
Processor Efficient Parallel Solution of Linear Systems

over an Abstract Field*

Erich Kaltofen**

Department of Computer Science, University of Toronto

Toronto, Canada M5S 1A4; Inter-Net: kaltof en@cs. toronto. edu

Victor Pan

Department of Mathematics and Computer Science

Lehman College, City University of New York

Bronx, New York 10468; Inter-Net: vpan@lcvax. bitnet

Parallel randomized algorithms are presented that solve n-dimensional systems of linear equations and compute

inverses of n x n non-singular matrices over a field in O((log n)z) time, where each time unit represents an

arithmetic operation in the field generated by the matrix entries. The algorithms utilize within a O(log n)

factor as many processors as are needed to multiply two n x n matrices. The algorithms avoid zero divisions

with controllably high probability provided the O(n) random elements used are selected uniformly from a

sufficiently large set. For fields of small positive characteristic, the processor count measures of our solutions

are somewhat higher.

1. Int roduct ion

A processor efficient parallel algorithm is a parallel alg~
rithm that has a running time that is poly-logarithmic in
the input size and that utilizes asymptotically as many
processors as the best known sequential step count for
solving the problem; a poly-logarithmic factor in the
asymptotic processor count is allowed (I{arp and Ra-
machandran 1990). This paper considers the problem of
solving a linear system of n equations with n unknowns
over an abstract field, as well as the closely related prob-

*Tllis material is based on work supported in part by

the National Science Foundation under Grant No. CCR-90-

06077 and under Grant No. CDA-88-O591O (first author),

and under Grant No. CCR-88-05782 and Grant No. CCR-90-

20690 and by the PSC CUNY Awards #661340 and #669290

(second author).

**Permanent address: Department of Computer %ience,

Rensselaer Polytechnic Institute, Troy, New York 12180-

3590; Inter-Net: kaltof en@cs .rpi. edu.

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of tbe publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

@ 1991 ACM 089791=138-4/91/0007/0180 $1.50

lems of computing the inverse, determinant, and rank

of an n x 71 matrix. An individual step in our algo-

rithms is an addition, subtraction, multiplication, divi-

sion, or zero-test of elements in the field that the entries

of the linear system generate. Gaussian elimination is

a sequential method for all these computational prob-

lems over abstract fields, whose running time can be

asymptotically related to the sequential complexity of

n x n matrix multiplication (Bunch and Hopcroft 1974).

We present processor efficient randomized parallel algo-

rithms for solving non-singular systems and for inverting

non-singular matrices.

Csanky (1976) used Leverrier’s approach to devise

a parallel linear system solver, but the best proces-

sor count known for this approach exceeds by a factor

of almost A the complexity of matrix multiplication

(Preparata and Sarwate 1978), (Galil and Pan 1989).

Leverrier’s algorithm does not work for fields whose

characteristic is positive and less than n, in which case

the best known parallel algorithms needed by a factor of

n more processors (Berkowitz 1984), (Chistov 1985). All

previous parallel solutions compute the characteristic

polynomial of the coefficient matrix without divisions.

For this restricted algebraic model these algorithms are

processor optimal, i.e., it appears not to be known how

180

to compute the determinant of a matrix faster sequen-

tially avoiding divisions.

Our processor efficient solution is not division free,

but our algorithms realize shallow algebraic circuits and

thus have no zero-tests. In order to avoid a division by

zero, we instead randomly perturb the coefficient ma-

trix. Our solution requires O(n) random field elements,

and we prove that if these elements are taken uniformly

from a set containing s field elements, the probability

of a zero-division on a non-singular input is no more

than 3n2/s. In a substep our algorithm uses Leverrier’s

method. It thus has the same restriction on the charac-

teristic of the field as does Csanky’s solution, namely it

divides by 2,3,.. .,n. It should be noted that our solu-

tion uses matrix multiplication as a black-box. There-

fore, the processor count and especially the constant in

the big-O estimate is directly related to the particular

matrix multiplication algorithm used, and for the clas-

sical method may yield a practical algorithm.

Our algorithms combine several advances in algebraic

computational complexity theory. The first is the field

independent randomized method for solving sparse lin-

ear systems by Wiedemann (1986). That approach pro-

vides a randomized parallel processor efficient reduc-

tion of linear system solving to the Berlekamp/Massey

problem for finding a linear generator of a linear recur-

rence. Further reduction is possible to solving a non-

singular Toeplitz system. The second advance is solving

such Toeplitz systems in parallel processor-efficiently.

Putting these two approaches together yields processor

efficient randomized parallel algorithms for computing

solutions to non-singular systems and for computing the

determinant of a matrix. In order to obtain the inverse

from the determinant of a non-singular matrix we em-

ploy the simple but ingenious reduction by Baur and

Strassen (1983). Our contribution is to prove that this

reduction can be realized without increasing the parallel

time by more than a constant factor. We finally present

one more application of that reduction, which relates

the complexity of solving non-singular systems to the

complexity of solving the transposed systems.

The methods presented here also yield randomized

parallel processor efficient algorithms for the problems

of computing the rank of a matrix, a single solution of

a singular linear system, the basis for the nullspace of a

matrix, and a least-squares solution of a linear system.

We discuss these extensions briefly in the last section.

Notation: By w > 2 we denote the exponent of

the matrix multiplication algorithm used, which must

for dimension n yield a circuit that is simultaneously

of depth O(log n) and size O(nW); currently the best

known exponent is w <2.3755 (Coppersmith and Wino-

grad 1990). By SN we denote the set of all infinite

sequences {ai}~O, ai G S. Finally, the function log ~,

* z 2, denotes log2(z), ancl the function 1%1% z, z 2 ‘1,
denotes logz(logz(~)).

2. Wiedemann’s Method

Wiedemann (1986) presents a randomized Las Vegas al-

gorithm for computing the determinant of a sparse nm-

trix over a finite field. As it turns out, this method is

a field independent algorithm that reduces the problem

of computing the determinant to the problem of solv-

ing a non-singular Toeplitz system. The reduction is

processor efficient and of poly-logarithmic parallel time

complexity. In the following we present Wiedemann’s

argument with a slight change in the probabilistic anal-

ysis, which is warranted because we work over an ab-

stract field.

Let V be a vector space over the field K, and let

{ai}~O be an infinite sequence with elements ai E V.

The sequence {ai}~O is linearly generated over K if there

exist CII, C1, ..., Cn C K, n ~ O, ck # O for some k with

O < k < n, such that

Vj ~ O:cOaj + .+cnaj+,, = O.

The polynomial CO+ CIJ+. . .+cn An is called a gener-atinfl

polynomial for {ai}~o. The set of all generating po]:Y-

nomials for {a~ }~o together with the zero polynomial

forms an ideal in K [A]. The unique polynomial gener-

ating that ideal, normalized to have leading coefficient

1, is called the minimum polynomial of a linearly gener-

ated sequence {ai }y=o. Every generating polynomial is

a multiple of the minimum polynomial.

Let A G Kn ‘n be a square matrix over a field. The

sequence {Ai}~o G (K ‘xm)N is linearly generated, al”ld

its minimum polynomial is the minimum polynomial of

A, which will be denoted by .fA. For any column vector

b G Kn, the sequence {Aib}go G (Kn)~ is also linearly

generated by .fA. However, its minimum polynomial,

denoted by ~AJb, can be a proper divisor of fit. For ally

lxn the sequence {uAib}~o E KN isrow vector u E K

linearly generated as ~ell, and its minimum polynomial,

denoted by f~b, is again a divisor of ~Ab. Wiedemalla

proves the following fact (1oc. cit., ~VI).

Theorem 1. Let rn = deg(~A~), and let W be the

linear space of polynomials of degree less than m in K[;\].

There exists a subjective linear map /: Kl x” - W

Vu c Klx”: ~flIb = ~AIb ~ GCD(~A’*,l(u)) = 1.

Clearly, the sequence {uA;}~o ~ (KIX”)N is the Sym-
metric counterpart of {Aib}~O. We write ~U’A for the

minimum polynomial of the former. By considering the

rational canonical form of A, one establishes the exis-

tence of a row vector uo E KIX” with juO’A = ~A. Let

rn’ = deg(jA) and let W’ be the linear subspace of K [~]

181

spanned by {l, A,..., ~m’-l} over K. By Theorem 1 it

follows that there exist subjective linear maps

1:,: K“ - Wm’

such that

VbE Kn:j;;b= fuO’A= .fA e+ GCD(~A,4~O(b))=l.

Thus, the probability that ff’b = fA for randomly se-

lected vectors u and b is essentially the probability of

randomly selecting two polynomials of degree less than

m’ that are both relatively prime to fA. For a finite field

K with q elements, Wiedemann (1oc. cit., Proposition 3)

proves that the probability is no less than

.

12 max{ [log~deg f ‘)1, 1}”

We shall present a different estimate. For this, we state

the following Lemma, which is a key element in our

results.

Lemma 1. Let {ai}~O c KN be linearly generated,

and let m be the degree of its minimum polynomial.

For p ~ O, consider the Toeplitz matrices

Tu :=

aP–l av–z . . . al ao

aP aP_l . . . az al

afl “. .: az

a2p-3 C%P-l

a2p–2 a2P_3 . . . aP a~–l

~ KfJx P.

Then Det(Tm) # O and for all M > m, Det(TfiI) = O.

Proof If the polynomial g(~) = AM +cM_l Air-l +. ~.+

co generates {a~}~o, then

~.*(-l)=.(a:_l).
Clearly, for each M > m, the above linear system has

several solutions corresponding to all the polynomials

g(~) that are multiples of the minimum polynomial,

hence Det (TJ{) = O. For A4 = m, the only solution

to the system is formed by the low order coefficients

of the minimum polynomial. This is because a poly-

nomial of degree m that linearly generates the initial

segment {aO, a2n _ 1} must already generate the en-

tire sequence, hence its monic associate must coincide

with the minimum polynomial, El

From this lemma we can derive, using the approach of

Schwartz (1980) (see also Zippel (1979)), the following

probability estimate.

Lemma 2. Let A E K“xn, and let S C K.
and uniformly select a row vector u G S1 x n

umn vector b E S“. Then the probability

Randomly

and a col-

2deg(fA)
“b= fA) ~ 1- card(s) ~Prob(fu

Proof Let 0 be an n-dimensional row vector ~ith en-

tries VI, ..., Vn being indeterminates, and let /3 be an

n-dimensional column vector with entries being fresh

indeterminate ,B1, f3~. Then

{CYi}:o c LN with ~i := OAi~,

L := K(?Jl,v~. i%, fl~), is linearly generated by

fA. For m = deg($A), consider the Toeplitz matrix Tm

define in Lemma 1 with respect to p = m and the se-

quence {ai}~o. Since there exist vectors u c Klxn and

b c K“ with j~’b = fA, by Lemma 1 there exist va]-

ues in K for the indeterminates q, ~~ such that the

evaluation of T~ at those values yields a non-singular

matrix. Hence, Tm is non-singular as a matrix over L,

and

O#~:=Det(T~) CK[vl,v~. @l, P~], P~].

If evaluating T at the coordinates of u 6 Slxn and

b E Sn results in a non-zero value, the correspond-

ingToeplitz matrix for {uAib}~=O remains non-singular,

which again by Lemma 1 implies that deg(f~’~) ~

m. By the Schwartz/Zippel lemma the probability

that ~ does not vanish is bounded from below by 1 –

deg(~)/card(S). R

For a matrix A c Kn x n, one can now in a Las Vegas

randomized fashion verify that Det (A) = O. First, one

randomly selects u E Slxn and b c Sn, with S C K

and card(S) ~ 2n/c, where O < c << 1. Second, one

computes

{ao, al,..., a21},}, ai := uA’b.

Third, one finds the minimum degree linear generating

polynomial for the above sequence of 2n elements, By
the theory of linearly generated sequences, this poly-

nomial is equal to f$’b. Finally, if J I f$’b(~), then

Det(A) = O. For a singular matrix, this condition will

occur with probability no less than 1 – c.

For a non-singular matrix A E Kn x n, Wiedemann

presents a Las Vegas randomized algorithm for com-

puting Det (A). Our parallel solution will utilize his

method, but the randomization can be simplified. We

owe the next theorem to B. David Saunders.

182

Theorem 2. Let A E K“ ‘n be non-singular, and let

S c K. Consider the matrix

where the elements of the Hankel matrix H are ran-

domly and uniformly selected from the set S. W~h xi

denoting the leading principal i x i submatrix of A, the

probability

Prob(Det(~i) # O for all 1< i < n) ~ 1 –
n(n + 1)

2 card(S) “

Proof. For an n x n matrix B, denote by BI,J the deter-

minant of the submatrix of B that is formed by remov-

ing from B all rows not contained in the set 1 and all

columns not contained in the set J. First, assume that

‘H is a generic Hankel matrix, whose entries are new

variables q., . . . , ~z~-z replacing ho, ..., hz~-z, and let

~ = A?f E Lnxn, where L := K(qo, . .,q2n_2). For

1 = {1,. . . . i} the Cauchy-Binet formula yields

We claim that ~:,1, which is the ith leading princi-

pal minor of 1, is non-zero in L. The argument ob-

serves that, for J = {jl, ji}, the diagonal term

Vjl-lnj,qj. +1“ “ . w,+i - 1 is the le~iwwdlicalh lowest
order term in the minor expansion for HJ, J. Therefore,

all fiJ,I have distinct lowest terms, hence are linearly

independent over K, and thus AAI, I # O, provided there

exists a JO with A1,JO # O. This is true since the first i

rows of A are linearly independent. If we set

i=l

then it is clear that all those H whose entries are not

zeros of the polynomial u will satisfy the lemma. Again

by the Schwartz/Zippel lemma, the probability that u

does not vanish on random values from S for the q’s is

no less than 1 – deg(u)/card(S). R

If all principal submatrices of ~ are non-singular,

Wiedemann shows that for the matrix

x:= AD, D := Diag(dl, . . .,dn),

where the di are uniformly randomly selected from S,

the probability

Prob(~X(J) = Det(A1 – ~)) ~ 1 –
n(2n – 2)

(1)
card(S) “

The algorithm picks a random Hankel matrix H, a ra o-

dom diagonal matrix D, a random row vector u, and a

random column vector b, all with entries in S. First, it

computes the sequence

{60,..., &.m_l}, Zi z= u~b, ~:= AHD.

Second, it determines the minimum polynomial f,,i’h

of that sequence, i.e., it finds a polynomial of minim-

um degree that linearly generates {60, ‘?iz~n-l}. If

deg(f~’b) < n or f~)b(0) = O, the aljorithm reports

failure. Otherwise, Det(~l – ~) = ~~Ib(~), so it can

return

f:’b(o)
Det(H)Det(D)

as-the value of the determinant of A. Note that since

f$’b(o) # O, I is non-singular, hence both H and D

must also be non-singular, and the division is possi-

ble. Putting Theorem 2, Lelmma 2, and (1) together

we obtain for any non-singular matrix A G Knxn the

probability estimate

Prob(deg(fj’b) = n

and f~’b(0) # O) >1 – 3n2/carcl(S’). (2)

For Galois fields K with card(K) < 3n2, the algorithm

is performed in an algebraic extension L over K, so tl”lat

the failure probability y can be bounded away from O.

We have not specified yet how the generating poly-

nomials for the linearly generating sequences are founci.

Sequentially, the best method is the Berlekamp-hIassey
~)b frolm {ub, w.4/), “ ~

algorithm, which can find fu ‘ax

A2n-lb} in O(n deg(f~’b)) field operations. Our par-

allel solution is based on solving the Toeplitz system

described in the proof of Lemma 1, and is discussed in

the following section. That approach as a by-product

will also produce a method for finding Det(H).

3. Solution of Toeplitz ancl General Systems

In 32 we have shown that the problem of solving gen-
eral systems of linear equations can be reduced to the
problem of solving the Toeplitz systems arising from the
linearly generated sequences discussed. ~~renow present
an algorithm for finding the characteristic polynomial of
a Toeplitz matrix, First, we observe that for any matrix
A c K“x” one may compute the poweu series expansion

(1– AA)-l = 1+ AA+ A2A2 + G K“X’’[[A]]

183

T-l =:

‘U1 . . . vn

U2 . . . ‘vn-l

(“u~_l . . . V2

Un . . . VI [u. un_l .’. . U2 ’741

(
o

vn o

vn–l vn o—
“. “.. .

V2 V3 . . . ‘on o

Figure 1: The Gohberg/Semencul formula.

by Newton iteration:

XO-I; B+ I–JA;

Xi -Xi_1(21– BX;_l) for ie 1,2, . . .
(3)

Note that X; is a matrix polynomial in A of degree no

more than 2i — 1. Since

I–BXi = 1– BXi_l(21– BXi_l)

= (1- 13x, _,)(I - BXLI),

it follows by induction on i that 1– l?Xi s O (mod J2’),

i.e.,

Xi = I+~A+ . . .+12’-1A2’-1.

We now apply (3) to Toeplitz matrices. For a non-

singular n x n Toeplitz matrix over K,

T:=

I

an_l an_z . . . al ao

an an_l . . . az al

an “. az

\
a2n_3 an_l

azn_z azn_3 . . , an an_l

, (4)

the inverse can be represented implicitly by the Goh-

berg/Semencul formulas (see, e.g., Brent et al. (1980)),

one of which applies in the case where

U1 := (T-l)l,l = (T–l)n,n =: ‘7)1# O,

and is stated in Figure 1. Note that T-1 is thus fully

determined by the entries of its first and last rows.

Note that

Trace(T-l) = ~(nulvl + (n – 2)uzvz-t

“.. +(–n+2)unvn),

The algorithm (3) is now applied to the Toeplitz matrix

‘u1 7J2 ‘W3 . . . ‘Un

VI V2 ?&-1

“. “.:

?)1 V2

VI
(5)

)

B = T()) := I – JT. Then

Xi s T(J)-l (mod AZ’)

where T’(A) can be viewed as a Toeplitz matrix with

entries in the field of extended power series K((~)) =

(_J,20 ~-’ K[[~]]. Clearly, T(A)-l E K[[J]]nxn and T(0)-l

= 1, so (T(A) –l)l,l mod ~i # O for any i ~ 1. We com-

pute the first and last columns of Xi from the first and

last columns of Xi_ 1 by formula (5). The first column,

for instance, is computed as

1

()o
x&l(21 – T(A)xi-1) : . (6)

o

Multiplying Xi_ 1 from the right by a vector reduces,

by (5), to multiplying triangular Toeplitz matrices by

vectors, vector subtractions, and dividing a vector by

a scalar, i.e., a polynomial in A. The Toeplitz matrix

times vector products can be accomplished by polyno-

mial multiplication. For example, for

[[~~

Y1 U1

Y2 U2 ul

Y3 U3 U2 ul:=

. .. .

Y. u~ un_l . . . U2 U1

‘tul

w~

W3

‘u&

we have

(u, +... +un2 ~-l)(w, + . . . + wnz~-’)

= Yl + Y2Z+ . ..+yn&l (mod Zn).

Note that the entries in the first and last columns in

Xi_l, denoted by u~-l) and V(i-l), and the entries in

the arising vectors yi, are th~mselves polynomials in

K[~] of degree no more than 2i – 1. According to (5),

the resulting polynomial vector of degree 2i + 2i - 1 – 2

184

(i- 1, the first entry in the firsthas to be divided by UI

column of Xi_ 1. This is a~complished by multiplying
(i-l)

each entry with the power series inverse of UI ,

1 (i-1) A2t-1 (mod ~z’),
(~-l)}+. . .+~2,_1

(4(~)
=l+lu~

U1

w~i- 1) E K. Note that expansion for the inverse of u!)
1

to order Az’+’–l can be obtained from the first 2i - 1

terms of this expansion and from U$) with 2 Newton

iteration steps (Lipson 1981, ~3.3). That expansion will

be needed for the determination of the rows and columns

of Xi+l .

The overall complexity of each iteration in (3) is

bounded from above by the complexit y of bivariate poly-

nomial multiplication with input degrees bounded by 2n

and 2i+l in the individual variables, respectively, and

can be performed on an algebraic circuit over K in

0(2in log n loglogn) size and O(log n) depth

(Cantor and I<altofen 1987). The overall algebraic cir-

cuit complexity for finding the first and last columns of

X[log, nl is thus

0(n2 log n loglog n) size and O((log n)2) depth. (7)

Again by (5), we can compute

Trace(Xr10g2.1) mod An = n + Trace(T)A+

. . . + Trace(T”-l)A”-l

from the first and last columns of XrlOg, ~1, again within

the complexity (7).

Once we have for all O ~ i ~ n – 1,

s~ := Trace(Ti) = ~~ + ~~ + o~.+~~,

where Al, & are all eigenvalues of T, it is possible

by the Leverrier/Csanky (1976) method to obtain the

coefficients of the characteristic polynomial of T. In

particular, for

Det(A1– T) =: An– Cl An-l– C2An-2– . ..– CnCn. –Cn,

we have

Clearly, in order for the system to determine all Ci

uniquely, one has to divide by n!. However, under that

condition one can solve such systems in

O(n log n loglogn) size and O((log n)2) depth

(Schonhage 1982); see also (Pan 1990a, Appendix A).

IVe have thus proven the following theorem.

Theorem 3 (Pan 1990b). The characteristic poJym-

mial of an n x n Toeplitz matrix over a field of character-

istic zero or greater than n can be computed on an alge-

braic circuit of 0(n2 log n loglog n) size and O((log n) ’z)

depth.

From Theorem 3 we can obtain by the approach of

33 size-efficient randomized circuits for solving general

non-singular systems. Assume now that A c K“x’ is

a general non-singular matrix. The algorithm picks a

random Ha.nkel matrix H, a random diagonal matrix D,

a random row vector u, and a random column vector v,

and computes

{ai}~!l~l, a, := u~v c K, ~= AHD. (8)

The algebraic circuit finds first ~, then computes all

~ v, aid finally performs the inner products” with

From the doubling argument

A2’(v IAv I . . . IA2’-1V)

= (Az’v I A2’+lV I . . . I A2’+’-1V)

u.

9)

(cf. (Borodin and Mumo 1975, p. 128); l{eller-Gehrig

(1985)) it is easily seen that the algebraic circuit for

this step has complexity

O(n’” log n) size and O((log n)z) depth. (lo)

We remark that on an algebraic PRAM, here and in

the following estimates a factor log n can be saved in

the asymptotic processor count.

Next, we compute the characteristic polynomial for

the Toeplitz matrix T in (4), whose entries are the el-

ements of the sequence (8). By Theorem 3, (10) dolni-

nates the complexity of this part of the construction. By

(2), the generating polynomial of (8) is with high proba-

bili~y the characteristic polynomial An +31 An-l+. . -I-F.

of A, which by Lemma 1 implies that the Toeplitz n~a-

trix T is non-singular. We deduce the solution of

‘(:)=-(.:.,)}

from the characteristic polynomial of T, cleuoted by J“+
n—lclA +.. .+c,l, as

(;)+$(T-(a:_,)+...+cn_l(a:_
This is because by the Ca.yley/Hamilton theorem,

T“+clTn-l +.. .+l=O=O.

185

Note that Fn is equal to (–l)”Det(~), which by (2) is

likely to be not equal to zero. Again from (9) we deduce

that the circuit complexity of this step is (10). Next, we

find in the same manner and at the same complexity

5+ -;(x%+z,x”-’b+ ...+...,/)).

Now we must have ~Z = b. We finally compute A-lb =:

z +- HD 2. We therefore have the following theorem.

Theorem 4. For n ~ 1 there exists a randomized alge-

braic circuit with n’+ n inputs, n outputs, O(n) nodes

that denote random (input) elements, and of

O(nU log n) size and O((log n)2) depth,

with the following property. If the inputs are the entries

of a non-singular matrix A E Kn ‘n and of a vector b c

K“, where K is a field of characteristic zero or greater

than n, and if the random nodes uniformly select field

elements in S C K, then with probability no less than

1 – 3n2/card(S) the circuit outputs the entries of A-lb.

On the other hand, if the random choices are unlucky

or if the input matrix is singuJar, the circuit divides by

zero. On non-singular inputs zero-divisions occur with

probability no more than 3n2/card(S),

4. Computing the Inverse Matrix

We now show how a circuit for the determinant of a

non-singular matrix can be transformed to a circuit for

the inverse of that matrix. Our solution follows the

approach by Baur and Strassen (1983). Suppose that

a rational function ~ c K(z1, Xk) is computed from

the input values xl, xk by a straight-line program of

length 1, i.e., an algebraic circuit of size 1; for the follow-

ing arguments it is more convenient to enumerate the

nodes, hence the straight-line program model. The pro-

gram can divide, but it is assumed that the division is by

a rational function that is not identical to O, i.e. ~ there

will always exist input values in the algebraic closure of

K for which the program avoids a zero-division. Baur

and Strassen show that then there exists a straight-line

program of length no more than 51 that colmputes all

first order partial derivatives

Furthermore, the new program will divide by exactly the

same rational functions as the old, hence no new zero-

division will be introduced. Their motivating example

was the same as ours. Let k = n’ and

f(zl,l,. . . .Zn,n) = Det(A), A = ($i,j)l<i,j<n.

If ~ is computed by a straight-line program of length

{(n), then the inverse of A can also be computed by a

program of asymptotic length O(l(n)), namely as

However, the original construction of Baur and Strassen

does not preserve the depth of the program within a

constant factor. In order to achieve this, we have to

analyze their method more closely and employ implicitly

a theorem by Hoover et al. (1984).

Theorem 5 (Kaltofen and Singer 1990). Let f c

K(q,. ... xk) be computed by a straight-line program

P of length 1 and depth d. Then f and all deriva-

tives dxl (f), i%,(f),. . . , ~z~ (f) can be computed by a

straight-line program Q of length no more than 41 and

depth O(d).

Proof. Let vi + v~,f~) Oi vr,(i), k + 1 S i < ~ + 1,

be the (i – k)-th instruction in the program P. Here

the function 11 retrieves the index of the left operand of

right-hand side expression, and the function 12 the right

operand. We set vi := x; for 1 ~ i < k, hence we have a

range for the operand indices of 1 < 11 (i), 12(i) < i. If

the left or right operands are scalars, no such indexing

will be needed. For i > k the symbol vi stands, strictly

speaking, for a program variable in P, or a node in the

computation DAG for ~. However, we also use it to

identify with it the rational function in K(x1, x~)

that is computed in this variable. Baur and Strassen’s

construction proceeds by viewing ~ as a sequence of

functions

we will have

9i(vl, ..., v~)=f(xl,xk)forallk~i~k+i.

The interpretation of gi is the function that gets com-

puted in the program variable U(if one omits the ill-

structions for v~+l, vi in the program P and replaces

7J1 =X1,..., ?l~ =x~, vk+~, ..., vi by the new variables

yl, . . . , yi whenever they are used in the truncated pro-

gram of length i – i + k. In particular, we will have

9k(xl, ..., $~) =f(xl,zk).

Now let

k + 1 ~ i ~ k +1, denote the rational function that, gets

formally computed by the (i – k)th instruction in P.

The functions gi, i = k +1, k+l – 1,..., k, are therefore

186

y ‘+2 Y3 ‘% %+, %+, ‘%.(-f ‘n+f

]__]._]_____:_____~]]’;----------------------..
agn+(-,

I

w-‘-‘+---.—------______________________
agn+(-2

ay, aq, avj . . . a~n JY ~+, agn+,

Figure 2: coarse view oi the Baur and btrassen construction.

inductively defined to be related by

9L1(Y1,. . .)Yi-l)’= 9i(Yl)..., Y11ll

h(YI,(i)!Yr2[i))),
(11)

where initially g~+l(yl, yk+l) := yk+l. The goal is

to compute

This is done by using the inductive definition of gi and

the chain rule for partial derivatives. This rule states

forg 6 K(yl,y~) andhl,h~ G K(zl,z~)

that

provided the denominator of g does not become zero in

K(zl, ..., x~) by setting yj to hj(xl, z~) for all 1 <

j ~ m, in which case the same is true for 8Y, g. Note t hat

this rule can be proven for any field by entirely algebraic

means (see (Kaltofen and Singer 1990)). In our case,

only the last function hm will not be the identity.

We first have

dyj(g~+~) = O for all 1< j ~ k+i – 1, dy,+,(y~+~) = 1.

NOW let us assume that at level k + 1– i we have already

computed the derivatives

%,(9i)7~Y2(9i)> ~.)~Y,(9i).

From (11) we get by the chain rule for jl := II (i) and

jz := Iz(i) that

(%,9i-,)(Yl>. ~., Yi-,) = (dy,gi)(Yl, ., Yi-,,

~~i(uj,,llj,))

forl<,j <i–l, j#~l, ~#j2, and

(8vj9i-l)(Yl, . ., Y’i-1) =

(d?Jj9i)(Yl, ~~~,Yi-l)k(Yj,, Yj2))

+ (dy*9i)(Yl, . ~]Yi–l,hi(Yj,]Yj2))(&l, ~i)(Yjl)Y.i2)

187

Figure 3: Balancing an accumulation tree.

forj=jlorj=~z.

The dynamics of these rules are displayed in Figure 2.

The substitution hi(Yj,, Yjz) for yi is accomplished by

connecting the corresponding node to the nodes for yll

and yjz and performing the operation Oi in the node,

Then the derivatives 09, (gi _ 1) are computed from those

of dvj (gi) plus a value derived from

‘Yt(9~) = (%a9~)(Yl) . . . ,W-l, h(Yj,, Yj2))

and the derivatives of hi (Yjl, yj2). The latter are solely

dependent on the nodes corresponding to the variables

yj, and Yj, and require constant work. In Figure 2,

this is indicated by a thick connection from the line for

~yi to dyj. Let us for a moment consider the opera-

tion Oi with the most costly work, namely division. For

‘i(Yj,, Yj,) = Yj, /Yj, we have

The strategy is to divide dg, (gi) by yj,, add that into

the C9yj, line, or multiply it with yj, /yj,, the value com-

puted in the node for yi, and then subtract that from

the 8Y, line. In other words, if oi = + one needs 4 ad-

ditional operations to go to the next level. There is one

more issue that needs to be settled in the division case.

Later substitutions for yjz are not allowed to cause a

division by a function that is identical zero. This never

occurs because the circuit computing the derivatives will

only divide by quantities that the original program P

divides by.

We now discuss how to accomplish the given length

and depth measures. For each vi in P, k+ 1< z’ < ,4+1,

we will introduce at most 5 instructions in our new pro-

gram Q, one from the original program and at most 4

more to eliminate yi. This leads to an upper bound of

51 for the length of Q, but 1 of these instructions either

add the initial dvj (g~+l) = O to dY, (gi) (dYJ hi)(yjl , YjZ)

(or multiply dv~+l g~+~) = 1 by dyj (h~+r)(yj~ ~Yj?). Since

we have each instruction vi participate in the compu-

tation of Vk+l, there are at least 1 trivial instructions

that can be eliminated from such a Q. Note that if

we only have subtractions on a line for dyj we pass

the minus sign along to the level for the derivatives of

gj-l. On each line for dgj, 1 ~ j s k, we might then

have to negate the final result, potentially costing us an

additional k instructions. However, we also save that

many instructions at the starting level of those lines,

and therefore we do not need more than 41 instructions

overall.

Lastly, we discuss how to accomplish the stated depth.

First we observe that if we were to treat each line in

Figure 1 on which we accumulate the dyi as a single

node, and if we were to treat each connection from dyi

to dYi, and to dgj, as a single edge, then the circuit

that computes the derivatives would be a mirror image

of the original circuit for ~. Therefore, the depth of

this abstraction of the part of Q that implements the

chain rules and which has “superedges” and “supern-

odes” is d. Furthermore, on each “superedge” we only

have a constant delay. Let tj be the fan-out for Vj in

P, i.e., the number of times the variable Vj is used in

later instructions. Then in each supernode correspond-

ing to the line for dyj we have exactly tj – 1 addition and

subtraction nodes. Separating the lines that get added

from the ones that get subtracted, we can build with

tj– 1 nodes a tree that performs the same computation

but which has O(log t) depth (see Figure 3). Hence the

entire depth of Q can be made at least O(d logt), where

t = rIlaX{tj }.

We finally reduce the depth of Q further to O(d) with-

out increasing the length. To accomplish this, we apply

the transformation of Hoover et al. (1oc. cit.) in an inl-

188

plicit way to the circuit constructed above. Consider

the lower part of Q that is a mirror image of P (see

Figure 1). Furthermore, assume that the subtrees in

Q which perform additions on the 8Y1 lines are again

contracted to “supernodes”. We suppose that subtrac-

tions are already separated out, and subtraction nodes

on those lines remain untouched. Thus, the depth of

this abstraction of the circuit is still O(d), the extra

factor of log t coming from the delay in the supernodes.

Now we apply the construction by Hoover et al. to this

high level description of the lower part of Q, reversing

the flow of information. That construction will insert

behind each node of high fan-out a binary tree of dupli-

cation nodes whose root is that node and whose leaves

are the targets of the arcs leaving that node. Hoover et

al. then show that if one optimizes the structure of that

tree with respect to the distance of the target nodes to

the output node in such a way that target nodes from

which there are long paths to output nodes are close to

the root, one can overall retain depth O(d). Once such

duplication trees are in place behind the supernodes, all

we have to do is to reverse the flow of information and

perform additions in both supernodes and duplication

nodes. El

We now apply this Theorem to the circuit constructed

in Theorem 4, which as an auxiliary value computes

& = (–l)” Det(A17D).

The random matrix H is of Hankel form, whose mirror

image across a horizontal line that evenly splits the rows

becomes a Toeplitz matrix. By Theorem 3, we can thus

determine Det(i7) efficiently in parallel. Therefore we

have found a circuit that efficiently computes in parallel

Det(A) = (–l)nZn/(Det(H) Det(D)),

and by applying Theorem 5 to that circuit, we obtain

the following result.

Theorem 6. For n ~ 1 there exists a randomized al-

gebraic circuit with n2 inputs, n2 outputs, O(n) nodes

that denote random (input) eJemen ts, and of

O(nU log n) size and O((log n)2) depth,

with the following property. If the inputs are the en-

tries of a non-singular matrix A c Kn x”, where K is a

field of characteristic zero or greater than n, and if the

random nodes uniformly select field elements in S c K,

then with probability no less than 1 – 3n2/card(S) the

circuit outputs the entries of A–l. On the other hand, if

the random choices are unlucky or if the input matrix is

singular, the circuit divides by zero. On non-singular in-

puts zero-divisions occur with probability no more than

3n2/card(S).

There is a second interesting application of Theorem 5

to linear system solving. Assume that one is given a

circuit with n2 + n inputs and n outputs that computes

A–lb in size i(n) and depth d(n). Then there exists a

circuit of size 4/(n) and depth O(d(n)) that computes

(Atr)-lb, where A’r denotes the transposed matrix of

A. The proof is by considering

f($a,..., %) := (w . . . zn)(Atr)-lb.

The function ~ can be quickly computed by performing

the multiplications from the left to the right, using the

given circuit for finding

()
xl

(q . . . zn)(A’r)–l = (A–l ;)“

Xn

Observing that

we deduce the stated claim from Theorem 5. In a spe-

cial case this construction gives us a fast transposed

Vandermonde system solver based on fast polynomial

interpolation. Note that for a fixed matrix A-1, i.e.,

the case of multiplying a matrix by b vs. multiplying

the transpose of that matrix by b (the non-singularity

assumption can then be dropped), this fact was proven

by Karninski et al. (1988) without making use of the

Baur and Strassen result.

5. Extensions

The results for computing the characteristic polynomial

of a Toeplitz matrix in Theorem 3 can be extended to

the case where the field of entries has small positive

characteristic. The approach is to appeal to Ghistov’s

(1985) method for finding the characteristic polynomial

of an arbitrary matrix in conjunction with computing

for all i ~ n by the algorithm of ~3 the entry ((Ii –

ATi)–l)i,i mod ~ntl for the i x i identity matrix Ii and

the z’ x i leading principal submatrix 7’i of an n x n

Toeplitz matrix T = Tn. The resulting circuit then can

compute the characteristic polynomials of all ‘Ti over a

field of any characteristic in

0(n3 log n loglog n) size and O((log n)z) depth. (1.2)

The efficient parallel algorithms for computing the

characteristic polynomial of a Toeplitz matrix are ex-

tendible to structured Toeplitz-like matrices such as

Sylvester matrices. In particular, it is then possible

to compute the greatest common divisor of t>~.o poly-

nomials of degree n over a field of characteristic zero or

greater n, and also the coefficients of the polynomials

189

in the Euclidean scheme, on circuits of

0(n2 log n loglog n) size and O((log n)3) depth.

Again using a factor of n more processors, the algo-

rithms extend to fields of any characteristic. We refer

to (Pan 1990b) and (Bini and Pan 1991) for the details

of these results.

The complexity measures (12) in the case of small

positive characteristic also apply to the problem of solv-

ing general linear systems of equations. For example,

there exist randomized circuits of complexity (12) that

compute the inverse of an n x n non-singular matrix

over any field. Furthermore, the methods presented

here can be also used to compute the rank r of a matrix

and to solve a singular system. The former can be ac-

complished, for instance, by a randomization such that

precisely the first r principal minors in the randomized

matrix are not zero, and then by performing a binary

search for the largest non-singular principal submatrix

(cf. (Borodin et al. 1982)). Similarly, one can compute

a vector in the solution manifold of a singular linear sys-

tem, and a basis for the null space of a matrix. For the

latter claim, one needs Theorem 6 as follows: consider

A c K“ x”, and assume that for random non-singular

matrices U, V c K“xn, the product matrix ~ := UA V

has the ~roperty that the r x r leading principal sub-

matrix Ar of ~ is non-singular, where r is the rank of

A. Then

(~E = jr (y-x(n_r)
(g ()(n-r)x(n-r))

for

‘=:($3 andE’=(i- i?B)
hence the null space is spanned by the columns of

‘E(U-”))
Finally, the techniques of Pan (1990a) combined with

the processor efficient algorithms for linear system solv-

ing presented here immediately yield processor efiicient

least-squares solutions to general linear systems over

any field of characteristic zero.

Literature Cited

Baur, 1$’. and Strassen, V., “The complexity of partial

derivatives,” Theoretical C’omp. Sci. 22, pp. 317-330

(1983).

Berkowitz, S. J., “On computing the determinant in

small parallel time using

cessors, ” Inform. Process.

a small number of pro-

Letters 18, pp. 147-150

(1984).

Bini, D. and Pan, V., Numerical and Algebraic Co171-

putations with Matrices and Polynomials; Lecture

Notes in Theor. Comput. Sci., edited by R. V. Book;

Birkhauser Boston, Inc., 1991. To appear.

Borodin, A., von zur Gathen, J., and Hopcroft, .1. E.,

“Fast parallel matrix and GCD computations,” hf.

Control 52, pp. 241-256 (1982).

Borodin, A. and Munro, I., Computational Comple.sity

of Algebraic and Numeric Problems, American Else-

vier, New York, N. Y., 1975.

Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., “Fast

solution of Toeplitz systems of equations ancl con~pu-

tation of Pad6 approximants,” J. Algorithms 1, pp.

259-295 (1980).

Bunch, J. R. and Hopcroft, J. E., “Triangular factor-

ization and inversion by fast matrix multiplication ,“

Math. Comp. 28, pp. 231-236 (1974).

Cantor, D. G. and I(altofen, E., “Fast multiplication of

polynomials over arbitrary rings,” Tech. Report 87-

35, Dept. Comput. Sci., Rensselaer Polytechnic In-

stitute, December 1987. Revised version to appear in

Acts In formatica.

Chistov, A. L., “Fast parallel calculation of the rank

of matrices over a field of arbitrary characteristic,”

Proc. FCT ’85, Springer Lee. Arotes Comp. Sci. 199,

pp. 63-69 (1985).

Coppersmith, D. and Winograd, S., “hIatrix multiplica-

tion via arithmetic progressions,” J. Symbolic Com-

pUt. 9/3, pp. 251-280 (1990).

Csanky, L., “Fast parallel matrix inversion algorithm s,”

SIAM J. Cornput. 5/4, pp. 618-623 (1976).

Galil, Z. and Pan, V., “Parallel evaluation of the de-

terminant and of the inverse of a matrix,” Inform.

Process. Letters 30, pp. 41-45 (1989).

Hoover, H. J., I{lawe, M. M., and Pippenger, NT. J.,

“Bounding fan-out in logical networks,” J. AC’J1

31/1, pp. 13-18 (1984).

I<altofen, E. and Singer, M. F., “Size efficient parallel al-

gebraic circuits for partial derivatives,” Tech. Report

90-32, Dept. Comput. .$ci., Rensselaer Polytechnic

Inst., Troy, N. Y., October 1990.

I<aminski, M., I{irkpatrick, D, G,, and Bshouty, N.

H., “Addition requirements for matrix and trans-

posed matrix products,” J. Algorithms 9, pp. 35’1-364

(1988).

I{arp, R. M. and Ramachandran, V., “Parallel algor-

ithms for shared-memory machines, ” in Handbook

for Theoretical Computer Science; Nort h- Hollancl, pp.

869-941, 1990.

I{eller-Gehrig, W., “Fast algorithms for the characteris-

tic polynomial,” Theor. Comput. Sci. 36, pp. 309-317

190

(1985).

Lipson, J,, Elements of Algebra and Algebraic Comput-

ing Addison-Wesley Publ., Reading, Mass., 1981.

Pan, V., “Parallel least-square solution of general

and Toeplitz-like linear systems,)’ Proc. 2nd Ann.

Symp. Parallel Algorithms Architecture, pp. 244-253

(1990a).

Pan, V., “Parameterization of Newton’s iteration for

computations with structured matrices and applica-

tions,” Tech. Report CUCS-032-90, Comput. Sci.

Dept., Columbia University, New York, N. Y., 1990b.

Preparata, F. P. and Sarwate, D. V., “An improved par-

allel processor bound in fast matrix inversion,” In-

form. Process. Letters 7/3, pp. 148-150 (1978).

Schwartz, J. T., “Fast probabilistic algorithms for ver-

ification of polynomial identities,” J. ACAI 27, pp.

701-717 (1980).

Schonhage, A., “The fundamental theorem of algebra

in terms of computational complexity,” Tech. Report,

Univ. Tiibingen, 1982.

Wiedemann, D., “Solving sparse linear equations over

finite fields,” IEEE Tkans, hf. Theory IT-32, pp. 54-

62 (1986).

Zippel, R. E., “Probabilistic algorithms for sparse poly-

nomials,” Proc. EUROSAM ’79, Springer Lee. Arotes

Comp. Sci. 72, pp. 216-226 (1979).

191

