
Fast Rectangular Matrix Multiplications and
Improving Parallel Matrix Computations *

Xiaohan Huang[ll and Victor Y. Pan[21

[11 Ph.D. Program in Mathematics

Graduate School and University Center, City University of New York

33 West 42nd Street, New York, NY 10036, USA

Internet: xhuang@email.gc. cuny.edu

[21 Department of Mathematics and Computer Science

Lehman College, City University of New York

Bronx, NY 10468, USA

Internet: vpan@lcvax.lehman. cuny.edu

Abstract

Galil and Pan, 1984, reduced parallel evaluation of the in-
verse, the determinant and the characteristic polynomial of
a matrix and solving a nonsingular linear system of equw
tions to sequential multiplication of rectangular matrices.
We asymptotically accelerate the known algorithms for the
latter problem to yield an improvement of the current record
~ymptotic bounds on the deterministic arithmetic NC pr~
ceaaor complexit of the four former ones, from order of

2n2a5’ to 0(n2E 7). The improvement of rectangular ma-
trix multiplication has alao impact on the record complexity
estimates for polynomial factorization in finite fields.

1 Introduction

Computing the inverse, the determinant and the character-
istic polynomial of an n x n matrix and solving a nonaingular
linear system of n equations are among the most fundament-
al problems of matrix computations. Their first NC solu-
tion was given by Csanky in hw seminal paper [CS76]. Under
the EREW PRAM model of parallel computing, Csanky’s
algorithm can be implemented by using 0(log2 n) time and
O(n”+l) processors, provided that O(n”) arithmetic op-
erations suffice in order to multiply a pair of n x n ma-
trices (current record bounda are 2 ~ w < 2.37547 . . .
[CW90]). The processor bound was later improved first to
0(nW+06) [PS78] and then to O(n’’’+O”J(W)))) for a positive
6(u) [GP89].

“Supportedby NSF Grant CCR 9625344 and PSC CUNY Award
667340.

Permission to make digital/hwd copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is @en that copying is by permission of
ACM, Inc. lb copy otherwse, to republish, to post on servemor
to redistribute to lists, requires prior specific permission and/or
a fee. PASCO’97, Wailea, Maui, Hawaii; @1997 ACM 0-89791-
951-3/97/0007. . .US$3.50

Our present work was motivated by the paper [GP89],
which reduced the parallel solution of the cited fundamental
problems of matrix computations to sequential rectangular
matrix multiplication. B=ed on the known results for the
latter roblem, GaliI and Pan reached the processor bound

t0(n2s 1) for the former problems. In our present paper,
we focused on the improvement of the known solution alg~
rithms for sequent iaf rectangular matrix multiplication by
means of extending the effective techniques of [CWW] de-
veloped for square matrix multiplication.

This enabled to yield the desired improvements of both
sequential rectangular matrix mult iplicat ion and, therefore,
the parallel complexity bounds for matrix computations,
for which we support the time bound 0(log2 n) by using
O(n2s37) arithmetic processors. Our improvement of rect-
angular matrix multiplication has further theoretical appli-
cations, in particular, to improving the known estimates for
the complexity of the factorization of a univariate polyn~
mid over finite fielde, which we will report in a sepuate
paper. Like [CW90], we deal with algorithms that only give
=Yruptotic improvement of the known complexity bounds
for very large n, so the algorithms are not assumed to be
practically used. Our complexity bounds are determinis-
tic; they can be improved substantially, to the level of n“
for processors, by using randomization (see [P87], [KP91],
[KP92], [KP94], [BP94], and [P96]).

2 Definitions and Some Background

In this section, we will first recall the definitions and record
complexity estimates of [GP89] for parallel solution of the
three following problems:

1) compute the determinant and the characteristic poly-
nomial of a given n x n rational, real, or complex matrix
A;

2) solve a linear system Az = b;
3) invert A.

Definition 2.1: P(n) is the minimum number of arith-
metic processors supporting 0(log2 n) parallel time bound

11

for solving problems 1), 2) and 3) under the ERBW PR.AM
model of parallel computing, P(*, m, n, p) is the minimum
number of arithmetic processors supporting O(log(natap))
parallel time bound for multiplication of m x n by n x p
matrices; P(*, 7a)= F’(*, n, n,n).

The following theorem and ita corollary are from [GP89]:

Theorem 2.1 The solution to Problem 1) and 2) can be
mmputed by using 0(log2 n) pamllel steps and simultane-
ously

P(det, n) = max{P(*, nl”zs, n, nl”zs), P(*, no’s, n2, n“”s)}

processors.
The solution to Problem 3) can be wmputed by using

O(log2 n) step9 and

P(n) = ~max{P(det, n), P(*, u + 1, v, nz), P(*, n, nu, n)}

ptvcessors, where the minimum is over all pairs v and u such
that

vu~n+l~(v+l)u.

Substitute the bound P(*, n) = 0(n2”37e) and obtain

Corollary 2.1 The solutions to Problems 1), 2) and 3 can
)be wmputed by wing 0(log2 n) steps and P(n) = O(n 561)

arithmetic processors.

Now, we are motivated to seek some improvements of the
known algorithms for rectangular matrix multiplication. We
will W recall some definitions and background material.

Given a pair of m x n and n x p matrices X = [zi~]
and Y = [~j,k], the problem of computing the m x p matrix
XY is called m x n by n x p matrix multiplication and is
denoted < m, n, p >. Here and hereafter, we will assume
that the subscripts i, j} and k range from O to m-1, n–1,
and p – 1, respectively. Hereafter, A(m, n, p) denote the
minimum number of arithmetic operations required for
<m, n,p>.

Definition 2.2: bilinear algorithms for matriz multtpliaa-
tion. Given a pair of m x n and n x p matrices X = [~i,j],
Y = [~j,k], compute XY in the following order: First evalu-
ate the linear forms in the z-v-miables and in the ~-variables,

then the products PQ = LqL~ for q = O, 1,. . ~, M -1, and
tinally the entrk ~j ~ij~jk of XY, u the linear Comblnw
tions

M-1

~xij?ljk = ~ f;;~LqL~ , (2.2)
i q=o

where ~ijq, f~k md f~~’ are conataute such that (2.1) and
“a(2.2) are the I entities m the indeterminates ~ij, ~j~, for

i=o, l,. ..,l; j=o, l,l,n —l. k=l), l,. ... p- 1.
M, the total number of all multiplications of Lq by L;, is
called the mnk of the algorithm, and the multiplications of
Lq by L; are called the bilinear steps of the algorithm or
bilinear multiplications.

Let A4(m, n, p) denote the minimum M in all bilinear
algorithms for < m, n, p >. Hereafter, we will focus on esti-
mating M(m, n, p) from above, motivated by the following
known bound (cf. e.g. pan]):

A(mk, nh,ph) = O((M(m, n,p))h) as h + co . (2.3)

We also have the following simple and well-known estimates
(cf. e.g. [Pan]):

Al(m, n, 1) = mn , (2.4)

M(m, n, p) s M(m/q, n/g, p/q)M(q, q, g) (2.5)

for any q that divides m, n, and p. Furthermore, we recall
that

M(m, n,p) = &f(m, p, n)
= M(n, m,p) = fl~$,:] (2.6)= M@, n, m) =

(cf. [P72] or [CW81]);

M(n, n, r(n)) = n2 + o(n)

if r(n) = o(log n), n 4 co (cf. [BD76]);

A(n, n, nr) = 0(n2+’)

for any c >0 if r ~ 0.197, n + m (cf. [C082]);

A(n, n, tar) = 0(n2+’)

for any c >0 if r ~ 0.294, n + oo (cf. [Co]).
By extending (2.5), we obtain that

&f(m, n, p) = O(qw) max(mn, np, pm)/q2,
q = min(m, n,p) + m ,

provided that M(q, q, q) = O(q’”).
Let us next recall or introduce some basic concepts and

definitions concerning matrix multiplication and recall some
basic results.

The notation L +< m, n, p > indicates the existence of
a biliear algorithm requiring L eaeemtiaI(biliiear) multipli-
cations in order to compute the indicated matrix product.
If the algorithm is an “any precision approximation (APA)

algorithm” [BCLR], we write L ~< m, n, p >. If k d&
joint matrix products of the sise < m, n, p > are computed
(sharing no variables), we write L + k < m, n,p >.

In this paper, we study the problems of matrix mul-
tiplication of the form < n“, n’, n: > with positive in-
gers n and non-negative rational numbers r, s, and t. Let
o(n~(r,~,~)) denote the bilinear complexity of < n“, n’, n’ >,
that is, O(n’’’”t)”t)) bilinear multiplications autlice for eolv-
ing the problem < n’, n“, nt >. The exponent w(r, u,t)
will be called the (matrix multiplication) exponent for
< n“, n’, n: >. Due to (2.6), we have

w(r, s,t) = w(t, r,s) = w(s, t,r)
= w(r, t, 8) = W(S,r, t) = w(t, s,r). (2,7)

Therefore, it stices to estimate any one of the six latter
exponenta for given n, r, s and t.

The exponents w(r, s, t)satisfy the following homogene-
ity equation: w(ar, as, at) = aw(r, s, t) since

O(nu(mr,m,at)) = O((na)w(’’a’t)) = O(n-w(r’””)) .

12

There is the straightforward information lower bound:

u(r, s,t)~max{r +s, s+t, t+r} . (2.8)

If r = s = t, then < nr, n“, nt > represents the problem
< n’, n“, n’ > of multiplication of a square matrix by a
square matrix. Computing ite bilinear complexity is reduced
to computing the exponent w(r, r, r) = r. w(1, 1, 1), that is,
to computing o(1, 1, 1), by homogeneity. Current record
upper bound w(1, 1, 1) = w <2.376 is due to [CW90].

If two values among r, s and t are equal to each other,
say, if r = s # t,then

<n’, n’, nt >

represents the problem of mult implicationof a square matrix
by a rectangular matrix. Computing its bilinear complexity
is reduced to computing the exponent

w(r, r,t) = rw(l,l, t/r),

that is, to computing w(1, 1, t/r), by homogeneityy. We recall
the upper bound

w(1, l,t/r) = 2 +0(1) for t/r <0.294, [Co],

which matches the lower bound w(1, 1, t/r) z 2 of (2.8), up
to the term o(l).

If r, s and t are distinct from each other, < n’, n’, nt >
represents the problem of multiplication of a recttmgular
matrix by a rectangular matrix. In addition, < n’, n“, n’ >
(s # r) aIso represents the problem of multiplication of rect-
angular matrix by rectangular matrix. In this paper, we
will present algorithms for multiplication of matrices of such
sizes.

We will need the following basic results.

Theorem 2.2 (Schonhage [%81]) Assume given a field F,
cOeflCient9 ~i,j,h,l, ~j,k,h,l, Vk,i,h,i in F(A) (the fid of @jo-
nal functions in a single indeterminate A], and polynomials
f, over F, such that

2(2QiiJh1’x’:))(z@Jkhlv’’J)(27kih’z:))
=x (5554424?)+x’gf,(’:?,~%zf~)

h i=l j=l k=l 9>0
(h) (h) (h) ~. ‘I’hen, given t > 0,is an identity in zi. i , Yi.h , zk.~,->. .,,.-.. -,-

one can wnstruct an algorithm to multiply N x N square
matrices in 0(N3T+’) opemtions, when T satisfies

Theorem 2.2 enables us to estimate w(r,s, t) from above
as soon as we obtain a bilinear algorithm for a d~joint ma-
trix multiplication, in particular, for k disjoint problems
<m, n,p>.

Theorem 2.3 (Salem and Spencer [SS42]) Given c > 0,

there ezists M, = 2C1’2 such that for all M > M,, there is
a set B of M’ > M1-’ distinct integers, O < bl < &t <
. . . < bM, < M/2, with no three terms in an arithmetic
progression: for any triple of bi, bj, bk ~ B, we have

bi + bj = zbk iff b~=bj=bk.

In our presentation, we will closely follow the line of
[CW90]. In particular, as in [CW90], we will use theorem
2.3 in order to trmaform tensor product construction into
the form k. < m, n, p > for sufficiently large k, m, n and p.

Due to the application to parallel computing, we will also
need the following result, which extends Proposition 4.3.2 of
[BP94] ~from the case of square to rectangular matrices:

Theorem 2.4 The product XY of an nt’ x n’ matriz X by
an n* x n’$ matriz Y can be wmputed by wing pamllel time
O((t + r + 1)s log n) and O(n=(t’l’’)”) arithmetic processors,
where n > 1, s ~ co, and U(t, 1, r) w any number eaxeeding
the value w(t, 1, r) defined above.

Proofi With no loss of generality, we may assume (see, for
instance, [BM75], section 2.5, or [Pan]) that art nt x n by
n x n’ matrix product XOYO is computed by means of a
bilinear algorithm (cf. our Definition 2.2).

Now we apply the tensor product construction to such
a bilinear algorithm, that ia, we apply this algorithm r~
cursively in order to multiply the matrices X and Y whose
entries are n~ x n and n x n’ matrices, respectively. This
will “ve us a recursive bilinear algorithms for multiplication
of n1? x n’ by n“ x n’” matrices, for s = 1, 2, ..., and we
have

t.+l< t.+ (1 + max(r, t))loga n + logz M + 4,

p~+l < max{n[’+t+z)(’+l), n(r+t)(a+l)~ ,p, M) ,

where N = nmMl+r,l+~.r+t), t, Wd pr denote the padel

time and the number of arithmetic processors uded in
the above recursive bilinear algorithm for nl x n’ matrix
multiplication. Since M s n=(t’l’r), the latter recursive
relations immediately lead to Theorem 2.4. ❑

3 Basic Algorithm for < n, n, nz >

In this and the next sections, we will extensively use the
techniques of [CW90] (compare [Pan] and [St86] on some
preceding work). We begin with a basic algorithm horn
[CW90], equation (5), which gives us one of the moat effec-
tive examples of the trilinear aggregating techniques, first
introduced in [P72] (cf. also [Pan] and [Pan,a]). For a given
value of the integer g, we will call this construction Dq.

~:=, A-’(z&!] + A#)(yp + A#)(zyl + Azy)

- ~-s(~!]+~’2:=,4%$]+~2x:=, I/!])x

(Zgl + A2~:=, 2{’1) + [A-’- qA-’](z$l)(#l)(zfl)

[01 [11+ zyj~llzfl) + O(A).= Z:=,(4’WZY + ZpvoZi
(3.1)

The z-variables in (3.1) consist of two blocks:

Xt”l = {Z~l} ad X [l] = {Zyl,..., z}l}.

Similarly, the y-variables consist of blocks YIO1and Y[ll, and
the z-variables consist of blocks Z[”l and 2111.

Our next goal is to estimate the exponent u(1, 1, 2).
Consider the 41@h tensor power of (3.1). Each variable

z~l in the tensor power is the tensor product of 4N variables

13

z:], one from each of 4N copies of the original algorithm
(3.1). j rangee in {O, 1,2,0. c, q}. The subscript i is a vector
of dimension 4N formed by the 4N subscripts j. J ranges
in {O, 1}. The superscript [~ is a vector of dimension 4N
having entries in {O, 1}, formed by the 4N superscripts [J1.
Clearly, [1] is uniquely determined by i.

In our tensor power, there are 34N triples

(XVI, y[Jl, z[~l)i

each of them is a matrix product of some size < m, n, p >
with mnp = q4N. We will eliminate some triples by setting
to zero some blocks of variablm z, y and/or z, so as to stay

N N ~N > sh~ing nowith some triples of the form < q , q , q
variables. Then we will =timate the number of the remain-
ing triplw, which will define the exponent w(1, 1, 2). When
we zero a block X[r] (respectively, Y[l], 2[1]), we will set to
zero all the z-(respectively, y-, z-) variables with the given
superscript pattern.

Hereafter,
()Q1, Q2Q””, Q. ‘

for positive integers Q,

Q1, Q2, ”””, Q, satisfying

Q1+Q2+”””+Q. =Q,

denote the multinominal expansion coefficient. Our presen-
tation will closely follow section 6 of [CW90].

For all i and 1, set z!] = O, unless 1 consists of 2N
indices of O and exactly as many indices of 1. For all j
and J, set y~] = O unless J consists of N indices of O and

[K] when we complete3N indices of 1, and similarly for Zh .

thk procedure, there still remain
(2N%N) “O& ‘f

triples (Xf’1, YIJI, ZIKI). The blocks are compatible, whkh
means that the locations of their zero indices are disjoint, i.e.
among the superscript vectors of X(llYIJ]ZIKI, there is one
and only one zero in the location of the same component.
(For example, for N =2, the block

X[lolloloo]y[llolloll] z[ollollll]

is compatible). Among them, for each block of vari-

()

3N
ables ZIKI, there are 2N, N pail% (XI’], YIJI) shaing

this block; for each block Y{KI, there are also
()

3N
2N, N

pairs (X[rl, 21*I) sharing it; and for each block X1ll, there

()

2N
are N, N pairs (YIJI, ZIK~) sharing it. Set M =

()

3N
2 2N, N + 1. Select a sufficiently small positive ~ and

a sufficiently large N, so that the latter value M would sat-
isfi the assumptions of the Salem-Spencer theorem for this
t; construct a Salem-Spencer set B (cf. [SS42], [Bs46], and
[CW90]), where the cardinality of B is M’ ~ M1-C. In
the next section, by reviding the techniques of section 6 of
[CW90], we obtain at least

non-zero block products represented by the triples

(x[~ly[JIzIKl)

(3.2)

and pailWiSS sharing no variables X1ll, YIJI or ZIKI.
The fine structure of each block scalar product represents

a matrix product of the size

<qN, qN, (qN)2 >.

For qN = n, this turns into < n, n, n2 >. For example, for
N = 1, the fine structure of the compatible triple

X[lolo]y[llol]z[olll]

is
-Xj:Dylytl:lW 2$:11 > i,j, k,l=l,2,q.

which represents the matrix product

Xqxqyqxqzzqaxq

We deduce from the above algorithm and from theorem
2.2 that

(9+ 2)4N ~ c~n41,1,2) (3.3)

where c is the overhead constant of O(nW(l*l*2J) aud H is
defined by (3.2). By applying Stirling’s formula

(3.4)

in order to estimate H, we obtain

(q+ 2)4N ~ C’N-*(l-’)
($)N(3N’qNw(’’1’2) ~ ’35)

where c’ is a constant. Let e + 0, N + m, take the Nth
roots and then logarithms of both sides of (3.5), and obtain
that

()
(9+ 2)42 $ q@!’.2) ,

‘10427(:J2)4)41,1>2) < ~ogq

The right-hand side is minimized for q = 10:

w(1, 1, 2) ~ 3.339848783 . . . ~ 3.3399. (3.6)

4 Estimating the Number of Disjoint Nonscalar
Block Products

In this section, we will proceed again along the line of section
6 of [CW90] modified slightly so as to estimate u(I, 1, 2),
rather than u(1, 1, 1).

Choose integers wj at random in the interval from O to
M–l, forj =0,1,2,... , 4N, and compute the integers

4N
bx(~) = ~Ijwj (mod M),

j=l

bY(J) - UJO+~Jjwj (mod M),
j=l

b,z(K) = (Wo + S(2 – Kj)wj)/2 (mod M) ,
j=l

14

where l=(Zl, . . ,~4N)~ {0,1}4N,~j ~O~rLi=L “.,
4N. As in [CW90], obtain that

bx(l) + by(l) - 2bz(K) s O mod M ,

for any triple of blocks (X[rl, YIJ1, ZIKI) whose product
Xi~lYIJIZIKl appears in the trilinear form. [Indeed, examine
the contribution of each Wj and observe that for each of the
three terms

~$]y:l]z[l] [1] [0] [1] ~[l]v~l]z$],
t? ‘lVoz:l*

we have lj + Jj + Kj = 2 in the basic construction.]
Set X[’] = O unless bx (Z) is in the Salem-Spencer set

B, set YIJI = O unless by(J) G B, and set ZIKI = O
unless bz (K) E B. Then, for each triple (I, J, K), where
XlIlylJlZ[Kl # (), we have

bx(I) + by(l) s 2bZ(K) mod M,
bX(I), by(J), bZ(K) E 1?,

and therefore,

bx(Z) = by(,l) = bz(K) ,

by the virtue of Salem-Spencer’s theorem.
We recall that the block XIJI is the set of q4~ variables

x!], with nonzero indices in 2N specified places, that is,
sharing a common superscript 1, a nonzero bIock is one
which has not yet been set to zero; blocks x1~l, YIJI, Z(KI
are compatible if the locations of their zero indices are pair-
wise dujoint. Let us complete the pruning procedure, as in
[CW90]. Make lists of triples (X[’l, Y[J], Z[KJ) representing
compatible nonzero blocks, with

bx(I) = by(J) = bz(K) = b

for all b E B. If any triple (Xl’], YIJ1, ZIK]) on the list shares

a block (say, ZIKI) with another triple (X1l’], YIJ’I, ZIK’l)
occurring earlier in the list, then eliminate the former triple
by setting to zero one of the other blocks (say, X(’]). Now,
we apply the counting argument of [CW90] and extend the
lemma of section 6 of [CW90] as follows:

Lemma 4.1 The ezpected number of triples remaining on
each list, after pruning, is at least

&(JLJ ~

Proof: Compare the expected number,
(2::IN)M-2

of triples in the list before pruning, for each b ~ B, with the
upper estimate

%%) ((a -l)M-3
for the expected number of unordered pairs of compatible
triples sharing a Z-block, a Y-block, or an X-block. The
latter number is an upper bound on the expected number
of eliminated pairs of triples, which is easily showed to be
not less than the expected number of eliminated triples.
Comparison of the two upper estimates gives us Lemma

4.1. ❑

It follows from Lemma 4.1 that the expected number of
triples remaining on all lists after pruning (average over all
the choices of wj) is at least H of (3.2). Therefore, we may
fix a choice of wj that achieves at least as many triples on
the list.

The procedure of computing H can be summarized in
the following way:

Procedure 4.1
Step 1: Firat compute the number of triples of blocks,

having a tixed patern < n’, n’, nt > among all the triples
(X[rl, YIJI, ZIKI) that we have after taking the tensor power
of a given basic trilinear algorithm [like (3.1)]. In section

3<n’na)n’>=<nn1n2>mdtherewe(Ah)
special triples among a total of 34N.

Step 2: Compute the numbers of pairs (X[~], YIJ]) shar-
ing a single block ZIK1, of pairs (XI’], ZIKI) sharing a single
block YIJI, and of pairs (YIJI, ZIKI) sharing a single block
XIII (in section 3, these numbers are

respectively). Determine the largest of them (here, the

(,)largest is 2~NN).

Step 3: Perfo~m the pruning procedure extending the
one presented in this section in the straightforward way and
show that there still remain at least

H=
the number from step 1

4 x the largest from step 2

triples (Xl’], Y[J], ZIKI) sharing no variables

The latter procedure will be repeatedly applied in the
next sections.

5 Improved Algorithm for < n, n, n2 >

In this section, we will improve our upper bound on the
exponent U(1, 1,2) from 3.3399 to 3.333953 by combining
the technique of Section 7 of [CW90] and the same ideas
as in the previous section. The improvement will be due
to using a more complicated starting algorithm, that is, the
basic algorithm from [CW90], equation (10):

[0] [0] [2] [0] [2] [01+ ~$~1~flz$l + o(~).+Zo!/0Zq+l+Zo Y*+l ZO
(5.1)

15

The subscripts now form three classes: {O}, {g + 1} and
{1,2,.. , q}, which will again be denoted i. Again, the sub-
scripts uniquely determine the superscripts (block indices).

Take the 4ZV*hpower of this construction. Each variable
m!~lin the tensor power is the tensor product of 4N variables

~Jj
Zj , one from each of 4N copies of the original algorithm
(5.1). Its subscript i is a vector of dimension 4N with entries
in{ 0)1,2, . . . , q, q + 1}, formed by the 4N subscripts j. Its
superscript [~ is a vector of dimension 4N with entries in
{O, 1,2}, formed by the 4N superscripts [~.

Set L = [@Nl, where ,8 is a small positive number
(which will be specified later on, roughly at the level of
0.02). As in the previous section, we currently have 64~
triples (X[l], Y[J], Z(K]). Set z!] = O, unless 1 has exactly
2N indices of O, exactly 2N - 2L indices of 1, and exactly

lJ1 – O unless J has exactly N + 2L2L indices of 2; set y. – ,
indices of O, exxtly !lN - 3L indices of 1, and exactly L

t~l men we complete thisindices of 2, and similarly for Zk .
procedure, there still remain

(

4N
L, L,2L,2N-2L, N–L, N–L)

blocks of triples (X(’], Y[J], ZIKI). Namely, among the 4N
copies of construction (5.1), we pick

z~l~~lz~l] from 2N - 2L copies,
z[l]~~lzjll from N - L copie,
z[l]vjl]zg]) ~om N _ L Copi=,

10] [0] [2]So y. Zg+l from L copies,
[o] [z] [o] ~om L copi~ ~d

~o %+lzo
z[~l~~]z~] from 2L copies.

The; are compatible, which means that the sum of indices
at the same locations of their superscripts 1, J and K is 2.
Among them, for each ZIK1, there are

(

3N - 3L

)(

N+2L
2N–2L, N–L N–L,2L, L)

pairs (X[r], Y[J]) sharing it; for esch YIK1, there areas many
pairs (X[’], Z[K]) sharing it; but for each X[’l, there are only

(

2N

)(

2N - 2L
2N - 2L, L, L N- L, N-L)

paira (YIJI, ZIKI) sharing it.
Select the linger (that is, the former) of the two numbers

of pairs and set

(3N - 3L

)(

N+2L
‘=2 2N-2L, N-L)N–L,2L, L ‘1

Construct a Salem-Spencer set l?. Select random integers
O~wj <M, j = 0,1,2,... , 4N. Then, by following the
lines of section 7 of [CW90] and of our section 4, in partic-
ular, by applying Procedure 4.1, we obtain at least

H*= ~~
(

4N
4MZ L, L,2L,2N-2L, N–L, N-L)

non-zero triples (X[’], Y[J], Z[K]),~hicb share no variables
with each other, where M’ ~ M - , for a tied positive c, ia

the cardinality of B. Each of these triples corresponds to a
matrix product of size

< qN-=, qN-=, (qN-=)~ > ,

whkh turnsinto < ra,n,nz > for n = qN-L.

M(n, n,nz) = @@,l,2)

Letting
) and summarizing our estimates,

we obtain

(q+ 2)’N ~ c~*q(N-L)w(l,l!2) .

Applying Stirling’s formula to the value H“, we obtain that

(c’) N’cN-1+~’qN(’-6)w(111’2).

Let E+ O, N + m, take I@h roots and then logarithms on
both sides and deduce that

(1-jil)w(l,l,z)
(9+ a’ ~ @(3 - s/q(3-::?(l + Zp)(l+wv q >

‘(1’1’2)s (1 -;)logq x

(log /3~(3 - 3/3)@-’~)(l + 2/3)(’+2~)(q + 2)’
256)

9 = 9 and 0 = 0.016 minimize the right-hand side of the
latter inequality, and we obtain that

W(l, 1,2) <3.333953...<3.334.

6 Basic Algorithm for < n’, n’, nt >

In this section, we will combine the ideas and techniques of
sections 3 and 4 so as to develop the bssic algorithms for esti-
mating the exponenta of rectangular matrix multiplications
of rubltrary shape, that is, for the problem < n’, n-, n: >.
For convenience, we first classify the triples < n“, n’, n~ >,
for all rational r, .9, t 55 follows:

(l)<n’, n,n>withr>l;
(2)<n, n,nt>with O~t~l;
(3)<nr, n,n’>withr>l>t>0.
Indeed, we have three respective classes of triples:
(1) Among r, s, t, two are equal and the third one is

larger. In th~ csse, we may assume r > s = t [cf. (2.1)].
Then, by homogeneity of the exponent,

u(r, s,t) = sw(r/8, 1, 1), r/s >1.

(2) Among r, s, t, two are equal and the third one is not
larger. In thw case, we may assume r = s ~ t. Then, by
homogeneity of the exponent,

w(r, s,t) = rw(l,l, t/r), O ~ t/r ~ 1.

(3) Among r, s, t, all three are pairwise distinct. In this
case, we may assume r > s > t. Then, by homogeneity of
the exponent,

cd(r, s, t) = su(r/s, 1, t/s), r/s >1> t/s >0.

6.1 The case < nr, n,n > with r >1

Due to (2.6), we may assume that < n,n, nr > is case (l).
We begin with the construction (3.1) again. Take the (2+
r) Nkh tensor power of (3.1), where N is suiliciently large so

that (2+ r)N is an integer. Each variable Zy] in the tensor
power ia the tensor product of (2 + r)ZV variables z:], one
from each of (2 + r)N copies of the original algorithm (3.1).
Its subscript i is a vector of dimension (2+ r)N with entries
in {0,1,2}. , g}, m~e up of the (2+ r)N su~lpts j. Its
superscript [~ ia a vector of dimension (2+ r)iV with entries
in {O, l}, made up of the (2+ r)N superscripts [~. Clearly,
[~ is uniquely determined by i.

In our tensor power, there are totally 3N(2+’J triples
(XI~l, YIJI, ZIKI). We will eliminate some triples and pre-
serve those of dimension < qN, qN, (qN)’ >, sharing no vari-
ables with each other. Then we will estimate the number of
the remaining triples.

Set z!] = O unless 1 has exactly rN indices of O and

exactly 2N indices of 1, set y:] = O unless J has exactly
N indices of O and exactly (1 + r)N indices of 1, and sim-

‘K] When we complete thw procedure, thereilarly for Zk .

‘ti’lremtin(lV,IV,rN)(2+‘)N blo& of tripl= (xf~l, YIJI, ZIKI).

They are compatible, w~ich means that the locations of their
zero indices are disjoint. Among them, for each ZIKI, there

‘e PJ2N)pairs (X[ll, YIJI) sharing it; for each Y(KI,

there’ are as m~y paira (x(’], ZIKI) sharing it; for each xI’],

()there are only ~~N pairs (Y[J], Z[K]) sharing it. We se-

lect the larger ~formw’) of the two latter estimatea and set

‘=2((F:~N)+’
Construct a Salem-Spencer set B (cf. [SS42] and [Be46]),
where the cardinality of B is M’ ~ Ml ‘c. In the same way
as in the previous sections, we obtain at least

non-zero triples (X[l], Y(JI, Z[K]) sharing no variables with
each other, that ia, our algorithm computes at lead E block
products (X1ll, YIJI, ZIKI). The fine structure of each block
product is a matrix product of size

< qN, qN, (gN)r > ,

which is < n, n, n’ > for qN = n. It follows that

(q+ 2)@+r)N > Cfin(u(l,l,r)
>

where c is the overhead constant of O(nw(l !1~r)). App] ying

Stirling’s formula to approximate fi, we obtain

()(q+z)(*+r)N ~ ~~-l(l-e) (2+ ‘)(2+’) N ~cl~N.qNi.41,1,r)
(1+ r)(l+r) 1

where c and c’ are constants. Let e -t O, N + cm, take Nkh
roots, and obtain

By solving for w(1, 1, r), we obtain

1
w(l, l,r) < — log (1+ r)(’+’)(q + 2)(2+r)

log q ((z+ r)(2+r))
(6.1)

6.2 The Case <n, n,n*> with O<t~l

We replace tby r, for convenience. In th~ case the algorithm
is almost completely the same as in the case r > 1. The
small difference is that we now set

()2N
‘=2 N,N ‘1’

‘ince(wJ=ce&((x”N)‘eproced=hsub
section 6.1 and obtain that

1

(

22r’ (q + 2)(2+’)
w(l, l,r) ~ — log

log q)(2+ r)(z+r) ‘ (6.2)

for O<r <l.

6,3 The Case< nr, n,nt>withr>l> t>O

Due to (2,6), we may sseume that < nk, n, n’ > with r >1>
t> O,instead of<n’, n,nt>withr>l>t>O. In this
case, we take the (t+1 + r)Nth tensor power of (3.1), where
N is sufficiently large so that (t+ 1 + r)N ia an integer.
In our tensor power, there are a total of 3N(k+l+r) triples
(X[rl, YIJI, ZIKI). As before, we will eliminate some triples
and preserve those of the dimension < (qN)~, qN, (qN)r >
sharing no variables with eixh other. Then we will estimate
the number of the remaining triples.

Set z!] = O nlu em I has exactly rN indices of O and
exactly (t+ l)N indices of 1, set ~~] = O unless .l has
exactly tN indices of O and exactly (1 + r)N indices of 1,

‘K1 = O unless K has exactly N indices of O andand set z~
exactly (t + r)N indices of 1. When we complete this pr~

()‘:: lN+;~Nblocks Of ttipkscedure, there still remain
1,

(xl]], YIJI, Z(K)). They are compatible, ‘which means that
the locations of their zero indices are disjoint. Among them,

‘Ore=hz[K]lthereme((2wp-(x[’]y[i)sh=
ing it; for each YIJI, there are

((::1:~)
pairs (XIJI,ZIKI)

sharing it; for each X(ll, there are
((:~:~N) ‘-(y”]

ZfKl) sharing it.
Since r >1> t >0, the second of these. three egtimatea

is the largest. So we set

‘=2((2:’N)+l
Similarly to subsection 6.1, we obtain that

1
w(t, l,r) ~ —

(

log (1+ r)(l+r)t’(q + .2)(t+l+r)
log q (t+ 1 + r)(t+l+r~)

(6.3)

((9+ 2)(2+”) > (2+ r)(2+r}
)– (1+ r)(l+r~ qW(’’l.’)

17

7 Improved Algorithm for < n“, n“, nt >

In this section, we will imprwe our algorithm of section
6 for the problem < nr, n“, ni > by combining the ideaa
from sections 5 and 6. We break thk section into three
subsections and respectively discuss the three cases, as in
section 6.

7.1 The case < n,n, nr > with r >1

We begin with the construction (5.1). Take the (2+ r)ZVih
tensor power of this construction, where N is sufficiently
large so that (2+ r)IV is an integer. Each variable z!] in the

tensor power is the tensor product of (2 + r)N variables z:],
one from each of (2 + r)N copies of the original algorithm
(5.1). The subscript i is a vector of dimension (2 +r)N with
entries in {0,1,2, ., .,q, q + 1}, made up of the (2 + r)N
subscripts j. The superscript [~ is a vector of dimension
(2+ r)N with entries in {O, 1, 2}, consisting of the (2+ r)N
superscripts [J1.

Set L = (~Nl, where ~ is a small number to be de-
termined later on (roughly at the level between 0.005 and
0.05). We currently have 6(2+r)~ triples (X[~], Y[J], Z[K]).

Set z!] = O unless 1 has exactly r(N – L) + 2L indices of
O, exactly 2(N – L) indices of 1 and exactly rL indices of 2;

‘J] – Ounless J has exactly N+ rL indices of O, exactlyset yj —
(1+ r)(N – L) indices of 1 and exactly L indices of 2, and

‘K] When this procedure is completed, theresimilarly for z~ .
still remain

((2+ r)N
L, L,rL, r(N – L), (N – L), (N – L))

blocks of triples (X[’], Y[J], ZIK1), which means that, among
the (2+ r)N copies of construction (5.1), we pick

Z~]y~llz~ll from r(N -L) copies,
Z!ll#Z~l] from (N – L) copies,

Zlll#]z~] from (N - L) copies,
io] [0] [2]Z. Y. Zq+l from L copie%
[o] [21 [01from L copi~, and

~o Yg+lzo
[2] [o] 101from rL copies.zq+l~o Zo

They are compatible, which means that the sum of indices
at the same locations of their superscripts 1, J and K is 2.
Among them, for each ZIKI, there are

((1 +r)(N - L)

)(

N+rL
(N - L), r(N - L) (N- L), L,rL)

pairs (X[rl, YLJI) sharing it; for each YIK1, there areas many
pairs (X[’l, ZIK1) sharing it; for each X[’], there are only

(r(N – L) + 2L

)(

2(N – L)
r(N – L), L,L (N -L), (N- L))

pairs (YIJ], Z[K]) sharing it.
We select the larger former bound and set

((1 +r)(N - L)

)(

N+rL
‘=2 (N- L), r(N-L))(N- L), L,rL ‘1 “

at least

ii=:g ((2+ r)N
L, L,rL, r(N – L), (N – L), (N -L))

non-zero triples (XI’], YIJI, ZLK1), which share no variables
with each other, where M’ is the cardinality of B and M’ ~
M1-’. Each of them corresponds to a matrix product of size

< *(N–~), q(N-L), qr(N-L) >

For n = q(N–L), this tum into c n, n, nr >. Letting
M(n, n, n’) = O(nUfl,l~rJ) and summarizing, we obtain

(q+ 2)(2+”)N > Cfiq(N-LMI,I,r)—

Applying Stirling’s formula to approximate the value of
right-hand side, we have

(q+ .2)@+r)N >
—

[

(2+ r)(z+r)

I

N

96((1 + r)(l _ f)))(l+.)(1-d)(l + rp)(l+r/3) x
(c’)’NcN-l+f’gN(l-@)w(’’l”).

Letting e + O,N ~ 00, and taking Nih roots, we obtain

(q+ 2)(2+’) >
(2+ r)(2+r)q(l-6)w(l,l,r)

– fld((l + r)(l – fl))(l+r)(l-d)(l + r~)(l+r~) “

Taking logarithms on both sides and solving for u(1, 1, r),
we obtain the estimate

((1 + r)(l – /3))(1+”)(1-6)
‘(l’ l’r) s (1 -;)logg 10g ((2+ r)(z+r)

)x #(1 + r@)(l+r@)(q + 2)(2+’) . (7.1)

7.2 The Case< n,n, n’>with O~r <1

We treat this case similarly to the case r > 1. The small
difference is that now

(

(1 +r)(N - L)

)(

N+rL
(N- L), r(N-L) (N - L), L,rL)

< (r(N – L) + 2L

)(

2(N – L)
r(N– L), L,L)(N- L), (N-L) “

Therefore, we set

(M=2 r(N– L)+2L

)(

2(N -L)
r(N – L), L,L)(N- L), (N-L) ‘1”

In the same way as in the preceding subsection, we obtain
the exponent bound

(r/3) (rd)(2(l – p))W-P)

“’(l’l’r)s (1 -;)logg 10g ((2+ r)(z+r) x

(r(l – ~) + 2@(r(’-p)+2d) (~+2)(2+’)) ~ (72)
Construct a Salem-Spencer set B. Select random integers
O~wj<M, j =0,1,2,.. , (2 + r)N. As before, we obtain

18

7.3 The Case <nr, n,n’> with r>l>t>O

Due to (2.6), we will discuss < n~, n,n’ > with r >1> t >
0, instead of < nr, n,nt > with r >1> t >0. In this case,
take the (t + 1 + r)i@ tensor power of (5.1), where IV is
sufficiently large, so that (t+ 1 + r)N is an integer. Each
variable z[~] in the tensor power is the tensor product of

(t+l+r)~ variables z~], one from each of (t+l+r)N copies
of the original algorithm (5.1). The subscript i is a vector of
dimension (t+ 1 + r)IV with entries in {O, 1,2, ~. ~,q, q+ 1},
made up of the (t+ 1+r)N subscripts j. The superscript [1]
is a vector of dimension (t+1 + r)N with entries in {O, 1, 2},
made up of the (t+ 1 + r)N superscripts [J1.

Set L = [~Nl, where a small number @ will be deter-
mined later on (roughly at the level between 0.005 and 0.05).
We currently have 6(t+1+’)N triples (X1l], YIJ1, Z[K]). Set

‘r) – O unless 1 has exactly tL + L + r(N – L) indices of O,Zi —
exactly (t+ 1)(N– L) indices of 1 and exactly rL indices of 2;

‘J] = Ounless J has exactly t(N – L) + L + rL indices ofset yj
O, exactly (1+ r)(N – L) indices of 1, and exactly tL indices

of 2. set z~~) = O unless K hw exactly tL + (N – L) + rL
indi;es of O, exactly (t + r)(N - L) indices of 1 and exactly
L indices of 2. When we complete this procedure, there still
remain at least

(

(t+l+r)N
tL, L, rL, t(N – L), (N – L), r(N – L))

blocks of triples (XI’], YIJ], ZIK1). In accordance with this
estimate, among the (t+1+r)N copies of construction (5.1),
we pick

z~]y~l]z~l] from r(N – L) copies,
z!llY~lz~ll from t(N – L) copies,

Z[l]y~l]z~] from (N – L) copies,
lo] [o] P] from L copies,

~o Yo zq+l
‘0] ’21 Z[o] from tL copies, and~o Yq+l o
[21 [o] [o] from rL copies.~q+lvo Zo

They are compatible, which means that the sum of indices
at the same locations of their superscripts 1, J and K is 2.
Among them, for each block Z[K], there are

(

(t+r)(N -L)

)(

tL+(N– L)+rL
t(N – L), r(N – L) tL, (N – L), rL)

pairs (X[’], Y[J]) sharing it; for each Y[K], there are

(

(1 +r)(N - L)

)(

t(N– L)+ L+rL
(N - L), r(N - L) t(N – L), L,rL)

pairs (X[’], Z[K]) sharing it; for each X[l], there are

(

(t+l)(N -L)

)(

tL+L+r(N– L)
t(N – L), (N – L) tL, L,r(N – L))

pairs (YIJ1, Z[K]) sharing it.
Since r >1> t >0, the largest of these three bounds is

the second one. So, we set

((1 +r)(N - L)

)()

t(N– L)+ L+rL +1
‘=2 (N- L), r(N-L) t(N – L), L,rL

Along the line of subsection 7.1, we now obtain the ex-
ponent bound

((1 + r)(l _ p))tl+r)(’-P)

“’(t’l’r)s (1 -;)logq ‘og((t+ 1 + r)(t+l+’)

x (tp)*@(t(l – @ + (1 + r)p)(~(l–~)+(l+r)d)(q + z)(~+l+r))
(73)

8 Discussion on Optimization

In this section, we will compare our algorithms for rectangu-
lar matrix multiplication of this paper with other possible
effective algorithms and will choose some combination of
our designs so as to optimize the exponents. We will discuss
three cases, as in sections 6 and 7.

8.1 The case < n,n, n’ > with r >1

In this case, if we apply square matrix multiplication algo-
rithm (cf. [CW90]), we obtain

M(n, n,nr) = nr-l M(n,n,n) = nr-l O(nw) = O(nr-l+w).

Due tow <2.376 ([CW90]),

u(l, l,r)=r– l+w<r+l.376.

Let g(r) = r + 1.376, then g(r) is an increasing linear func-
tion in the interval [1, co) and pass= through the points
(1, 2.376) and (2, 3.376), where g(1) = 2.375477 agrees
with the result of section 8 of [CW90].

Let f(r) denote the right-hand side of (7.1), that is, the
exponent estimate for < n, n, n’ > baaed on the algorithm
of subsection 7.1. By combining the results of section 5
and 7, we obtain that f(r) is an increasing function in the
interval [1, +co) passing through the points (1, 2.38719) and
(2, 3.334). For r = 1, f(1) = 2.38719 agrees with the result
of section 7 of [CW90], and f(2) = 3.334 agrea with the
result of section 5. Near the point r = 1.171, we have

f(r) x g(r)= r + 1.376.

For q = 7 and/3= 0.0336,

f(l.171) = 2.546462806 .< g(l.171) = 2.546477 .

Accordhg to this examination, (7.1) minimizes the ex-
ponent for r ~ 1.171 – c for an appropriate small positive
e.

8.2 The Case <n, n,nr>with O~r <1

In this case, we let f(r) be the right-hand side of (7.2). f(r)
is a monotone increasing continuous function in the interval
[0, 1]passing through the points (O, 2 + ~) and (1, 2.38719).
The exponent estimate given by f(r) for r E [0, 1] is not yet
the best, however. A better exponent bound for r E [0,1] is
given by

{

2 +0(1) , O~r~O.294=cr,
w(l, l,r) = 2(1-r) +(r-O)w

l-a , 0.294 <r~l.
(8.1)

Here is its derivation:

19

w(1, l,r) ~ 2+0(1), O < r <0.294 = a comes from [Co],
and we also have

2(1 – r) + (r – cr)w
u(1, l,r) <

l–a
, a= O.294<r~l.

Indeed,

M(n, n, Tar)

=M(n*.n~,n~.n~,n w ..=)

<M(n*, n~, n*). M(n~, n~, n~)

= 0((n~)2+’(n~)”)
2 l-r --- w

=0(7/ ~~:)).

Summarizing the two casea above, we have the optimal
choice of our parameters represented by the curves of Fig-
ure 1.

8.3 The Case <nt, n,nr> with r>l>t>O

In th~ case, we first deduce a small upper bound on the
exponent w(t, 1, r). [For lower bound, see (2.8).]

Theorem 8.1 Let w(t,l, r) t4e the ezponent of
<nt, n,nr >. Then

{

r+l+~, o<t<o.294=cr,
w(t, 1, r) = r(l-a)+(l —t)+(u-l)(t—o

l-a ~, o.294<t <l.
(8.2)

Proofi For O ~ t<0.294 = rY,we have

M(nt, n, n“)
= n ‘-lA4(n, n,nt)
~ nr-litf(n, n,n=)
= nr-lo(nz+c) (cf. [co])
= qnr+l+.) >

that is, w(t,l,r) = r + 1 + c.
For a = 0.294< t < 1, the current best exponent esti-

mate can be derived as follows

M(nt, n,n’) = M(nr, n,nt)

= il4(nr- ~.~~,nl%.n~,n%.n~)

~ M(n ‘-~, n*, n%&). M(n~, n*, n*)

= O((nr-=+l%+c)(ne)w)
,-.+~+e)

= O(nr- ~
r 1-- l-t W-l)(t-la

= O(n (‘+(‘~i(‘).

Let f (r, t) denote the right-hand side of (7.3), let

g(r, O~t<a)=l+r+e,

and let

El

r(l-a)+ (l–t)+(w-l)(t -a)
g(r, a<t <l)=

1 -a —
(8.3)

We combine these relations, and in figure 2, we represent
the resulting exponents in this parameter range.

9 Improved Complexity of Parallel Evaluation of
the Determinant and of the Inverse of a Matrix

In this section, we will apply the results of our section 8
in order to improve the bound on P(n) from 0(n2”ssi) of
[Corollary 2.1] to 0(n2”s37). Due to Theorems 2.1 and 2.4,
it suflices to improve the upper estimate 0(n2”=7) for the
sequential complexity of the four following problems of rect-
angular matrix multiplication

~ nl.25, n,n1.26 >, < n113, n2’3, n2 >,

< n,n41=, n >, < n0”6,n2, noun>,

detined by the four following exponents:

u(1.25, 1, 1.25), w(l/3, 2/3, 2),

U(1, 4/3, 1), W(O.5,2, 0.5).

By applying the results of section 8, we obtain that

w(l.25, 1, 1.25) = 1.25w(1, 1,0.8) = 2.8368...<2.837

(by applying (8.1) for w = 2.376);

u(l/3, 2/3,2) = ju(O.5, 1,3) = 2.7398073. . ~

(by applying (8.2) for w = 2.376);

w(l,4/3, 1) = w(l, 1,1.33.. .) = 2.699318 ~0.

(by selecting q =7, f3 = 0.033 in (7.1));

u(O.5, 2, 0.5) = 0.5w(1, 1, 4) = 2.6390965 . . .

(by selecting q = 14, ~ = 0.0026 in (7.1)).
Combining the four latter bounds with Theorems 2.1

and 2.4, we arrive at the bound P(n) = 0(n2s37).

10 Discussion

The bound P(n) = 0(n2”s37) can be decreased if w =
w(1, 1, 1) is decreased below 2.376 and also if a is increased
above 0.294. Namely, our argument above, together with
(8.1) and (8.2) implies that

P(n) = O(max{Pl (n), P2(n), Ps(n), P4(n)}) ,

where

PI(n) = nW1,
WI = u(l.25, 1,1.25)

= 1.25 ‘“’+~~~-a)u [cf. (8.1)];

. .
W2 = w(1;3, 2/3,2) = :w(O.5, 1, 3)

= (:) 3(1-e)+O.5+(M-1)(0.6-U/ [~ (8 z)]
l-a . . ;

P’(n) = nwg, W3 = w(l,4/3, 1) < 2.7;

P4(Tl) = raw4, W4 = w(O.5, 2, 0.5) <2.64.

Clearly, W1 and wz decrease as w decreases and/or a in-
creases.

Smaller processor bounds, at the optimum level of n“
(still supporting polylogarithmic time bound), have been
obtained for the cited fundamental matrix computations by
using randomization [P87], ~P91], [KP92], ~P94], ~P94],
[P96]. Is it possible to improve our NC deterministic pr~
cessor bounds to the optimal level without using random-
ization?

20

W(17l,r)

+rifr>l,

~ 1.

Notes:

1. The curve of w(I, 1, r) = r + 1.376 is parallel to the lower bound 1 + r for r ~ 1;

2. (6.1) and (7.1) have the lower bound 1 + r = an ~yrnptote ss r + co;

3. u(1, 1, r) = r + 1.376 is existing record upper bound for r ~ 1.

I 1 I 1
(0!0) 1 2 3 4 5+ r

Figure 1: (6.1), (6.2), (7.1), (7.2) and (8.1) refer to the respective equations of this paper.

21

t

I ~1
(1.171 , 1)

(7.3) f (r, t)

g(r, o.294 < t < 1)

0.294

g(r, O~t~O.294)=l+r+e
I I 1-

(0,0) 1 2 3 4 5- r

Figure 2: the three areas are the optimal region of the three exponent functions for < nk, n, n’ >, 0 ~ t ~ 1< r, respectively.

References

[BCLR]

[BD76]

[Be46]

[BM75]

[BP94]

[C082]

[co]

[CS76]

[CW81]

[CW90]

[GP89]

D. ~+~49M. Capovani, G. Lotti, and F. Romani,
O(n “) complexity for matrix multiplication,
Inform. Process. Lett., 8, 234-235, 1979.

R. W. Brockett and D. Dobkin, On the Number
of Multiplications Required for Matrix Multiplica-
tions, SIAM J. on Complexity, 5, 4, 624628, 1976.

F. A. Behrendj On Sets of Integers WMch Contain
No Three Terms in Arithmetical Progression. Proc.
Nat. Acad. Sci. USA, 32, 331-332, 1946.

A. Borodin and I. Munro, The Computational
Complem”ty of Algebmic and Numeric Problems,
American Elsevier, New York, 1975.

D. Bini and V. Y. Pan, Polynomial and Matrix
Computations, Vol.1: Flmdamental Algorithms,
Birkhauser Boston, 1994.

D. Coppersmith, Rapid Multiplication of Rectan-
gular Matrices, SIAM J. Comput., 11, 3, 467-471,
1982.

D. Coppersmith, Rectangular Matrix Multipli-
cation Revisited, Research Report 20498, IBM
Thomas J. Watson Research Center, Yorktown
Heights, NY 10598, USA, 1996.

L. Csanky, Fast Parallel Matrix Inversion Alg~
rithm, SIAM J. Computing, 5, 4, 618-623, 1976.

D. Coppersmith and S. Whograd, On the Aysmp-
totic Complexity of Matrix Multiplication, SIAM
J. Comput., 11, 472-492, 1981.

D. Coppersmith and S. Whograd, Matrix Mul-
tiplication via Arithmetic Progressions, J. Symb.
Comp., 9, 251-280, 1990.

Z. Galil and V. Y. Pan, Parallel Evaluation of the
Determinant and of the Inverse of a Matrix, hafor-
mation Proc. Letters, 30, 41-45, 1989.

~P91]

~P92]

~P94]

[P72]

[Pan]

[Pan,a]

[P87]

[P96]

[PS78]

E. Kaltofen and V. Y. Pau, Processor Efficient Par-
allel Solution of Linear Systems over an Abstract
Field, Pmt. of 3rd Ann. ACM Symp. on Pamllel
Algorithms and Architectures, 180-191, ACM Press,
New York, 1991.

E. Kaltofen and V. Y. Pan, Proc~or Efficient Par-
allel Solution of Linear Systems II. The Positive
Characteristic and SinguIar Cases, Proc. of 33rd
Ann. IEEE Symp. on Foundations of Computer
Science, 714723, IEEE Computer Society Press,
1992.

E. Kaltofen and V. Y. Pan, Parallel Solution
of Toeplitz and Toeplitz-like Linear Systems over
Fields of Small Positive Characteristic, Pmt. of Ist
Intern. Symp. on Pamllel Symbolic Computation
(PASCO’94), Linz, Austria (Sept. 1994), Lecture
Notes Series in Computing, 5, 226-233, World Sci-
entific Publishing Company, Singapore, 1994.

V. Y. Pan, On Schemes for the Computation of
Products and Inverse of Matricea, Uspekhi Mat.
Nouk, 27, 5, 249-250, 1972. (In Russian.)

V. Y. Pan, How to Multiplp Matrices Faster, Lec-
ture Notes in Computer Science, 179, Springer,
Berlin, 1984.

V. Y. Pan, How Can We Speed-up Matrix Multi-
plication ?, SIAM Rewiew, 26, 3, 393-415, 1984.

V. Y. Pan, Complexity of Parallel Matrix Compu-
tations, Thwretical Computer Science, 54, 65-85,
1987.

V. Y. Pan, Parallel Computation of Polynomial
GCD and Some Related Parallel Computations
over Abstract Fields, 2’hwretical Computer Sc;-
ence, 162, 2, 173-223, 1996.

F. P. Preparata and D. V. Sarwate, An Improved
Parallel Processor Bound in Fast Matrix Inversion,
Inform. PTVC.Letiers, 7, 3, 148-149, 1978.

[SC81] A. Schonhage, Partial and Total Matrix Multipli-
cation, SIAM J. Comput., 10, 3, 434456, 1981.

[SS42] R. Salem and D. C. Spencer, On Sets of Integers
Which Contain No Three Terms in Arithmetical
Progression. Proc. Nat. Acad. Sci. USA, 28, 561-
563, 1942.

[St69] V. Strawen, Gaussian Elimination Is Not Optimal,
Numerische Math., 13, 354356, 1969.

[St86] V. Strassen, The Asymptotic Spectrum of Tensors
and the Exponent of Matrix Multiplication, Proc.
27th Ann. IEEE Symp. on Foundations of Com-
puter Science, 49-54, 1986.

23

