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Abstract

This paper experimentally validates performance related is-

sues for parallel computation models on several parallel plat-
forms (a MasPar NIP-1 with 1024 processors, a 64-node GCel
and a CM-5 of 64 processors). Our work consists of three

parts. First, there is an evaluation part in which we inves-
tigate whether the models correctly predict the execution
time of an algorithm implementation. Unlike previous work,

which mostly demonstrated a close match between the mea-

sured and predicted running times, this paper shows that
there are situations in which the models do not precisely

predict the actual execution time of an algorithm imple-

mentation. Second, there is a comparison part in which the
models are contrasted with each other in order to determine
which model induces the fastest algorithms. Finally, there

is an eficiency validation part in which the performance of
the model derived algorithms are compared with the perfor-
mance of highly optimized library routines to show the effec-
tiveness of deriving fast algorithms through the formalisms

of the models.

1 Introduction

The PRAM model [12] is one of the most widely used models
for the design and analysis of parallel algorithms. Its shared
memory abstraction and the assumption that the processors
operate synchr~nously make it a relatively easy model to
use, Unfortunately, the PRAM model makes certain simplify-
ing assumptions which make it not well suited for predicting
performance on actual parallel machines. Most importantly,

because the PRAM model does not capture communication

cost, it does not discourage the design of parallel algorithms
with huge amount of interprocessor communication. In more

realistic network models, communication is only allowed be-

tween directly connected processors, However, this does not

seem to be a promising approach either, because it produces
non-portable software.

For these reasons, several alternative models have been
proposed that model the interprocessor communication cost.
However, with a few exceptions, e.g. [4, 9, 11], no quantita-
tive results comparing theoretical with experimental results
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are provided. This paper tries to fill that gap by comparing,

in a quantitative manner, some of the models that have been
proposed. Specifically, we focus on the following questions:

●

●

●

First, do the models accurately predict the execution
time of an algorithm implementation? If not, what are
the reasons for the inaccuracy?

How do the models compare with each other? In gen-

eral, different models reward different techniques, some

of which may be more important to capture than oth-
ers.

How do the model derived algorithms compare with im-
plementations customized for the target architecture?

It is inevitably true that the price to be paid for porta-
bility is performance, but what is the performance loss
that can be expected?

To answer these questions we selected three problems that
seem to cover a wide range of parallel processing appli-
cations, and designed algorithms for these problems using
three different models. These algorithms were subsequent ly

implemented on three substantially different parallel archi-
tectures.

The models considered are (1) the Bulk-Synchronous

Parallel (BsP) model [20], (2) the Message-Passing Block
PRAM (MP-BPRAM) [1], and (3) the Extended BSP or E-

BSP model [17]. A BSP computer is characterized by three
parameters: the number of processors P, the synchroniza-
tion cost/communication latency L and the communication
bandwidth g. In the BSP model, the communication network
is assumed to be capable of routing any balanced communi-

cation pattern, in which each node sends at most h messages

and receives at most h messages, in g. h + L time. Such com-
munication patterns are called h-relations. All messages are

assumed to be of some fixed short size. Hence, the model
implicitly has a fourth parameter, the word size w.

The BSP model does not give special treatment to long

messages. However, as is evidenced in many papers, e.g. [4],

many existing architectures have special support for bulk
transfers. In a MP-BPRAM the processors communicate by
exchanging messages of arbitrary length, and a message of
length m is transferred in time m + t, where / is the startup
time of a message transmission. An important restriction
made by the MP-BPRAM is that a processor can send and
receive at most one message in a single communication step.

Both the BSP model and the MP-BPRAM assume that
communication bandwidth is independent of network traf-

fic. For example, under the BSP model, sending h mes-
sages between two processors is just as expensive as when all
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processors send and recei~’e h messages. The E-BsP model
addresses this issue by viewing every communication pattern
as an (M, hl, hq )-relation, in which each processor sends at

most h 1 messages, receives at most hz messages and the

total number of messages being routed does not exceed M.
This paper is organized as follows Section 2 describes, in

more detail, the parallel computation models that we used

as the basis for our work. In Section 3, the experimental

platforms are described and the model parameters belong-
ing to these architectures are determmed, A brief outline of

the algorithms that were implemented is given in Section 4
In Section 5, the models are evaluated by comparing the
predictions with experimental data. Section 6 compares the
BSP and MP-BPRAM model with each other. In Section 7

we compare the performance of the model derived matrix
rnultiplicatlon algorithms with the performance of the ma-

trix multiply routines present on the MasPar and the CM-5.

Concluding remarks are given in Section 8.

2 Parallel Computation Models

In this section, the models considered are briefly reviewed.

2.1 BSP Model

The Bulk-Synchronous Parallel model [20] consists of three

attributes: (1) a set of processor/memory modules, (2)

a communication network that delivers messages point-to-
point, and (3) facilities to barrier synchronize the nodes.
Computations in the BSP model are orgamzed in a series of

supers teps, with synchronization taking place between su-
persteps. Each superstep consists of a number of local op-
erations followed by sending and receiving messages. The

performance of a BSP computer is determined by the fol-
lowing parameters:

The number of processor/memory modules P.

The synchronization cost/communication latency L.

The bandwidth factor g, which is defined as the ratio
of local operations performed by all processors in one
time unit to the total number of messages delivered by

the router in one time unit.

McCO1l [19] also includes a speed parameter .s which IS de-

fined as the number of floating point operations performed

per time unit. We decided not to include this parameter
because it depends very much on the application domain.
We also do not normalize g and L w.r.t. processor speed.
Instead, we use actual times (in us).

The cost of a superstep S lS determined as follows. Let
c denote the maximum amount of local computations per-
formed by any processor during S (measured m ,US). Fur-

ther, let hs be the maximum number of messages sent by
any processor during S, and let h, be the maximum number

of messages received by any processor during S, The cost
of S ml c + g max{hs, h,} + L. The parameters g and L

are such that an arbitrary h-relation followed by a barrier
synchronization can be completed in g h + L time. The
purpose of the parameter L is two-fold. It is the latency or
startup cost of a communication, and it represents the cost
of synchronizing the processors.

lIn the original BSF model, the cost of a superstep S is max{c, g
h., g h,, L}. Our cost definition more closely follows [6].

2.2 Message-Passing Block PRAM

The Message-Passing Block PRAM K a restrictive version

of the Block PRAM model defined in [I] A Block PRAM

consists of P processors, each provided with a local memory
of unbounded size, communicating with each other through
a shared global memory of unlimlted size. Each processor

(i), O ~ z < P, may read or write a block of b, contiguous

locations from or to the shared memory in one step, and such
an operation takes t + max, b, time, where e is the startup

time or latency. An access to a location of the local memory
is assumed to take unit time. Any number of processors may

access the shared memory simultaneously, but the blocks

that are being accessed need to be disjoint.
In a Message-Passing Block PRAM there is no global

memory but instead the processors communicate by ex-

changing messagesa. A processor can send and receive only

one message at a time, and a message of length m is trans-
ferred in time m+l. The model is synchronous, so that every
processor awaits the completion of the longest block transfer

before it proceeds to the next step. Because communication
is generally slower than computation, even if block transfers

are used, we model the time to send a message of m bytes
by the formula o m + 1, where u is the time per byte to
send a message.

2.3 E-BSP Model

Both BSP and the MP-BPRAM assume that the parameters

g and o are independent of network traffic. The BSP model
assumes that all h-relations are full h-relations in which all
processors send and receive exactly h messages. Likewise,

under the L’lP-BPRAM sending a single message of length

m is just as expensive as when all processors participate.
The E-BsP model [17] extends the basic BSP model to deal
with unbalanced communication patterns, le., patterns in
which the amount of data sent or received by each node is
different. Consider for example a mesh connected parallel
computer that employs a store-and-forward routing scheme,
and assume that in unit time a processor can send a message

to its neighbors. The value of g that can be obtained on this

architecture is @(v@). Consider now the following simple

communication operation: sending h messages between two

processors. Under the BSP model g h + L = @(h v@)

time is charged for this communication operation. How-
ever, such a communication pattern can be accomplished in

h + 2 @ time on this architecture because the messages
can move in a pipelined fashion, encountering no conflicts
in the network. To deal with unbalanced commumcation
the E-BsP model views every communication pattern as an
(M, hl, h~)-relatlon, in which each processor sends at most
hl messages, receives at most h2 messages and the total

number of messages being routed does not exceed M. Note

that an h-relatlon 1sjust a special instance of an (ilf, hl, hz )-
relation with M = h P and h] = hz = h.

3 Experimental Platforms

This section describes the experimental platforms and the
experiments conducted to determine the parameters belong-
ing to these platforms. In an earher paper, we did a limited

study for a T800 platform [15].

‘Another model that has many of the aspects of the MP-BPRAM is

the LoGGP model [4].
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3.1 MasPar MP-1

The MasPar MP-1 is a massively parallel SIMD architec-

ture The NIP-1 system used in this study consists of 1024

processors, called processor elements (PEs). Each PE 1s

an 80 ns load/store arithmetic processor with 64 Kbytes of

data memory The MasPar provides two types of commu-

mcation: xnet and router communication. With xnet com-

mumcation a PE can send data to eight neighboring PEs in

horizontal, vertical and diagonal directions. In addition, the

iVIasPar has a global router to communicate data between

arbitrary PEs. This router is a circuit-switched expanded
delta-network with a greedy routing scheme tVe worked

exclusively with router communication.
When matching the BSP model to the MasPar MP-1 ar-

chitecture, we faced a number of problems. In particular,
BSP permits memory pzpelmwzg: a remote memory access

can start before the previous one has completed. However,
on the MasPar each PE can have at most one outstanding
message at a time. We therefore define the MP-BSP model

which is a small variation of BSP that reflects this architec-

ture more accurately. The MP-BSP model is a synchronous

model in which the processors communicate by writing into
the local memory of other processors. Each step is either a

computation step or a commumcation step:

1. In a cornputdzon step, each processor (i) performs an
operation on operands present in its local memory.

2. In a communication step, each processor (i) writes a
data item into the local memory of some other proces-
sor.

Let h, be the number of processors accessing the local mem-
ory of processor (i) during a communication step. The cost

of this step will be modeled by the formula L + g max, h,.

Thus, every communication step is an instance of a l-h re-
lation, in which each processor sends at most one message

and is due to receive at most h messages.
In order to determine the NIP-BsP parameters for the

MasPar the following experiment was conducted. The array
control unit (ACU) randomly picks a set of [P/hi desti-
nations. We then measured the time for a communication

step in which [P/h] nodes receive h messages consisting
of w = 4 bytes, while the remaining destination (if any)

receives P — h . lP/h] < h messages. The results of this ex-

periment are shown in Fig. 1. Each data point in this figure
represents the average of 100 experiments. The mimmum

and max:mum measured times are also shown using vertical

error bars.
Ideally, the data points would form a straight line with

slope g and offset L. The observed behavior is not com-
pletely linear. Thus, by charging g h + L time for routing
l–h relations, an error will be introduced. The large varia-

tion in the measurements is due to the limitation that there
is only one router channel for each cluster of 16 PEs. If many
destinations happen to fall in the same cluster, the router is

considerably slower than if the destinations are distributed
equally among the clusters. The MP-BSP parameters for the

MasPar MP-1 are shown in Table 1. These parameters were

determined by fitting a straight line to the data points in
Fig. 1. Also shown in Table 1 are the MP-BPRAM parame-

ters belonging to the MasPar. These parameters have been
obtained by measuring the time taken by full block permu-
tations. For reasons of space the results of these experiments
are not shown, but the data points demonstrated that the
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Figure 1: Time required for routing l-h relations on the
MasPar MP-1.
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Figure 2: Time taken by partial permutations as a function

of the number of active processors on the iUasPar.

time to send a message of m bytes is well approximated by
a straight line with slope a and offset t.

As was done for the BSP model, we used a small varia-

tion of E-BsP that reflects the MasPar more accurately: the

cost of a communication step is modeled as a function of

the number of processors that are active during that com-
munication step Specifically, let T~nb (P’) denote the cost of

performing a partial permutation when there are P’ proces-

sors active. An approximation for T..b (P’) was determined
by conducting the following experiment. The ACU of the
MasPar randomly selects a set of P’ senders sl, sz, . . . , SPI

and a set of P’ recipients rl, rz, . . . , rp. Thereupon, we
measured the time taken by a partial permutation in which
processor (s, ) sends a message to processor (r,). The results
of this experiment are shown in Fig. 2. As is apparent in

this figure, the communication time is very dependent on
the number of PEs participating. For example, when there

are 32 active PEs, a partial permutation takes about 13~o

of the time required by a full permutation. By performing
a second order polynomial fit, we found that

TUnb(P’) = O 84. P’ + 11.8. @+ 73.3 /lS

yields a good approximation
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r Architecture II P o L o 1
1 II . 1

MasPar 1024 32.2 1400 107 630

GCel II64 4480 5100 9.3 6900

CM-5 64 9.1 45 0.27 75

Table 1: Summary of the (MP-)BsP and MP-BPRAM para-
meters belonging to the MasPar MP-1, GCel and the CM-5

architecture. The parameters are given in ,LLS.

3.2 GCel

The second experimental platform is a 64-node Parsytec

GCel. Each node of the GCel consists of a T805 trans-

puter, running at 30 Mhz, with 4 MB RAM. The nodes

are organized as an 8 x 8 two-dimensional mesh. The native
programming system of the GCel is Parix, but the programs

for the GCel are implemented using so-called homogeneous

PVM or HPVM which is built on top of Parix. HPVM pro-
vides a much better performance than standard PVM be-

cause heterogeneous operations are not supported, although
its performance is still less than sparkling.

To determine the BSP parameters for the GCel under
HPVM, we measured the time taken by randomly generated

full h-relations. The MP-BPRAM parameters have been cal-

culated by timing full block permutations. The parameters
for the GCel are summarized in Table 1. The ratio 9/(w a)

is an indicator of the gain that can be obtained by grouping

data into long messages. For the GCel, this ratio is about
120, which leads us to conclude that large messages are es-

sential on this architecture.

3.3 CM-5

The Connection Machine Model 5 (CM-5) is a massively
parallel MIMD computer based on the Spare processor.

Each node contains a Spare Cypress processor running at

32 MHz, with 32 MB of local memory, a 64 KB direct-
mapped cache and a network interface chip. The nodes are

interconnected by a fat tree communication network, and

a broadcast/scan/prefix cent rol network. The programs for
the CM-5 are written in Split-C [10], a parallel extension of

the C programming language. They do not use the vector
units, which are not available under Split-C.

The BSP and MP-BPRAM parameters for the CM-5 are
shown in Table 1. On this architecture, the ratio g/(w . a)

is about 4.2 for 8-byte (double precision) messages, so it is
much less important to use block transfers than on the GCel.

4 Description of the Algorithms

To validate the models, we selected three problems (ma-
trix multiplication, sorting and all pairs shortest path) from

dense linear algebra and discrete mathematics that seem to
cover a wide range of parallel processing applications. More

specifically, we have chosen matrix multiplication as this
routine is present in alqost all dense linear algebra compu-

tations. For sorting vc$ picked two different algorithms. one
algorithm is bitonic sort which represents recursive doubling
techniques. The other is based on an even distribution of
workload. The problem from graph theory is all pairs short-

est path w,hich has a communication structure that is similar
to many other important algorithms such as L U decomposi-

tion. For reasons of space, the descriptions will be concise.
The reader E referred to [18] for a more detailed account.

4.1 Matrix Multiplication

We implemented the following algorithm for multiplying two

IV x N matrices C = A B, which follows a strategy similar
to the one described in [2, 13], and was also adapted for the
BSP model in [8]. Lower bound proofs as in [2, 13] show that

this algorithm is optimal under the BSP model.
The algorithm uses P = q3 processors. It is convenient

to think of the processors as being arranged in a q x q x q

array, i.e., let the processors be designated by (z, j, k) for

O ~ i, j, k < q. The matrices A, B and C are partitioned
into q2 square submatrices A,j, B,j and C,l, O ~ i, j < q, of

size N/q x N/q each. Each of these submatrices is further

subdivided into q subblocks A$j, )3$ and C& for O S k < g

of size N/q2 x N/q, where A~J consists of the first Njq2 rows

of A,j, A~3 consists of the second set of N/q2 rows, and so

on. Initially, processor (i, j, k) contains the subblocks A$3

and B&, and the subblock C,: of the resulting matrix will
also be stored there.

The algorithm consist of four supersteps, In the first,

every processor (i, j, k) transmits each entry of A~j to the

processors (i, j, *) and, similarly, each entry of B$ is repli-

cated q times and sent to the processors (*, i, j). Since the
matrices are initially distributed equally among the proces-

sors, the BSP cost of this superstep is 2. g ~ N2/q2 + L.

In the second superstep, processor (i, j, k) locally computes

~z~k = Ail Bjk. If we view an addition and a multiplication
as a compound operation that takes time a, the cost of the
second superstep is given by a N3/P. Now, let the par-

tial products ~,~k also be divided into q subblocks 6:3,$. In

the third superstep processor (i, j, k) transmits @j ~ to the
processor (i, k, 1). Finally, the processors locally compute

the sum of the appropriate submatrices. The total running

time ‘&p.nm of the matrix multiplication algorithm is:

T&p.mn = (Y. N3/P+.6 N2/q2 +3. g . N2/q2 + 2. L.

Under the MP-BSP model, care must be taken to avoid

concurrent writes to the same memory module. To achieve

this, the communication is staggered. For example, in Phase
2, processor (i, j, k) first sends data to (k, i, j), then to ((k +
1) mod q, i, j) and so on. The MP-BSP complexity of the

matrix multiplication algorithm is given by:

Tmp.b,p.mm = a . N3/P+~ N2/q2 + 3 ~ (g+ L) N2/q2.

The al orithm can be easily restructured to use blocks of
Fsize N /P for data transfer. Note that the ability to use

blocks of this size depends on the initial distribution of the
matrices. If the initial distribution is different, an extra

communication phase bringing the data in the desired layout
is required. In the BSP model this is not an issue. The
predicted running time of this version is:

Tbpram.mm =

a. N3/P+~N 2/q2+3. q.(u. w .N2/P+!).

In this expression, w denotes the computational word size
in bytes.
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4.1.1 Optimizing Local Computation

Local computations remain unspecified in the models. How-

ever, it is important to optimize the local matrix multiply

carefully in order to obtain competitive results. On the Mas-
Par, the most non-algorithmic performance improvement

one can make is to keep variables in registers. In our im-

plementation an optimized blocked inner-product algorithm
is used that keeps part of the matrix C in registers, reduc-
ing the cost of the local matrix multiply by roughly LiO~O.

On the CM-5, the local matrix multiply is designed to pay
careful attention to the local cache size, and has a kernel

written in assembly3. This optimized routine achieves 6.5

to 7.5 Mflops for square matrices of size 32x 32 to 256x 256,
whereas the peak performance is about 9,0 Mflops. When

N = 512, the performance drops to 5.2 Mflops. For the

predictions, we take a = 2 (7.0 106)-1 x 0.29 ps. The
factor of 2 appears in this formula because an addition and

a multiplication is viewed as a compound operation.

4.2 Bitonic Sort

Batcher’s bltonic sort [5] works by repeatedly merging so-

called bitonic sequences until the entire sequence is sorted.

The basic algorithm for sorting N = P keys consists of log P

merge stages, and the clth stage, 1 ~ d ~ log P, comprises

d merge steps. In the jth step of the dth stage, 1 ~ j ~ d,

every processor exchanges the key in its possession with the
processor whose address is identical except in the (d – j)th

bit, and it subsequently picks the minimum or the maximum
of the two keys depending on its address. To deal with mul-

tiple keys per processor, every processor first sorts the set of
N/P keys it contains locally, and the sorted lists are merged
in log P stages. Each processor now executes a linear-time

sequential merging procedure and outputs N/P keys in each

merge step~.
Let M = N/P denote the number of keys per processor.

The BSP cost of the dth merge stage is T~~.g~ = d, (a. ~f +

g M + L), where the term a Al accounts for the time taken
by a local merge, and the term g M + L corresponds to the

communication time in each step. The total time taken by
bitonic sort is:

log P

xTbsp-bitonic = Tlocal-sort + Tmerge.

d=l

Under the MP-BSP model, the expression is shghtly differ-
ent: the time taken by a bitonic merge stage is T~~~g~ =
d. (a ~M + (g+ L) M), and the time for the entire bitonic

sort becomes:

Tmp-bsp.b,tomc =

Tlocal-,or, +0.5 log P (log P+ 1) (a. M+ (g+L) M).

As with the matrix multiplication algorithm, bitonic sort

can be directly adapted to utilize block transfers. The total
running time of this variation is:

Tbprmn-bitonic =

TIocaI.sort +0.5 .log P (log P+l) (cr. Lf+u. witf+ z).

3The local matrix multiply is due to Culler et al.
4When N > P2, a better way of implementing bitonic sort that

requires only two all-co-all communications in each merge stage i=
given in [1 1]. We did not implement that variation because it requires
that N ~ P2.

4.2.1 Local Sort

To sort the keys locally, we used an 8-bit radix sort which

requires time

Here, b denotes the number of bits m a key and 2’ is the

radix of the sort. The coefficients /3, -y were determined em-
pirically on each platform.

4.3 Sample Sort

The second sorting algorithm that we implemented is a sam-

ple sort based on [7]. Until now, we were able to break down

any communication pattern in the hlP-BsP model into a se-

quence of permutations. In this algorithm concurrent writes
to the same memory module cannot easily be avoided. Un-

der the MP-BPRAM, it is forbadden that a processor needs

to receive multiple messages in a communication step, so a

different algorithm is needed.
Sample sort proceeds in three phases. In Phase 1, the

splitter phase, every processor randomly picks a set of S

samples from its keys, where S is called the oversarnphng
ratio. After that, the P. S samples are sorted using bitonic

sort. Finally, the samples with ranks S, 2. S, . , (F’ – 1)

S are chosen as the splitters and broadcast to every other
processor. The BSP complexity of this phase is:

~sphtter = Tbsp.b,ton,c(P S) + g (P - 1) + L.

Phase 2, the send phase, begins with each processor sort-
ing the keys it contains. Since the keys and splitters are

now sorted, the buckets to which each key belongs can be

determmed in @(Lf + P) time5.
When sample sort was implemented, we encountered an

inconvenience of the pp.rsend library routine of the MasPar

programming language MPL. Because a local memory ad-

dress within the destination processor has to be supplied, the
keys cannot be routed directly to their buckets. Idem, when

pairwise sends and receives are used, each processor needs to

know the number of keys it is due to receive. The addresses
are calculated by performing a multi-scan operation on the

number of keys every processor needs to send to each bucket,

for which an optimal BSP algorithm has been presented

in [16]. The cost of this operation M T’SC~~= 2(gP+L). In

the last step of the send phase the keys are routed to their

buckets. Let ~f~ax denote the maximum number of keys in
a any bucket, the BSP cost of this phase is:

T,,.d = T,ocal.,o,,(ilf) + a (&f+ P) + T,c.m + g ~fn,,. + L.

In the final phase of sample sort, the keys are sorted locally
using radix sort. This takes time:

T,o,,.bucket, = Thxal-sort (~fnmx)

4.3.1 Irregular Communication and Bulk Transfer

Unlike matrix multiplication and bitonic sort, sample sort
cannot straightforwardly be adapted to utilize block trans-
fers. Three substeps must be implemented differently. the

broadcast of the splitters, the multi-scan operation and the
distribution of the keys to their buckets.

5Hcre we aligbtly deviate from the scheme presented in [7]. There,
the bucket to which each key belongs is determined by performing a
binary search over the array of splitters.
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The broadcast of the splitters can be viewed as trans-

posing an array of size P x P, where column i is stored in
processor (i). This can be done as follows. Each proces-

sor is assigned the task of transposing a submatrix of size

@ x v@. TO do so it needs to receive O messages of

length W. After the submatrices are transposed locally,

each block of length @ is routed to its correct destination.

The resulting communication time is 2 ~@I (a w ~m+ t).

With a similar approach, the multi-scan operation can be

performed in4. @.(u. w@+t) time.
The most difficult part is the implementation of the send

substep. Because each MP-BPRAM processor may receive at

most one message during a communication step, the keys

cannot be routed directly to their appropriate buckets. A
possible scheme for routing messages using block transfers

is given in [14]. We will not provide the details of this algo-
rithm, but just present the complexity of the send phase:

!f’,~~d-t~.bti,k.t, =4 fi(4uw N/ P’5+!).

4.4 All Pairs Shortest Path

An important problem in graph theory is all pairs shortest

path. The problem is the following. Given a directed graph
G’ = (VIE), where V = {vo, wI,... ,vN-1} k a set of N

vertices and E Q V x V is a set of edges. With each edge

(v,, v,) a length 1,, is associated. The task is to compute, for
each pair of vertices v, and V3, the length of the shortest path
from v; to vj. This problem can be solved by a number of

algorithms. We have opted to implement a parallel version
of Floyd’s algorithm [3], because it admits a straightforward

parailelization.
Floyd’s sequential all pairs shortest path algorithm and a

pseudocode description of its parallelization is given below.
A matrix D is used to store the currently shortest path

between any pair of nodes v, and Vj. Initially, D[i, i] = O,

D[i, j] = l,J if an edge with length 1,3 between v, and Vj

exists, and D[i, j] = m otherwise. In the parallel version,
the matrix D is partitioned into P square subblocks D,j of

size M x M each, where M = N/@, and processor (i, I) is
assigned the task of updating, in each iteration k, the entries

pertaining to the subblock D,j.

fork= Oto N–ldo

fori=Oto N–ldo

.Y[z] = D[i, k]

Y[i] = D[k, i]

od
fori=Oto N–ldo

forj=Oto N–ldo
D[i, j] = min{D[i, j], X[i] + Y[j]}

od

od
od

For k = O to N – 1 repeat steps (l)—(3).

1. The processors (s, t) that contain a segment of D[*, k],

send it to the processors (s, *).

2. The processors (s, t) that contain a segment of D[k, *],

send it to the processors (*, t).

3. Processor (s, t) computes the new values of the entries
pertaining to the submatrix D,t.

The most interesting part of this algorithm is the broad-

cast of the “active” row and column in Steps (1) and (2). We
describe the implementation of the broadcast of the active
column; the broadcast of the active row can be done simi-

larly. There are two cases. If M > w, then there are two

supersteps. In the first, the processors (s, t) that contain
a segment of length M of the active column scatter these

elements across the processors (s, *) so that each of them

receives a subsegment of length M/w. During the second

superstep, each processor broadcasts the subsegment it con-
tains to every other processor in the same row. The total

communication cost can be seen to be TbC~S~= 2(gM+L).

If M < ~, an extra phase broadcasting each item to

fi/14 processors is required. In this case, the communica-

tion cost is Tbc.,, = 2 (g M + ~) + (9+ -L) log(@/~f)

The total running time of this version of the all pairs short-

est path algorithm is given by:

Tb,p.apsp = Q N3/P + 2 N Tbcast.

Again, under the MP-BSP model, the analysis is slightly

different: Tbca,t = 2(gi-L)L fwhenM~@, and

T~ca,, = (g+ L) . (2 M + log(fi/M)) if M < @.

4.4.1 E-BSP Analysis

So far, we have ignored unbalanced communication because
all h-relations were full h-relations. However, the first super-

step in the broadcast of the active row/column corresponds

to an (N, N/@, N/P) -relation. In this section, we analyze
the all pairs shortest path algorithm under the E-BsP model
for the MasPar.

Again, two cases are distinguished. If M z o, the first
phase of the broadcasting procedure consists of M commu-

nication steps and in each step @ PEs are active. The

cost of this phase is therefore M . Tunb (m). During the

second phase, all processors are active. Adding the cost of

the two phases gives Tbca,t = M T“.b(@) + M Tunb (P).

If M < @, the extra phase consists of log( @/?vf) com-

munication steps, and in the ith step 2’ N PEs are ac-
tive. In this case the communication cost is Tb.,,t =

&f. T..b(m) + M TU.b(P) + ~~;w’~)-’ Tu.b(2’ N).

5 Comparing Measured And Predicted Perfor-
mance

In this section, the models are evaluated by comparing the

measured execution times of the algorithms described in the

previous section with the times predicted by the models.

5.1 BSP Model

Fig. 3 shows the measured and predicted performance of the
MP-BSP version of the matrix multiplication algorithm on
the MasPar. It can be seen that the MP-BSP cost yields
a reasonable approximation of the actual runtime. For all
measured data points, the deviation is less than ll~o, and
can be attributed to the fact that for h = 1, the time re-

quired for routing l–h relations is not very well approxi-
mated by g + L x 1430 p.s. In reality, the time taken by a

1–1 relation is about 1300 ps on the average.
The predicted and measured performance on the CM-5

are depicted in Fig. 4. As is apparent from this figure, the
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Figure 3: Measured and predicted performance of the MP-
B SP version of the matrix multiplication algorithm on the
MasPar.

B SP model does not precisely estimate the actual perfor-
mance. When the matrix dimension N is small (N < 64)
or when N is large (N > 1024), the primary source of error
is in the local computation. Due to cache effects, the lo-
cal matrix multiply takes significantly longer than a. N3 / P
time. However, even for N = 256, the BSP model predicts
an execution time of 188 milliseconds but the measured time
is about 227 milliseconds. The relative error is 2170 which is
too large to ignore. The defect is the result of processor con-
tention which is not captured by the BSP model. In the first
implementation of the matrix multiplication algorithm each
processor (i, j, k)  first sends data to (z, j, O), then to (i, j, 1),
and so on, causing stalls to occur. This can easily be avoided
by staggering the communication: processor (i, j, k)  starts

sending data to (i, j, k), then to (i, j, (k + 1) mod P1i3) and
so on, just as was done explicitly under the MP-BSP  model.
The curve labeled “Staggered” in Fig. 4 shows the measured
performance of this implementation. Now, there is indeed a
close match between the predicted and actual performance,
except of course for small and large values of N.

Fig. 5 plots the predicted and measured times per key
of bitonic sort on the MasPar. The total running time is
obtained by multiplying the time per key by the number of
keys per processor N/P. It can be seen that the MP- BS P

model overestimates the actual running times by almost a
factor of 2.0 on this architecture. This is entirely due to the
fact that bitonic sort makes use of a communication pattern
that is especially cheap on the MasPar global router. We
have conducted experiments that show that permutations
in which every processor communicates with the processor
whose address is identical except in one bit require approx-
imately 590 pg. This is less than 50?70 of the time taken by
an average random permutation.

The measured and estimated times per key of bitonic
sort on the GCel are shown in Fig. 6. As can be seen,
there is a huge difference between the times predicted by
the BSP model and the actual times per key. To explain
this behavior, we measured the time required for perform-
ing h identical permutations, which is the communication
pattern that arises in bitonic sort. We call such patterns h-
h permutations. The results of this experiment are shown in
Fig. 7. Until approximately h = 300, h-h permutations are
slightly cheaper than randomly generated h-relations. Af-

“16 32 64 I 2e 256 512 1024 2048
Matrix dimension N

Figure 4: Measured and predicted performance of the BS P

version of the matrix multiplication algorithm on the CM-5.
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Figure 5: Measured and predicted times per key of bitonic
sort on the MasPar.
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Figure 6: Measured and predicted times per key of bitonic
sort on the GCel.
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Figure 7: Time required for performing h-h permutations
vs. the time required for performing randomly generated h-

relatlons on the GCel under PVM.

ter that, the timing results become noisy and unpredictable,

and the time taken by h-h permutations keeps elevating. It

appears that the processors “drift out of sync”; an observa-
tion which also has been made in [9] for a different model. To
reduce this effect, a barrier synchronization was added after

each node has sent and received 256 messages. Fig. 7 shows

that this modification ehminates the performance drop, and
Fig. 6 demonstrates that now there is indeed a close match

between the measured and expected times per key.

5.2 Message-Passing Block PRAM

Fig. 8 and Fig. 9 show the measured and predicted per-
formance of the MP-BPRAM version of the matrix multi-

plication algorithm on the MasPar and the CM-5, respec-
tively. Comparing the two curves verifies that on the Mas-
Par (Fig. 8) the MP-BPRAM cost yields a very good approx-
imation of the actual performance: all errors are less than

3%. On the CM-5 (Fig. 9), the predictions are also quite
accurate provided that the local computations are precisely
modeled.

The observed and estimated times per key for the MP-

BPRAM variation of bitonic sort on the MasPar are depicted
in Fig. 10. As was also observed in the BSP version of this

algorithm, the MP-BPRAM significantly overestimates the

measured times per key due to the fact that bitonic sort
makes use of a fixed communication pattern that is partic-
ularly cheap on the MasPar global router. The MP-BPRAM

predictions are slightly more precise than the times pre-
dicted by BSP, because the router is somewhat less sensitive
to the actual communication pattern when long messages
are being sent.

The measured times per key for bitonic sort on the GCel
and the times predicted by the MP-BPRAM are displayed in
Fig. 11, As is apparent from the figure the estimated times

are very accurate; they almost coincide with the measured
data points.

5.3 E-BSP Model

Fig, 12 plots the measured and predicted execution times of
the all pairs shortest path algorithm on the MasPar. Com-

paring the observed performance with the performance es-
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Figure 8: Measured performance of the matrix multiplica-

tion algorithm on the MasPar, and the performance pre-
dicted by the MP-BPRAM model.
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Figure 9: Measured and predicted performance of the MP-
BPRAM matrix multiplication version on the CM-5.
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Figure 10: Measured and predicted times per key of the
MP-BPRAM version of bitonic sort on the MasPar.
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Figure 11: Measured and estimated times per key of bitonic
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Figure 12: Predicted and measured execution times of the
all pairs shortest path algorithm on the MasPar,

timated by the MP- BSP model shows that there is a signif-
icant error in the predictions, For example, at ~ = 512,
the MP-BSP  model predicts an execution time of 53.9 sec-
onds but the measured time is 30.3 seconds; the prediction
is off by 78% from the actual time. This defect is the re.
suits of unbalanced communication which is not captured
by BSP (nor the MP-BPRAM).  Also shown in Fig, 12 are
the times estimated under the E-BsP  model for the MasPar
(using TU~b(P’),  cf. Section 4.4.1), and it verifies that the
E-BsP  model gives a much better estimation of the actual
execution times,

On the GCel  (Fig. 13), there is also a substa~tial error
in the times predicted by BS P. To explain this behavior, we
measured the time taken by a multinode scatter communi-
cation operation, in which @ source processors scatter h
data itetns across the remaining processors so that each of
them receive at most [h/@l messages. This is the com-
munication pattern that arises in the first superstep of the
broadcast of the active row/column. The results of this ex-
periment are shown in Fig. 14. A multinode scatter takes
gmscat . h + L time, where g~,~,t % 492 W.  This commu-
nication pattern is up to a factor of 9.1 cheaper than a full
h-relation, so a better estimate of the execution time is ob-
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Figure 13: Predicted and measured execution times of the
all pairs shortest path algorithm on the GCel.
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Figure 14: Comparison of the total times taken by full h-
relations and by multinode scatter communication opera-
tions cm the GCel.

tained by using gm,Cat in the analysis of the first superstep.
Fig. 13 demonstrates that this modification yields predic-
tions that closely match the measured data points.

C)n the CM-5 (Fig. 15), the BSP model accurately pre-
dicts the actual running times of the all pairs shortest path
algorithm. On this architecture, due to its large bisection
bandwidth, there is only a minor difference between the time
taken by a full h-relation and the time taken by a scatter
operation.

6  C o m p a r i s o n  B e t w e e n  t h e  M o d e l s

This ~ection  concentrates on the second questitm:  how do
the models compare with each other? In this paper, we
mainly investigate the gain that can be obtained by group-
ing data into a single long message. In [18], an example is
given that demonstrates that by ignoring unbalanced com-
munication the BSP model may incorrectly predict that one
algorithm is superior to another.

As stated before, the maximum improvement that can
be achieved by sending large blocks of data instead of many
small packets is the ratio g/(w c U). In general, however, the
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Figure 15: Predicted and measured execution times of the
all pairs shortest path algorithm on the CM-5.
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Figure 16: Comparison between the BSP and MP - BP R A M

versions of the matrix multiply on the CM-5.

performance enhancement for complete applications will not
be this large. This is caused by the fact that in many par-
allel algorithms, the communication component in the total
running time grows at a smaller rate than the computational
time. Furthermore, in order to utilize block transfers the al-
gorithm designer may have to adapt the algorithm which in
fact may increase the running time.

Fig. 16 compares the performance of the MP- BPRAM and
the (staggered) BSP variants of the matrix multiplication
algorithm on the CM-5. Clearly, the MP- BPRAM version is
faster than the versions that use fixed size short messages.
For example, at N = 512, the measured performance is 366
Mflops for the long message version and 256 Mflops for the
staggered BSP variant, corresponding to an improvement
of 43~0. This is an example of an algorithm in which the
communication component grows at a smaller rate than the
arithmetic time; the ratio g/(w . a) is about 4.2 on this
architecture but a similar overall performance improvement
is not observed.

This is not the case in bitonic sort, since the local sort-
ing step contributes very little to the total running time.
A comparison of the two versions of bitonic sort on the
MasPar is given in Fig. 17. For this algorithm-architecture
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Figure 17: Comparison between the MP-BSP  and MP-
B PRAM versions of bitonic sort cm the MasPar.
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Figure 18: Measured times per key for the MP- BPRAM ver -
sions of bitonic sort and sample sort on the GCel.

combination, the performance enhancement obtained is a
factor of about 2.1, whereas the maximum improvement is
(g+ L)/(w ~ a) = 3.3.

On the GCel,  there is a huge difference between send-
ing short and long messages. The importance of capturing
bulk transfer in a computational model for this architecture
is reflected in bitonic sort (cf. Fig. 6 and Fig. 11). With
4K keys per processor, the measured time per key of the
synchronized BSP version is 86.1. milliseconds, whereas the
MP- BPRAM variation requires only 1.36 milliseconds per key.
The MP - BPRAM version has almost two orders of magni-
tude improvement over the BSP version, which uses fixed
size short messages. In our opinion, the high startup cost of
a message transmission on this architecture makes it an ab-
solute requirement that block transfers are included in the
computational model.

Fig. 18 compares the running times of the MP- BP R A M

versions of bitonic sort and sample sort on the GCel.  The
performance of sample sort is somewhat disappointing. Al-
though it is the most efficient sorting algorithm in theory, it
does not outperform bitonic sort. The reason is apparent.
The send substep alone, in which the keys are routed to
their appropriate buckets, requires about 16. u. w. N/P ps,
and the cost of bitonic sort is dominated by an expression
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Figure 19: Comparing the performance of model derived
matrix multiplication algorithms with the matmul intrinsic
on the MasPar.

of the form 21 a w N/P for P = 64. The large constant
in the running time of the send substep is due to the re-
striction that a processor may send or receive at most one
message in a single communication step. The lowest curve
labeled ‘Staggered ) shows the measured times per key for
an implementation in which each processor (j) packs the
keys destined for the same processor in a single message
and then send the message to the appropriate bucket, again
in a staggered fashion to avoid stalls. This variation may vi-
olate the single-port communication restriction, but yields
an improvement by a factor of approximately 2.

7  Model  Implementat ions Versus M[achine-Specific
I m p l e m e n t a t i o n s

In this section, we take the matrix multiplication algorithm
as a case study to validate the efficiency of the model derived
algorithms on two platforms; the MasPar and the CM-5. On
the GCel,  a highly optimized mathematical library was not
available.

Fig. 19 compares the performance of the model derived
matrix multiplication algorithms with the performance mea-
sured for the matmul  intrinsic. Evidently, the intrinsic is
more efficient than our implementations for all measured
data points. At N = 700, the measured performance of
the MP - BPRAM version is 39.9 Mflops and the matmul  in-
trinsic achieves 61.7 Mflops (a lK MasPar MP-1 system has
a peak performance of 75 Mflops, single precision), which
corresponds to a performance penalty of 35%. However,
it is important to note that the intrinsic matmul is highly
optimized and squeezes the highest performance from this
architecture. In the light of this, the performance penalty
incurred going through general computational models seems
to be very acceptable.

A comparison of the model derived implementations
and the gertmatrixmurlt routine present in the Connec-
tion Machine Scientific Software Library (CMSSL) is given
in Fig. 20. Surprisingly, the model versions are much
faster than the implementation that uses genmatrixmult.
T h e  MP - BP R A M  version peaks at 372 Mflops which is
65% of the peak performance (64 9 = 576 Mflops), but
genxnatrixmnrlt never achieves more than 151 Mflops. It
needs to be mentioned, however, that the implementations
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Figure 20: Comparing the performance of model derived ma-
trix multiplication algorithms with the genmatrixmult ( )
routine present on the CM-5,

do not use the vector units. For example, if compiled for the
vector-units model, genmatrixmult achieves 1016 Mflops
at N = 512.

8  C o n c l u s i o n s

This paper presented many experimental results collected
on three parallel platforms evaluating some of the proposed
parallel computation models. Our work consisted of an eval-
uation part, a comparison part and an efficiency validation
part.

In the evaluation part the models’ predictions were com-
pared with experimental results. Unlike previous studies,
which mostly demonstrated a close match between the mea-
sured and predicted execution time, our work shows that
there are situations in which the models do not accurately
predict the actual running time, This occurred in the fol-
lowing circumstances:

●

●

●

Under the BSP model the communication schedule (the
order in which the messages are sent and received) is
irrelevant. However, on real machines, when all proces-
sors simultaneously send data to the same processor
stalls will occur. This caused the BSP model to over-
estimate the performance of the initial implementation
of the matrix multiplication algorithm on the CM-5 by
21%. The LO GP model [9] captures this aspect by as-
suming that the network has a finite capacity.

Certain contention free communication patterns that
occur frequently in practice require much less time than
normally expected. For example, on the MasPar, the
pattern that arises in bitonic sort is twice as fast as
normally predicted.

The BSP model charges for a full h-relation, even if only
a partial h-relation needs to realized. Similarly, the
M P- BPRAM model assumes that in every communica-
tion step all processors send and receive a message. For
example, on the MasPar, a partial permutation with 32
active PEs  takes about 13~o of the time taken by a full
permutation. On the GCel,  a multinode scatter is up
to a factor of 9.1 cheaper than a full h-relation.



We especially believe that unbalanced communication is an
aspect which should not be ignored. The point is that only
high bandwidth networks such as binary hypercubes and fat

trees have the property that partial h-relations take about

the same time as full h-relations, but low bandwidth net-
works such as meshes do not. On this, practically impor-

tant, topology sending h messages between two processors

is up to a factor of @(@) (i.e., non-constant) cheaper than
a full h-relation,

In the comparison part the MP-BPRAM and the BSP
model were compared with each other. The gain that can

be obtained by grouping data into a single long message de-

pended on the algorithm and on the architecture. On the

GCel, there is a huge difference (up to a factor of 120) be-
tween sending a few large messages instead of many small

ones. The MasPar and the CM-5 support fine-grain com-
munication and the maximum improvement that one can

achieve is 3.3 and 4.2 respectively. On these architectures, a

satisfactory performance can be obtained by using fixed size
short messages, but larger than one computational word, as
was done implicitly in [9]. For example, with 16-byte mes-

sages, the difference decreases to 1,37 on the MasPar and to
2.1 on the CM-5.

Lastly, there was an efficiency validation part in which we

showed the effectiveness of deriving fast algorithms through
the formalisms of the models by comparing the performance

of our implementations with the performance of optimized

library routines. The model derived algorithms either out-
performed the vendor supplied routines (CM-5) or recurred

a performance penalty of 35~0 (MasPar), which can be called

acceptable, However, matrix multiplication might be called

an embarrassingly parallel problem and it remains to be
investigated whether acceptable performance can also be
achieved for problems that are harder to parallelize.
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