithmetic

progression: for any triple of b, b;, by € B, we have

b.‘+bj=2bk if b,‘:bj:bk.

In our presentation, we will closely follow the line of
[CW90]. In particular, as in [CW90), we will use theorem
2.3 in order to transform tensor product construction into
the form k- < m,n,p > for sufficiently large k, m, n and p.

Due to the application to parallel computing, we will also
need the following result, which extends Proposition 4.3.2 of
[BP94] ;from the case of square to rectangular matrices:

Theorem 2.4 The product XY of an n** x n* matriz X by
ann® xn™® matriz Y can be computed by using parallel time
O((t+r+1)slog n) and O(n“t17)*) arithmetic processors,
where n > 1, 8 = 0o, and @(t,1,7) is any number exceeding
the value w(t,1,r) defined above.

Proof: With no loss of generality, we may assume (see, for
instance, [BMT75], section 2.5, or [Pan]) that an n* x n by
n X n" matrix product XoYy is computed by means of a
bilinear algorithm (cf. our Definition 2.2).

Now we apply the tensor product construction to such
a bilinear algorithm, that is, we apply this algorithm re-
cursively in order to multlp]y the matrices X and Y whose
entries are n' x n and n x n" matrices, respectively. This
will Fwe us a recursive bilinear algorithms for multiplication
of n** x n* by n® x n"* matrices, for s = 1,2, -, and we
have

tes1 <ty + (1 + max(r,t))log,n+log, M + 4,

Pat1 < max{n("“”)(‘“) nlrttd(s+1) g r ,paM} ,

where N = npmex(+n1+tr+8) 4 and pr denote the parallel
time and the number of anthmetlc processors used in
the above recursive bilinear algorithm for n' x n' matrix
multiplication. Since M < n”®*!7) the latter recursive
relations immediately lead to Theorem 2.4. a

3 Basic Algorithm for < n,n,n? >

In this and the next sections, we will extensively use the
techniques of [CW90] (compare [Pan] and [St86] on some
preceding work). We begin with a basic algorithm from
[CW90], equation (5), which gives us one of the most effec-
tive examples of the trilinear aggregating techniques, first
introduced in [P72] (cf. also [Pan] and [Pan,a]). For a given
value of the integer g, we will call this construction D,.

9 3-2 (I([)O]

=1

+ 2l + gl + Azl

-\~ ( [°]+,\2 E'_l Illl)(ylol_‘_AZ .—1 y.l])x

(26 + 2 Tl &™) + A7 - a0 ) ()
(IIO] (1] [1] [1] [01 [l]+z[l]ymz[°])+0(A)

(31)
The z-variables in (3.1) consist of two blocks:

x99 = {zg]]} and xM = {zlll],n-,zy]}A

Similarly, the y-variables consist of blocks Y”) and Y}, and
the z-variables consist of blocks Z[% and 21V,
Our next goal is to estimate the exponent w(l,1,2).
Consider the 4N** tensor power of (3.1). Each variable

i} in the tensor power is the tensor product of 4N variables

i



1:5.”, one from each of 4N copies of the original algorithm
(3.1). jrangesin {0,1,2,:--,q}. The subscript { is a vector
of dimension 4N formed by the 4N subscripts j. J ranges
in {0,1}. The superscript [I] is a vector of dimension 4N
having entries in {0, 1}, formed by the 4N superscripts [J].
Clearly, [I] is uniquely determined by i.

In our tensor power, there are 3" triples

(Xlll,ylll,zlkl);

each of them is a matrix product of some size < m,n,p >
with mnp = ¢*. We will eliminate some triples by setting
to zero some blocks of variables z, y and/or z, so as to stay
with some triples of the form < ¢¥,¢",¢*" > sharing no
variables. Then we will estimate the number of the remain-
ing triples, which will define the exponent w(1,1,2). When
we zero a block X1 (respectively, Y"1, ZI']), we will set to
zero all the z-(respectively, y-, z-) variables with the given
superscript pattern.

Hereafter, ( Q

Ql)Qza"'
Q1, Q2, -, Q, satisfying

Q+Q:2+--+Q.=0Q,
denote the multinomial expansion coefficient. Our presen-

tation will closely follow section 6 of [CW90).
For all 1 and I, set zE’] = 0, unless I consists of 2N
indices of 0 and exactly as many indices of 1. For all j

and J, set ym = 0 unless J consists of N indices of 0 and

3N indices of 1, and similarly for z,[:"]

), for positive integers @,
1 Qs

. When we complete

. . . 4N
this procedure, there still remain (2 NN, N) blocks of

triples (X1, YV, ZIX]). The blocks are compatible, which
means that the locations of their zero indices are disjoint, i.e.
among the superscript vectors of XY V1ZIX] there is one

and only one zero in the location of the same component.
(For example, for N = 2, the block

x(10110100] 1-[11011011] H(01101111]

is compatible). Among them, for each block of vari-

ables Z1X), there are (22,1:]1\,) pairs (X1, YV)) sharing

this block; for each block Y% there are also (213VNN)
pairs (X7, ZIK1) gharing it; and for each block X/), there
are (]\2,,1\&) pairs (YU ZIX)) gharing it. Set M =

2 (21%,17]\,) + 1. Select a sufficiently small positive ¢ and

a sufficiently large N, so that the latter value M would sat-
isfy the assumptions of the Salem-Spencer theorem for this
¢; construct a Salem-Spencer set B (cf. [SS42] [Be46] and
[CW90]), where the cardinality of B is M' > M!™*,

the next section, by revisiting the techniques of sectlon 6 of
[CW90], we obtain at least

g 1M ( 4N
T 4M? \2N,N,N

non-zero block products represented by the triples

(XU]Y{-flzlkl)

(3.2)

14

and pairwise sharing no variables X!/], YU or ZIK],
The fine structure of each block scalar product represents
a matrix product of the size

NV, @) >

For ¢V = n, this turns into < n,n,n? >. For example, for
N =1, the fine structure of the compatible triple

x[1010)y,(1101] z{0111]

x[1010)y,[1101] (o111

ko Yijor Zoju » LA KI=1,2,--,q,

which represents the matrix product
XoxaYyxq2Zg2xq

We deduce from the above algorithm and from theorem
2.2 that
(@+2)*" > cHn*®1D) | (3.3)

where c is the overhead constant of O(n“(*'*?)) and H is
defined by (3.2). By applying Stirling’s formula

n—oo

(3.4)

in order to estimate H, we obtain

N t1-e) 44 22\ M Nw(1,1,2)
(@+2)*" >N ) (x) ™, 69

where ¢’ is a constant. Let e = 0, N = oo, take the N*»
roots and then logarithms of both sides of (3.5), and obtain

that 4
@+2)*> (gg) ¢t

1 27(qg + 2)*
1,1,2) < .
w(1,1,2) < logqug( 256

The right-hand side is minimized for ¢ = 10:

w(1,1,2) < 3.339848783 - - - < 3.3399 . (3.6)

4 Estimating the Number of Disjoint Nonscalar
Block Products

In this section, we will proceed again along the line of section
6 of [CW90] modified slightly so as to estimate w(1,1,2),
rather than w(1,1,1).

Choose integers w; at random in the interval from 0 to
M-1,for j=0,1,2,...,4N, and compute the integers

4N
bx(I)=_ Liw; (mod M),

i=1

4N
bv(J)=wo + ZJjwj ( mod M ),
i=1
4N
bz(K) = (wo + ) (2 - Kj)w;)/2 (mod M ) ,
i=1



where I = (51, -, Iin) € {0,1}*Y, I;is0or 1,5 =1, -,
4N. As in [CW90], obtain that

bx (1) +by (J) ~ 2bz(K) =0 mod M ,

for any triple of blocks (X7, Y1V}, ZI¥]) whose product
XUy ZIX] appears in the trilinear form. [Indeed, examine
the contribution of each w; and observe that for each of the
three terms

(0], (11,11

ORON {11, 11 [0}

()
IE”V«‘J]ZEI]' T Y %,

we have I; + J; + K; = 2 in the basic construction.]

Set X1 = 0 unless bx () is in the Salem-Spencer set
B, set YU = 0 unless by(J) € B, and set ZIK] = g
unless bz(K) € B. Then, for each triple (I,J, K), where
xUyWizIKl £ 0 we have

bx(I) + by (J) = 2bz(K) mod M,
bx (I), by (J), bz(K) € B,

and therefore,
bx (I) = by (J) = bz(K) ,

by the virtue of Salem-Spencer’s theorem.

We recall that the block X! is the set of ¢*¥ variables
:c&”, with nonzero indices in 2V specified places, that is,
sharing a common superscript I, a nonzero block is one
which has not yet been set to zero; blocks X!, YVl zIK]
are compatible if the locations of their zero indices are pair-
wise disjoint. Let us complete the pruning procedure, as in
[CW90]. Make lists of triples (X/], Y] ZI¥]) representing
compatible nonzero blocks, with

bx(I)=by(J)=bz(K) =0

for all b € B. If any triple (X!}, Y1 Z1X]) on the list shares
a block (say, Z/X) with another triple (XU, y¥'], zIX']
occurring earlier in the list, then eliminate the former triple
by setting to zero one of the other blocks (say, X!/!). Now,
we apply the counting argument of [CW90] and extend the
lemma of section 6 of [CW90] as follows:

Lemma 4.1 The ezpected number of triples remaining on
each list, after pruning, is at least

1 4N

4M2 \2N,N,N ] ~

4N _2
aN,N,N )M

of triples in the list before pruning, for each b € B, with the
upper estimate

Proof: Compare the expected number,

4N 2N

g’ (2N,N,N) ((N,N) - 1) M~

for the expected number of unordered pairs of compatible
triples sharing a Z-block, a Y-block, or an X-block. The
latter number is an upper bound on the expected number
of eliminated pairs of triples, which is easily showed to be
not less than the expected number of eliminated triples.
Comparison of the two upper estimates gives us Lemma

15

4.1. )

It follows from Lemma 4.1 that the expected number of
triples remaining on all lists after pruning (average over all
the choices of w;) is at least H of (3.2). Therefore, we may
fix a choice of w; that achieves at least as many triples on
the list.

The procedure of computing H can be summarized in
the following way:

Procedure 4.1

Step 1: First compute the number of triples of blocks,
having a fixed patern < n",n*,n' > among all the triples
(XU Y], ZIKl) that we have after taking the tensor power
of a given basic trilinear algorithm [like (3.1)]. In section

r a t —_ 2 4N
3, < n",n*,n" >=< n,n,n° >, and there are (2N,N,N)

special triples among a total of 3*V .

Step 2: Compute the numbers of pairs (X', Y1) shar-
ing a single block Z¥}, of pairs (X", Z1¥)) gharing a single
block Y1, and of pairs (Y], ZIK]) sharing a single block
XU (in section 3, these numbers are

3N 3N 2N
2N,N J 2N, N ) N,NJ
respectively). Determine the largest of them ( here, the
. 3N
largest is IN.N ).

Step 3: Perform the pruning procedure extending the
one presented in this section in the straightforward way and
show that there still remain at least

the number from step 1
H =
4 x the largest from step 2

triples (XU), Y1, 2Ky gharing no variables.

The latter procedure will be repeatedly applied in the
next sections.

5 Improved Algorithm for < n,n,n? >

In this section, we will improve our upper bound on the
exponent w(1,1,2) from 3.3399 to 3.323953 by combining
the technique of Section 7 of [CW90] and the same ideas
as in the previous section. The improvement will be due
to using a more complicated starting algorithm, that is, the
basic algorithm from [CW90], equation (10):

A28+ (T + gl + a2

{

“A2EP + 2T 2 + 2 T, i) x

(z([,O] +27390 Ly 4 A3 - q/\_2](x£°) + /\szﬂl)x

i=1%i
W5+ 3P + a3
= 50, (2Pl 4 2y 4 2 [y [0
+ 2020 + e + 2B+ o).
(5.1)



The subscripts now form three classes: {0}, {¢ + 1} and
{1,2,--,q}, which will again be denoted i. Again, the sub-
scripts uniquely determine the superscripts (block indices).

Take the 4N** power of this construction. Each variable
zE’ Vin the tensor power is the tensor product of 4N variables
z}”, one from each of 4N copies of the original algorithm
(5.1). Its subscript i is a vector of dimension 4V with entries
in {0,1,2,---,q,q + 1}, formed by the 4N subscripts j. Its
superscript [I] is a vector of dimension 4N with entries in
{0,1,2}, formed by the 4N superscripts [J}.

Set L = [BN], where 8 is a small positive number
(which will be specified later on, roughly at the level of
0.02). As in the previous section, we currently have 64V
triples (X1, Y] ZIX). Set z{'! = 0, unless I has exactly
2N indices of 0, exactly 2N — 2L indices of 1, and exactly
2L indices of 2; set y[."] = 0, unless J has exactly N + 2L
indices of 0, exactly 3N - 3L indices of 1, and exactly L
indices of 2, and similarly for z{’q. When we complete this
procedure, there still remain

4N
L,L2L,2N-2L N-LN-L

blocks of triples (X1, YV}, ZIX]), Namely, among the 4N
copies of construction (5.1), we pick

mg)]y,mz,m from 2N — 2L copies,

a:[-ny([,o]z‘m from N — L copies,

zzlly?]z([,o]) from N — L copies,

a:f,oly([,olzﬂl from L copies,

()
o, D)

a:ﬂly‘[-,olz‘[,m from 2L copies.
They are compatible, which means that the sum of indices
at the same locations of their superscripts I, J and K is 2.
Among them, for each Z!¥}, there are

3N -3L N +2L
2N -2L,N-L N-L2L L

from L copies and

pairs (XU}, Y1) gharing it; for each Y{X], there are as many
pairs (X!), Z!X]) sharing it; but for each X!/, there are only

2N 2N - 2L
2N -2L,L,L N-LN-L

pairs (Y1/], ZIX]) sharing it.
Select the larger (that is, the former) of the two numbers
of pairs and set

_ 3N - 3L N+2L
M_2(2N—-2L,N—L) (N—L,ZL,L) +1.

Construct a Salem-Spencer set B. Select random integers
0<wj <M, j=0,1,2,---,4N. Then, by following the
lines of section 7 of [CW90] and of our section 4, in partic-
ular, by applying Procedure 4.1, we obtain at least

oo 1M aN
=32 \LL2L2N-2L, N-LN-L

non-zero triples (X1, YU, Z[Klz, which share no variables
with each other, where M’ > M~ ™, for a fixed positive ¢, is

16

the cardinality of B. Each of these triples corresponds to a
matrix product of size

N-L N—-L’(qN—L)Z >,

<¢ .9

which turns into < n,n,n? > for n = ¢¥"~L. Letting
M(n,n,n?) = O(n*"'1?)) and summarizing our estimates,
we obtain

(q + 2)4N > cH.q(N-L)w(l,lﬂ) .
Applying Stirling’s formula to the value H*, we obtain that

256 N
BA(3 - 30)C-P (1 + 2ﬂ)(1+zﬂ)] X

(@+2)*" > [

(c,)Nch-HgeqN(l—ﬁ)u(m,z)_

Let € = 0, N = 00, take N** roots and then logarithms on
both sides and deduce that

256

4 (=-Bw(1,1,2)
(0+2)° 2 Gr—gm-wa s apar Y ’

1
1-P)logq -

B2(3-38)C%(1 4 28)1+¥) (g + 2)*
log ( 256 ) .

¢ = 9 and 8 = 0.016 minimize the right-hand side of the
latter inequality, and we obtain that

w(l,1,2) <

w(1,1,2) < 3.333953 - - - < 3.334 .

8 Basic Algorithm for < n",n*,nt >

In this section, we will combine the ideas and techniques of
sections 3 and 4 so as to develop the basic algorithms for esti-
mating the exponents of rectangular matrix multiplications
of arbitrary shape, that is, for the problem < n",n*,n* >.
For convenience, we first classify the triples < n",n*,n* >,
for all rational r, s, t as follows:

(1) <n",n,n> withr > 1;

2)<nnnt>with0<t<l;

B <n,nant>withr>1>t>0,

Indeed, we have three respective classes of triples:

(1) Among r, s, t, two are equal and the third one is
larger. In this case, we may assume r > s = ¢ [cf. (2.1)].
Then, by homogeneity of the exponent,

w(r,s,t) =sw(r/s,1,1), r/s> 1.

(2) Among r, s, t, two are equal and the third one is not
larger. In this case, we may assume r = s > t. Then, by
homogeneity of the exponent,

w(r,s,t) =rw(l,1,t/r), 0<t/r<1.

(3) Among r, s, t, all three are pairwise distinct. In this
case, we may assume r > s > t. Then, by homogeneity of
the exponent,

w(r,8,t) = sw(r/s,1,t/3), r/a>1>t/s>0.



6.1 The case <n",n,n> withr > 1

Due to (2.6), we may assume that < n,n»,n" > is case (1).
We begin with the construction (3.1) again. Take the (2 +
r)N** tensor power of (3.1), where N is sufficiently large so
that (2+ r)N is an integer. Each variable zy] in the tensor
power is the tensor product of (2 + r)N variables zg.”, one
from each of (2 + r)N copies of the original algorithm (3.1).
Its subscript i is a vector of dimension (24 r)N with entries
in {0,1,2,---,q}, made up of the (2 + r)N subscripts j. Its
superscript [I] is a vector of dimension (2+r)N with entries
in {0,1}, made up of the (2 + r)N superscripts [J]. Clearly,
(7] is uniquely determined by .

In our tensor power, there are totally 3V+") triples
(X, Y] zIK])| We will eliminate some triples and pre-
serve those of dimension < ¢V, ¢", (¢")" >, sharing no vari-
ables with each other. Then we will estimate the number of
the remaining triples.

Set :z:E'] = 0 unless I has exactly rN indices of 0 and
exactly 2N indices of 1, set y}” = 0 unless J has exactly
N indices of 0 and exactly (1 + r)N indices of 1, and sim-
ilarly for z;fq. When we complete this procedure, there
53, }”\,’,)_x blocks of triples (X1, Y11, Z1K1).
They are compatible, which means that the locations of their
zero indices are disjoint. Among them, for each Z!X) there

are ((1 + T)N> pairs (X}, YU)) sharing it; for each Y1X],

still remain (

N,rN
there are as many pairs (X', Z(X]) sharing it; for each X!/},
there are only ( [3%) pairs (Y7], ZIX] gharing it. We se-
lect the larger (former) of the two latter estimates and set
- (1+r)N
M=2 ( N,rN +1.

Construct a Salem-Spencer set B (cf. [SS42] and [Bed6]),
where the cardinality of B is M’ > M!~¢. In the same way
as in the previous sections, we obtain at least

g=1 M ((2+1r)N

~ 4M2 \ N,N,rN
non-zero triples (X1, Y1), ZIX]) sharing no variables with
each other, that is, our algorithm computes at least H block
products (X1, Y71, ZIKly The fine structure of each block
product is a matrix product of size

<q".q",(d") >,
which is < n,n,n" > for ¢V = n. It follows that

(q+2)(2+r)N > cI"i,nw(l,l,r) ,

where c is the overhead constant of O(n*(*:''")). Applying
Stirling’s formula to approximate H, we obtain

. Ch-g @)@\ ot e
(g+2)3*N > N Ya-o) (Eli:;(lw)) ()NegNuwtn)

where c and ¢’ are constants. Let ¢ = 0, N = oo, take N*th
roots, and obtain

(q+2)%*7 > ((2 hs ’)m”) i),

)

17

By solving for w(1,1,r), we obtain

1+ #)A ) (g 4 2)(3+r)
e

1
<
w(l,1,7) < >y log (

8.2 The Case < n,n,n*> with0<t<1

We replace t by r, for convenience. In this case the algorithm
is almost completely the same as in the case r > 1. The
small difference is that we now set

_of 2N
m=2() 41

. 2N (1+r)N
since (N,N) exceeds ( N,rN
section 6.1 and obtain that

). We proceed as in sub-

2_r (247)
2°r" (g + 2) )’ 6.2)

1
<
w(1,1,7) < logqlog( 2 + 1)

for0<r<1.

6.3 The Case <n",n,n'>withr>1>t>0

Due to (2.6), we may assume that < nf,n,n" > withr > 1 >
t > 0, instead of < n",n,n* > with r > 1 > ¢ > 0. In this
case, we take the (t+1+r)N** tensor power of (3.1), where
N is sufficiently large so that (t + 1 + r)N is an integer.
In our tensor power, there are a total of 3V(*+1+7) riples
(x1,YV), ZIK1y As before, we will eliminate some triples
and preserve those of the dimension < (¢¥)%,¢",(¢")" >
sharing no variables with each other. Then we will estimate
the number of the remaining triples.

Set :z:E” = 0 unless I has exactly rN indices of 0 and
exactly (¢ + 1)V indices of 1, set yJ[J] = 0 unless J has
exactly tN indices of 0 and exactly (1 + r)N indices of 1,
and set z,[‘K] = 0 unless K has exactly N indices of 0 and
exactly (¢ 4+ r)N indices of 1. When we complete this pro-

(t+14+n)N .
¢tN,N,rN blocks of triples

(XU, Y1 ZIK]) They are compatible, which means that
the locations of their zero indices are disjoint. Among them,

for each Z!X] there are ((:; :K,v) pairs (X['],Ym) shar-

ing it; for each YU}, there are <(1 + r)N) pairs (X U], ZIK])

cedure, there still remain <

IN,rN
(t+1)N

o it n
sharing it; for each X'"’| there are ( ¢tN, N

) pairs (Y],

ZX1y sharing it.
Since r > 1 > ¢t > 0, the second of these three estimates
is the largest. So we set

_of(1+r)N
M—-2( N,rN +1

Similarly to subsection 6.1, we obtain that

(1 + r)(l+r)tt(q + 2)(t+l+r) 6.3
(t+1+r)e+itr) - (63)

1
w(t,1,r) < g log (



7 Improved Algorithm for < n",n*,n* >

In this section, we will improve our algorithm of section
6 for the problem < n",n*,n' > by combining the ideas
from sections 5 and 6. We break this section into three
subsections and respectively discuss the three cases, as in
section 6.

7.1 The case < n,n,n" > withr > 1

We begin with the construction (5.1). Take the (2 + r)N*t
tensor power of this construction, where N is sufficiently
large so that (2+7)N is an integer. Each variable zm in the
tensor power is the tensor product of (2+r)N variables z[‘]]
one from each of (2 + r)N copies of the original algonthm
(5.1). The subscript 1 is a vector of dimension (2+r)N with
entries in {0,1,2,---,q,q9 + 1}, made up of the (2 + r)N
subscripts 7. The superscript [I] is a vector of dimension
(2 + r)N with entries in {0, 1,2}, consisting of the (2 +r)N
superscripts [J].

Set L = [BN], where 3 is a small number to be de-
termined later on (roughly at the level between 0.005 and
0.05). We currently have 6+"¥ triples (XU, YU, ZIK]),
Set zEI] = 0 unless I has exactly r(N — L) + 2L indices of
0, exactly 2(N — L) indices of 1 and exactly rL indices of 2;
set y[‘” = 0 unless J has exactly N +rL indices of 0, exactly
a1+ r)(N — L) indices of 1 and exactly L indices of 2, and
similarly for z,[fq. When this procedure is completed, there
still remain

2+ r)N
(L, L,vL,y(N - L),(N - L),(N - L))

blocks of triples (X[”, yYV], 5]y which means that, among
the (2 + r)N copies of construction (5.1), we pick

Mym 1) from r(N - L) copies,

my[o]zm from (N — L) copies,

[1] [11 ([,01 from (N — L) copies,

([,O]y([,o] 2] , from L copies,

[°] [21 ] from L copies, and

ﬂly([,o]z([,o] from rL copies.
They are compatible, which means that the sum of indices
at the same locations of their superscripts I, J and K is 2.

Among them, for each Z[K], there are
(1+r){(N-L) N+rL
(N-L),r(N-L) (N-L),L,rL

pairs (X, Y Y1) sharing it; for each Y], there are as many
pairs (X7, ZIK]y sharing it; for each X1, there are only

(= 578) (o 8- )

pairs (Y], ZX]) sharing it.
We select the larger former bound and set

M=2 ((n(rlfzf)),(?(rz;f)r,)) ((N Ifrf)rszw) +1.

Construct a Salem-Spencer set B. Select random integers
0<w; <M, j=0,1,2,.--,(2+r)N. As before, we obtain

at least

= 1M
r 20

> 24+r)N )

L,L,rL,r(N-L),(N-L),(N-1L)

non-zero triples (X, Y/1, X)) which share no variables
with each other, where M’ is the cardinality of B and M’ >
M'~*. Each of them corresponds to a matrix product of size

< q(N—L),q(N-—L)’qr(N—L) > .

For n = ¢¥~1) this turns into < n,n,n" >. Letting
M(n,n,n") = O(n***")) and summarizing, we obtain

(q+2)(2+r)N > cﬁ-q(N-L)u(l,l,r) .

Applying Stirling’s formula to approximate the value of
right-hand side, we have

(g+2)@" >

(2 +r)(2+r) N
[ﬂ"((l +7)(1— A)E+N0=A)(1 + ra)<l+fﬂ>] X

(cl)chN—l+gqu(l—ﬂ)w(l,l,r).
Letting € = 0, N = 0o, and taking N** roots, we obtain

(2 + r)+)g=Bu(1,1,r)
B+~ B+ + rp)atra)

(q + 2)(2+r) >

Taking logarithms on both sides and solving for w(1,1,r),
we obtain the estimate

1 ((1+7r)1 - ﬂ))(1+r)(l—ﬁ)
w(l,1,r) < YT log ( @+r)@m
x B +rB) 0+ O (g + 2)(2+r)) . (7.1)

7.2 The Case < n,n,n" > with0<r <1

We treat this case similarly to the case r > 1. The small
difference is that now

(25 2 (B )

< (WBEE) (0 B n)

Therefore, we set

o= (B (o 5 0) -

In the same way as in the preceeding subsection, we obtain
the exponent bound

(8P (21 — g))*-A
@+ r)@n

w(l,1,7) < x

1
(1-p)logg tog (

(r(1=B) +20)TC-P¥P (g1 2)0) (79



7.3 The Case <n",n,n'> withr>1>t>0

Due to (2.6), wew1lld1scuss<n n,n" >withr>1>t>
0, instead of < n",n,n* > with r > 1 >t > 0. In this case,
take the (t + 1 + r)N"' tensor power of (5.1), where N is
sufficiently large, so that (¢t + 1 + r)N is an integer. Each
variable ::[ ) in the t;ensor power is the tensor product of
(t+1+7r)N variables :t:J 1 one from each of (t+1+r)N copies
of the original algorithm (5.1). The subscript ¢ is a vector of
dimension (t + 1 + r)N with entries in {0,1,2,---,9,¢+ 1},
made up of the (t+1+r)N subscripts j. The superscript [I]
is a vector of dimension (£+1+r)N with entries in {0,1, 2},
made up of the (t + 1 + r)N superscripts [J].

Set L = [BN], where a small number 3 will be deter-
mined later on (roughly at the level between 0.005 and 0.05).
We currently have 6¢t11¥ ¢riples (X, Y1) ZIK]) Set

[” = 0 unless I has exactly tL + L + r(N — L) indices of 0,
exactly (t+1)(N—L) indices of 1 and exactly rL indices of 2;
set yJ[-"] = 0 unless J has exactly t(N — L)+ L+rL indices of
0, exactly (1+r)}(N — L) indices of 1, and exactly tL indices
of 2; set z,[cK] = 0 unless K has exactly tL + (N - L)+ rL
indices of 0, exactly (t + r)}{IN — L) indices of 1 and exactly
L indices of 2. When we complete this procedure, there still
remain at least

{(t+1+r)N
(tL, L,rL,t(N-L),(N—-L),r(N - L))

blocks of triples (X1, YW1 ZIX]) In accordance with this
est.imate, among the (t+1+r)N copies of construction (5.1),
pick
:cg)]ym M from r(N — L) copies,
.'::[lly[mz[l from ¢t(N — L) copies,
zll]ymzm] from (N — L) copies,
:c[oly([,m ([,2‘,]_, from L copies,
z,[)oly‘[,ﬂlzol from tL copies, and
Ef_{ly{f‘z{,"] from rL copies.
They are compatible, which means that the sum of indices
at the same locations of their superscripts I, J and K is 2.

Among them, for each block Z [X] there are

(2B ) (% -5 5°)

pairs (X1 YU}y sharing it; for each Y¥], there are

(8% ) (G 251 55")

pairs (X!, ZIX1y sharing it; for each X!, there are
(t+1)(N-L) tL+L+r(N-L)
t(N-L),(N-L) tL,L,r(N-L)

pairs (YU, ZKl) sharing it.
Since r > 1 > ¢ > 0, the largest of these three bounds is
the second one. So, we set

(1+r)(N-L)

M=2((N—L),r(N—-L)) (t(N—L)+L+rL>+1.

t(N - L),L,rL

19

Along the line of subsection 7.1, we now obtain the ex-
ponent bound

(1+n@ - p)tma-9
t+ 1+ r)ErieD

w(t) 1? r) S

1
(1 —ﬂ)logqlog(

x (tﬂ)w(t(l _ ﬁ) +(1+ r)ﬂ)(!(l—ﬂ)+(l+r)ﬂ)(q + 2)(!+1+')) .
(7.3)

8 Discussion on Optimization

In this section, we will compare our algorithms for rectangu-
lar matrix multiplication of this paper with other possible
effective algorithms and will choose some combination of
our designs so as to optimize the exponents. We will discuss
three cases, as in sections 6 and 7.

8.1 Thecase <n,n,n" > withr>1

In this case, if we apply square matrix multiplication algo-
rithm (cf. [CW90]), we obtain

M(n,n,n") =n"""M(n,n,n) =n""10(n*) = O(n"~'**).
Due to w < 2.376 ([CW90]),
w(l,,r)=r —1+4+w < r+1.376.

Let g(r) = r + 1.376, then g(r) is an increasing linear func-
tion in the interval [1,00) and passes through the points
(1,2.376) and (2,3.376), where g(1) = 2.375477 - - - agrees
with the result of section 8 of [CW90].

Let f(r) denote the right-hand side of (7.1}, that is, the
exponent estimate for < n,n,n” > based on the algorithm
of subsection 7.1. By combining the results of section 5
and 7, we obtain that f(r) is an increasing function in the
interval [1, +00) passing through the points (1, 2.38719) and
(2, 3.334). For r =1, f(1) = 2.38719 agrees with the result
of section 7 of [CW90), and f(2) = 3.334 agrees with the
result of section 5. Near the point r = 1.171, we have

f(r) = g(r) =r+1.376.
For g = 7 and 8 = 0.0336,

F(1.171) = 2.546462806 - - - < g(1.171) = 2.546477 - - .

According to this examination, (7.1) minimizes the ex-
ponent for r > 1.171 — ¢ for an appropriate small positive
€.

8.2 The Case < n,n,n" > with0<r<1

In this case, we let f(r) be the right-hand side of (7.2). f(r)
is a monotone increasing continuous function in the interval
[0, 1] passing through the points (0,2 + ¢) and (1, 2.38719).
The exponent estimate given by f(r) for r € [0, 1] is not yet
the best, however. A better exponent bound for r € [0,1] is
given by

2+0(1), 0<r<0204=aq,
w(lillr)__'{ 2(1~r)+{(r—a)w o -
or)toa)e | 0294 <r<1.

(8.1)
Here is its derivation:



w(1,1,r) < 2+40(1), 0 < r < 0.294 = & comes from [Co},
and we also have
20—-7r)+(r—ow

w1, 1,r) < =L

, a=0294<r<1.

Indeed,

M(n,n,n")
= M(nll:_: .nf‘:'%,nll:_; .nE%,nLi—Ll__'.“ -nT=a)
S M(nﬁ,nll_—-_;,nuﬁ'%g) .M(nﬁ’n{-—-_:-,n{:_:)
= O(n =2 )+ (nF=30)¢)

r—a)w

= o(n Ty |

Summarizing the two cases above, we have the optimal
choice of our parameters represented by the curves of Fig-
ure 1.

8.3 The Case <n',n,n" > withr>1>t>0

In this case, we first deduce a small upper bound on the
exponent w(t,1,r). [For lower bound, see (2.8).]

Theorem 8.1 Let

w(t,1,r) be the
<n',n,n" >. Then

ezponent  of

r+1l+e¢,
wt,1,7) =19 rO-o)+(-t)+w-1)(t-a)
k]

l-a

0<t<0294=a,
0294 <t<1.
(8.2)

Proof: For 0 <t < 0.294 = a, we have

M(nt,n,n")
=n""'M(n,n,nt)
<n""M(n,n,n%)
=n""10(n**) (cf. [Co))
= O(nr+1+e) ,

that is, w(t,1,7)=r+1+e
For o = 0.294 < t < 1, the current best exponent esti-
mate can be derived as follows:
M(nt,n,n") = M(n",n,n") .
t~a t—a 1-¢ t—a —t)a -
=M(n""T=a .nf=a nl== .nl_—u,n"rrc).— -ni=a)
r— t—a 1-—t 1—-tla t—ax t—ax t—a
SM(n l—_a’ni—_a',n T-—a ).M(nm’nl—_a)nl—_a)
t—a 1—¢ t—a
= O((w~ R (=8 ))
= O(n" - EEHE A
rize)lt(=t)4(=1)(=e)

=0(n a
Let f(r,t) denote the right-hand side of (7.3), let
g(r,0<t<a)=1+r+e¢,
and let
gra<tsy="0oDr @Dt E-E-a),
(8.3)

We combine these relations, and in figure 2, we represent
the resulting exponents in this parameter range.

9 Improved Complexity of Parallel Evaluation of
the Determinant and of the Inverse of a Matrix

In this section, we will apply the results of our section 8
in order to improve the bound on P(n) from O(n?®!) of
[Corollary 2.1] to O(n?3%"). Due to Theorems 2.1 and 2.4,
it suffices to improve the upper estimate O(n%3%3") for the
sequential complexity of the four following problems of rect-
angular matrix multiplication

1.28 1.25

<n ,yn,n >, <n1/3,'nz/3,n2 >,

<nn*®n>  <n% n%n’ >,
defined by the four following exponents:
w(1.25,1,1.25), w(1/3,2/3,2),
w(1,4/3,1), w(0.5,2,0.5).
By applying the results of section 8, we obtain that
w(1.25,1,1.25) = 1.25w(1,1,0.8) = 2.8368 - - - < 2.837

( by applying (8.1) for w = 2.376 );
w(1/3,2/3,2) = %w(0.5, 1,3) = 2.7398073 - - -

( by applying (8.2) for w = 2.376 );
w(1,4/3,1) =w(1,1,1.33---) = 2.699318 - - -
( by selecting ¢ =7, §=0.033 in (7.1) );
w(0.5,2,0.5) = 0.5w(1,1,4) = 2.6390965 - - -

( by selecting ¢ = 14, 8 = 0.0026 in (7.1) ).
Combining the four latter bounds with Theorems 2.1
and 2.4, we arrive at the bound P(n) = O(n?337).

10 Discussion

The bound P(n) = O(n?3%") can be decreased if w =
w(1,1,1) is decreased below 2.376 and also if a is increased
above 0.294. Namely, our argument above, together with
(8.1) and (8.2) implies that

P(n) = O(max{Pi(n), P(n), Ps(n), Ps(n)}) ,

where

P(n) = n',
w1 = w(1.25,1,1.25)
1.2524408-a)e  [cf, (8.1));
Pz(‘n) n*?

w2 w(1/3,2/3,2) = 2w(0.5,1,3)
(3) 3(1—-a)+40.54+(w—1)}{0.5—a)
3 l-a

[cf. (8.2)];

P3(n) = n“?, w;=w(1,4/3,1) <2.7;
Pi(n) = n“*,  ws=w(0.5,2,0.5) < 2.64.

Clearly, w) and w; decrease as w decreases and/or a in-
creases.

Smaller processor bounds, at the optimum level of n*
( still supporting polylogarithmic time bound ), have been
obtained for the cited fundamental matrix computations by
using randomization [P87], [KP91], [KP92], [KP9%4], [BP94],
[P96). Is it possible to improve our NC deterministic pro-
cessor bounds to the optimal level without using random-
ization?



w(l,1,r)

w(l,1,r) =r +1.376

lower bound is 1 +rif r > 1,

(6.1) andis 2if0<r<1.
(7.1)
//’
2 e T~
(7.2)
(8.1)
Notes:

1. The curve of w(1,1,r) = r + 1.376 is parallel to the lower bound 1 + r for r > 1;
2. (6.1) and (7.1) have the lower bound 1 + r as an asymptote as r — oo;

3. w(l,1,r) = r + 1.376 is existing record upper bound for r > 1.

b—

A 1
(0,0) 1 2 3 4

Figure 1: (6.1), (6.2), (7.1), (7.2) and (8.1) refer to the respective equations of this paper.

21



{\
1 (1171, 1)
(7.3) f(rt)

9(r,0.204 <t < 1)
.0.294

gr,0<t<0294) =1+r+e

T : —L_ 1y
oo ' 2 3 4 R4

Figure 2: the three areas are the optimal region of the three exponent functions for < nf,n,n" >, 0 <t < 1 < r, respectively.

References

[BCLR] D.

[BD76)

[Be4s]

[BM75]

[BP94]

[Co82]

(Co]

[Cs76]

[cWs1]

[CW90]

[GP89)

Binié M. Capovani, G. Lotti, and F. Romani,
O(n*7) complexity for matrix multiplication,
Inform. Process. Lett., 8, 234-235, 1979.

R. W. Brockett and D. Dobkin, On the Number
of Multiplications Required for Matrix Multiplica-
tions, SIAM J. on Complexity, 5, 4, 624-628, 1976.

F. A. Behrend, On Sets of Integers Which Contain
No Three Terms in Arithmetical Progression. Proc.
Nat. Acad. Sci. USA, 32, 331-332, 1946.

A. Borodin and I. Munro, The Computational
Complezity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

D. Bini and V. Y. Pan, Polynomial and Matriz
Computations, Vol.1: Fundamental Algorithms,
Birkhiuser Boston, 1994.

D. Coppersmith, Rapid Multiplication of Rectan-
gular Matrices, SIAM J. Comput., 11, 3, 467-471,
1982.

D. Coppersmith, Rectangular Matrix Multipli-
cation Revisited, Research Report 20498, IBM
Thomas J. Watson Research Center, Yorktown
Heights, NY 10598, USA, 1996.

L. Csanky, Fast Parallel Matrix Inversion Algo-
rithm, SIAM J. Computing, 5, 4, 618-623, 1976.

D. Coppersmith and S. Winograd, On the Aysmp-
totic Complexity of Matrix Multiplication, STAM
J. Comput., 11, 472-492, 1981.

D. Coppersmith and S. Winograd, Matrix Mul-
tiplication via Arithmetic Progressions, J. Symb.
Comp., 9, 251-280, 1990.

Z. Galil and V. Y. Pan, Parallel Evaluation of the
Determinant and of the Inverse of a Matrix, Infor-
mation Proc. Letters, 30, 41-45, 1989.

22

(KPo1]

[KP92)

[KP94]

[P72)

[Pan]

[Pan,a)

[P87)

[P96]

[PST78]

E. Kaltofen and V. Y. Pan, Processor Efficient Par-
allel Solution of Linear Systems over an Abstract
Field, Proc. of 9rd Ann. ACM Symp. on Parallel
Algorithms and Architectures, 180-191, ACM Press,
New York, 1991.

E. Kaltofen and V. Y. Pan, Processor Efficient Par-
allel Solution of Linear Systems II. The Positive
Characteristic and Singular Cases, Proc. of $3rd
Ann. IEEE Symp. on Foundations of Computer
Science, 714-723, IEEE Computer Society Press,
1992.

E. Kaltofen and V. Y. Pan, Parallel Solution
of Toeplitz and Toeplitz-like Linear Systems over
Fields of Small Positive Characteristic, Proc. of Ist
Intern. Symp. on Parallel Symbolic Computation
(PASCO’94), Linz, Austria (Sept. 1994), Lecture
Notes Series in Computing, 5, 225-233, World Sci-
entific Publishing Company, Singapore, 1994.

V. Y. Pan, On Schemes for the Computation of
Products and Inverse of Matrices, Uspekhi Mat.
Nauk, 27, 5, 249-250, 1972. (In Russian.)

V. Y. Pan, How to Multiply Matrices Faster, Lec-
ture Notes in Computer Science, 179, Springer,
Berlin, 1984.

V. Y. Pan, How Can We Speed-up Matrix Multi-
plication 7, SIAM Rewiew, 26, 3, 393-415, 1984.

V. Y. Pan, Complexity of Parallel Matrix Compu-
tations, Theoretical Computer Science, 54, 65-85,
1987.

V. Y. Pan, Parallel Computation of Polynomial
GCD and Some Related Parallel Computations
over Abstract Fields, Theoretical Computer Sci-
ence, 162, 2, 173-223, 1996.

F. P. Preparata and D. V. Sarwate, An Improved
Parallel Processor Bound in Fast Matrix Inversion,
Inform. Proc. Letters, 7, 3, 148-149, 1978.



[Sc81)

[SS42)

[St69)

[St86]

A. Schonhage, Partial and Total Matrix Multipli-
cation, SIAM J. Comput., 10, 3, 434-456, 1981.

R. Salem and D. C. Spencer, On Sets of Integers
Which Contain No Three Terms in Arithmetical
Progresion. Proc. Nat. Acad. Sci. USA, 28, 561-
563, 1942.

V. Strassen, Gaussian Elimination Is Not Optimal,
Numerische Math., 13, 354-356, 1969.

V. Strassen, The Asymptotic Spectrum of Tensors
and the Exponent of Matrix Multiplication, Proc.
27th Ann. IEEE Symp. on Foundations of Com-
puter Science, 49-54, 1986.

23



