
Evaluation of Parallel Programs by
Measurement of Its Granularity

Jan Kwiatkowski

Computer Science Department, Wroclaw University of Technology
50-370 Wroclaw, Wybrzeze Wyspianskiego 27, Poland

kwiatkowski@ci-1.ci.pwr.wroc.pl

Abstract. In the past years computing has been moving from the se-
quential world to the parallel one, from centralised organisation to a
decentralised. In parallel programming the goal of the design process
cannot be reduced to optimise a single metrics like for example speed.
While evaluating a parallel program a problem specific function of exe-
cution time, memory requirements, communication cost, implementation
cost, and others have to be taken into consideration. The paper deals with
the use of an idea of program granularity in the evaluation of parallel
programs. The obtained results suggest that the presented method can
be used for performance evaluation of parallel programs.

1 Introduction

In the past years computing has been moving from the sequential world to the
parallel one, from a centralised organisation to a decentralised. Different com-
puter architectures have been proposed. Although there is a large diversity of
parallel computer organisations, generally two different computer organisations
can be distinguished: the shared memory and the distributed memory organi-
sations [1,2,7]. A parallel program on shared memory computer shares data by
storing it in globally accessible memory. When there are no shared variables
one can use the message passing programming paradigm in distributed memory
computer organisation. With the development of computer networks, parallel
programming using networked computers became one of the most attractive and
cheap ways to increase the computing power. This is why parallel programming
on a distributed system stays so popular. In the message passing programming
paradigm, programmers view their programs as a collection of processes with pri-
vate local variables (memory), and the ability to send and receive data between
processes by passing messages.
Depending on the computer organisation used, different algorithms and dif-

ferent ways to support their parallelisation can to be utilised. This leads to the
need of developing new programming methodologies and methods for program
evaluation. Performance evaluation is one of the main problems during parallel
program developing. The performance analysis can be carried out analytically
or through experiments. In parallel programming the goal of the design process

R. Wyrzykowski et al. (Eds.): PPAM 2001, LNCS 2328, pp. 145–153, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



146 J. Kwiatkowski

is not to optimise a single metrics like for example speed. A good design has to
take into consideration the problem specific function of execution time, memory
requirements, implementation cost, and others. The paper deals with the use of
the idea of program granularity in evaluation of parallel programs.
The paper is organised as follows. Section 2 briefly describes different met-

rics used during performance evaluation. The idea of using granularity in perfor-
mance evaluation is presented in section 3. Section 4 illustrates the experimental
results obtained during evaluation of different programs using method presented.
The comparison of obtained results with results of standard methods is also in-
cluded. Finally, section 5 outlines the work and discusses ongoing work.

2 Performance Analysis

During performance evaluation of parallel programs different metrics are used
[1,4,7,9]. The first one is the parallel run time. It is the time from the moment
when computation starts to the moment when the last processor finishes its
execution. The parallel run time is composed as an average of three different
components: computation time, communication time and idle time. The compu-
tation time (Tcomp) is the time spent on performing computation by all proces-
sors, communication time (Tcomm) is the time spent on sending and receiving
messages by all processors, the idle time (Tidle) is when processors stay idle. The
parallel run time of a parallel algorithm depends not only on the size of the prob-
lem but also on the complexity of the interconnection network and the number of
processors used. The next commonly used metric is speedup, which captures the
relative benefit of solving a given problem using a parallel system. There exist
different speedup definitions [1,10]. Generally the speedup (S) is defined as the
ratio of the time needed to solve the problem on a single processor to the time
required to solve the same problem on a parallel system with ”p” processors.
Depending on the way in which sequential time is measured we can distinguish
absolute, real and relative speedups. Theoretically, speedup cannot exceed the
number of processors used during program execution, however, different speedup
anomalies can be observed.
Both above mentioned performance metrics do not take into account the util-

isation of processors in the parallel system. While executing a parallel algorithm
processors spend some time on communicating and some processors can be idle.
Then the efficiency (E) of a parallel program is defined as a ratio of speedup to
the number of processors. In the ideal parallel system the efficiency is equal to
one but in practice efficiency is between zero and one, however because of dif-
ferent speedup anomalies, it can be greater than one. The next measure, which
is often used in the performance evaluation of parallel programs, is the cost of
solving a problem by the parallel system. The cost is usually defined as a product
of the parallel run time and the number of processors. The next useful measure
is the scalability of the parallel system. It is a measure of its capacity to increase
speedup in proportion to the number of processors. We say that a system is



Evaluation of Parallel Programs 147

scalable when the efficiency is the same for increasing the number of processors
and the size of the problem [4].
Concluding the above short description of different performance metrics we

can say that during experimental performance evaluation of parallel programs we
need to measure the run time of sequential and parallel programs. However, there
is a question: Is it possible to evaluate a parallel program using the above metrics
by executing only a parallel version of the program on a parallel computer?

3 Using Granularity for Performance Analysis

A study of granularity is important if one is going to choose the most efficient
architecture of parallel hardware for the algorithm at hand. In general the gran-
ularity of a parallel computer is defined as a ratio of the time required for a basic
communication operation to the time required for a basic computation opera-
tion [5], and for parallel algorithms as the number of instructions that can be
performed concurrently before some form of synchronisation needs to take place.
On the other hand, granularity of a parallel algorithm can be defined as the

ratio of the amount of computation to the amount of communication within
a parallel algorithm implementation (G=Tcomp/Tcomm) [6]. This definition of
granularity will be used in this paper.
The above definition will be used for calculating the granularity of a single

process executed on the single processor as well as for the whole program using
total communication and computation times of all program processes. Let us
calculate parallel program granularity using the above definition. For this aim
we defined the overhead function, which determines all overheads in the parallel
algorithm compared with the best serial algorithms.
The overhead function is a function of problem size and the number of pro-

cessors and is defined as follows [4]:

To(W, p) = p ∗ Tp − W (1)

where W denotes the problem size, Tp denotes time of parallel program execution
and p is the number of processors. The problem size is defined as the number of
basic computation operations required to solve the problem using the best serial
algorithm. Let us assume that a basic computation operation takes one unit of
time. Thus the problem size is equal to the time of performing the best serial
algorithm on a serial computer. Based on the above assumptions after rewriting
the equation (1) we obtain the following expression for parallel run time:

Tp =
W + To(W, p)

p
(2)

Then the resulting expression for efficiency takes the form:



148 J. Kwiatkowski

E =
1

1 + To(W,p)
W

(3)

Recall that the parallel run time consists of computation time, communica-
tion time and idle time. If we assume that the main overhead of parallel program
execution is communication time (idle time can be added to the communication
time during run time measurement) then equation (3) can be rewritten as fol-
lows:

E =
1

1 + Ttotal comm

W

(4)

The total communication time is equal to the sum of the communication
time of all performed communication steps. Assuming that the distribution of
data among processors is equal then the communication time can be calculated
using equation Ttotal comm= p * Tcomm. Note that the above is true when the
distribution of work between processors and their performance is equal. Similarly,
the computation time is the sum of the time spent by all processors performing
computation. Then the problem size W is equal to p * Tcomp.
Finally, substituting the problem size and total communication time in equa-

tion (4) by using above equations we get:

E =
1

1 + Tcomm

Tcomp

=
1

1 + 1
G

=
G

G+ 1
(5)

It means that using granularity we can calculate the efficiency and speedup
of parallel algorithms. So, it is possible to evaluate a parallel program using
such metrics like efficiency and speedup by executing only a parallel version of
a program on a parallel computer.

4 Experimental Results

To confirm the theoretical results some experiments were performed. During
the experiments three classes of algorithms were used: algorithms with frequent
communication, algorithms which do not require frequent communication and
algorithms for which it is not possible to determine the frequency of communica-
tion (for example graph algorithms). Later we used our method for evaluation of
different real applications. During the experiments two different hardware plat-
forms were used: the SP2 supercomputer with 15 nodes and 10 general-purpose
RISC workstations (four HP 712/60 and six SunSparc 4) connected via a local
area network. Consequently two different communication networks were utilised;
a dynamic interconnection network while using the SP2 supercomputer, and a
static network during experiments on the computer network. As the software



Evaluation of Parallel Programs 149

environment, PE (Parallel Environment) and PVM (Parallel Virtual Machine)
were used respectively. Because the experiments were performed in a multi-
user environment and the performance of computers was different, the execution
times strongly depended on computer load. This means that the same applica-
tion with the same input data may run slower or faster depending on the time of
the experiment. In some instances, when workstations were overloaded it, could
be many times slower in comparison with the case when all computers were un-
derloaded. Therefore, the presented results are the averages from the series of
5 to 10 identical experiments performed under various conditions. Additionally,

Fig. 1. Efficiency of Cannon’s matrix multiplication

while experiments were performed using heterogeneous network (Sun and HP
computers), results obtained were normalised, using the idea of the virtual pro-
cessor. First the number of virtual processors were calculated. Next the efficiency
(speedup) was calculated as the ratio of the measure speedup and the number of
virtual processors. During these calculation the following formulas are used:

V P (p) =
∑p

i=1 Si

S1
, EH =

Speedup

V P (p)

where, Si is the computational capacity of the ith processor and S1 is the com-
putational capacity of the processor that executed sequentially. The speedup
and efficiency use during evaluation were relative - it means that sequential time
(Tseq) is the execution time of parallel algorithm executing on one of the proces-
sors in a parallel computer. Taking into account the possibility that during run
time measurement the processors may not be equally balanced (processor idle
time can occur), the granularity was calculated using the following expression
(isogranularity): G = Tcomp / (Tcomm + Tidle)
The results of the experiments are summarised in figures below. The results

obtained using granularity analysis (indicated by G in legend) are compared with
the results obtained by using standard methods of speedup or efficiency calcu-
lation. For the first two algorithms analysed: Cannon’s matrix multiplication



150 J. Kwiatkowski

Fig. 2. Efficiency for bucket sort algorithm.

Fig. 3. Efficiency for the parallel part of Floyd algorithm.

Fig. 4. Speedup for Matrix-Vector multiplication

(PE environment) and bucket sort (PVM environment) results are presented in
figures 1 and 2. Comparing the obtained results, the better result was obtained
for bucket sort algorithm for the parallel part of algorithm as well as for the
whole algorithm, the deviation between efficiency calculated by the standard
method and the new one is less then 10%. Similar results were obtained for Can-



Evaluation of Parallel Programs 151

non’s matrix multiplication algorithm. The shape of the diagrams is similar in
both cases, however efficiency calculated using the granularity concept is higher
then using the classical method. For the greater matrices the differences between
both methods are greater. The reason for these differences is probably computer
overload (anomalies obtain for the matrices of size 1024*1024).
Figure 3 shows results obtained for the Floyd algorithm for solving the all-

pairs shortest paths using PVM environment. The results are worth because of
the speedup anomalies which can be observed for graph algorithms. However,
the shape of the diagrams is similar and the efficiency is greater when using
granularity analysis. Figure 4 show results of experiments for matrix-vector mul-

Fig. 5. Speedup for Mandebrot set

tiplication algorithm for PVM environment using from 2 to 5 processors. The
results obtained are similar to the previous examples, the shape of the diagrams
is similar and the speedup calculated using the granularity analysis is higher
then in the classical method. Figures 5 and 6 show the results obtained for the
fractal decoding algorithm. The analysed fractal was the Mandebrot set (the
“whole” set – figure 5, and the part of it – figure 6). The experiments were
carried out using the image of size 1000*1000 under PVM environment. The
number of executed in parallel processes was 100 or 400 and depended on the
way of domain partitioning of the source image (100 * 100 and 50 *50). It leads
to the maximum number of performed iterations. The results obtained are sim-
ilar to previouslly presented the differences between both methods are less then
10 %, and the speedup calculated using granularity analysis is higher then using
the classical method.

5 Conclusions

In the paper a new way of calculating speedup and efficiency of parallel algo-
rithms is presented. The method is based on the idea of granularity and makes it
possible to calculate the efficiency and speedup of parallel algorithm by executing



152 J. Kwiatkowski

Fig. 6. Speedup for Mandebrot set (small part)

only the parallel version of a program on a parallel computer. The experimental
results confirm that the presented method can be used for all investigated algo-
rithms. However, it cannot be used for algorithms with speedup anomalies. The
best results were obtained for algorithms which do not need frequent commu-
nication. However, efficiency and speedup calculated by using this method are
higher than those obtained by the classical method. For all analysed algorithms
and execution environments the results obtained are similar: the shape of dia-
grams is similar and the value of speedup and efficiency are mainly higher when
using the granularity analysis. So, results obtained can be treated as an upper
bound. The results obtained during the experiments at SP2 supercomputer are
worse than obtained when using a computer network. Further research should
investigate the possibility of using the granularity for evaluation algorithms with
speedup anomalies, as well as the possibility of using granularity for scalability
analysis. (The parallel system is scalable if it maintain granularity at a fixed
value).

References

1. Cosnard M., Trystan D., Parallel Algorithms and Architectures, International
Thomson Publishing Company, London 1995.

2. Foster I., Designing and Building Parallel Programs, Addison-Wesley Pub., 1995
(also available at http://www.mcs.anl.gov/dbpp/text/book.html).

3. Gustafson J.L., Reevaluating Amdahl’s Law, Communication of the ACM, May
1988, pp. 532-533

4. Grama A.Y., Gupta A., Kumar V., Isoefficiency: Measuring the Scalability of Par-
allel Algorithms and Architectures, IEEE Parallel & Distributed Technology, Au-
gust 1993, pp. 12-21.

5. Huzar Z., Kwiatkowski J., Magott J., Dataflow Processing Modeling in Perfor-
mance Extension of LOTOS, Proceedings of the IASTED International Conference
Parallel and Distributed Processing Systems - Euro-PDS’97, Barcelona, Spain -
1997, pp. 335-339.



Evaluation of Parallel Programs 153

6. Konieczny D., Kwiatkowski J., Skrzypczynski G., Parallel Search Algorithms for
the Distributed environments, Proceedings of the 16th IASTED International Con-
ference APPLIED INFORMATICS, Garmisch-Partenkirchen, Germany - 1998, pp.
324-327.

7. Kwiatkowski J., Performance Evaluation if Parallel Programs, Proceedings of the
International Conference Parallel Processing and Applied Mathematics PPAM’99,
Kazimierz Dolny, Poland 1999, pp. 75-85

8. Kumar V., Grama A., Gupta A., Karypis G., Introduction to Parallel Computing,
The Benjamin/Cummings Pub. Comp., Inc., 1995

9. Lewis T, Revini H., Introduction to Parallel Computing, Prentice-Hall, 1992
10. Peterson D., Chamberlain D., Beyond Execution Time: Expanding the Use of

Performance Models, IEEE Parallel & Distr. Technology, summer 1994, pp. 37-49
11. Sahni S., Thanvantri V., Performance Metrics: Keeping the Focus on Runtime,

IEEE Parallel & Distributed Technology, spring 1996, pp. 43-56


	Introduction 
	Performance Analysis 
	Using Granularity for Performance Analysis 
	Experimental Results 
	Conclusions 

