Fast Scheduling and Partitioning Algorithm in
the Multi-processor System with Redundant
Communication Resources*

Eryk Laskowski

Institute of Computer Science
Polish Academy of Sciences
01-237 Warsaw, Ordona 21, Poland
laskowsk@ipipan.waw.pl

Abstract. Look-ahead dynamic inter-processor connection reconfigura-
tion is a multi-processor architectural model, which has been proposed
to eliminate connection reconfiguration time overheads. It consists in
preparing link connections in advance in parallel with program execution.
An application program is partitioned into sections, which are executed
using redundant communication resources. Parallel program scheduling
in such a kind of environment incorporates graph partitioning problem.
The paper presents a scheduling algorithm for look-ahead reconfigurable
multi-processor systems. It is based on list scheduling and utilizes a fast
section clustering heuristic for graph partitioning. The experimental re-
sults are compared with results of a genetic graph partitioning algorithm.

1 Introduction

The aim of this paper is to present an efficient task scheduling algorithm for
look-ahead reconfigurable multi-processor systems. In distributed memory multi-
processor systems with message passing, link connection reconfiguration is a
very promising alternative to fixed interconnection networks. Processors are con-
nected using reconfigurable, direct, point-to-point connections thus retransmis-
sion of messages through intermediate nodes is eliminated. The topology and
duration of inter-processor connections can be adjusted according to program
needs.

Link connection reconfiguration in all known systems involves overheads in
the communication execution time. To eliminate these overheads, a new approach
called look-ahead dynamic link reconfiguration [T] has been proposed. It consists
in preparing link connections in advance in parallel with program execution.
An application program is partitioned into sections and link connections are
prepared for the next program sections while previous sections are executed. A
special architectural solution is necessary to provide connection reconfiguration
in advance. In this paper, we investigate the system with multiple link switching
devices.

* The paper partially sponsored by the National Grant KBN No. 7 T11C 015 20

R. Wyrzykowski et al. (Eds.): PPAM 2001, LNCS 2328, pp. 97-[106] 2002.
© Springer-Verlag Berlin Heidelberg 2002

98 E. Laskowski

30
/ lm X

@ @
20 /10

&)

Fig. 1. An example of DAG.

The scheduling problem in reconfigurable multi-processor system has been
previously considered only for statically established connection configurations
(when connections are set before the execution of a program) or for single-switch
multi-processor systems with dynamic on-request reconfiguration [4]. The algo-
rithm presented in [3] has addressed a problem of program partitioning into
sections. This paper presents scheduling algorithm in look-ahead reconfigurable
multi-processor systems and the new fast heuristics of program graph parti-
tioning into sections, which is shown to be more efficient than the algorithm
presented in [3].

2 A Parallel Program Model

A parallel program is represented as a weighted Directed Acyclic Graph (DAG).
A DAG is a tuple G=(V,E T, C), where

— V={n;:i=1..v}is aset of nodes, v =| V |; a node represents an indivisible
task of the program;

— E={e;; : i = 1L.w,j = l.v} is a set of directed edges; an edge e; ; € E,
which connects nodes n; and n;, represents a communication from the task
n; to the task n;;

— T={t; : i = 1..v} is a set of computation costs; the value ¢; € T is the cost
of execution of the task n;;

— C={¢,:i=1.v,j = l..v} is a set of communication costs; the value ¢; ;
is the cost of communication from the task n; to the task n;.

Program is executed according to the macro-dataflow [5] model. An example
of DAG is shown in Fig. [

3 The Look-Ahead Reconfigurable Multi-processor
System

The look-ahead dynamic connection reconfiguration assumes anticipated con-
nection setting in some redundant communication resources provided in the sys-

Fast Scheduling and Partitioning Algorithm 99

Link switch A configuration|

Link switch B

links

- - link control
| processor link switch

Py P s Pn

- | | |K||nks

| control path | B

PS

synchronization path

Fig. 2. The look-ahead reconfigurable multi-processor system.

tem. We investigate a system with two crossbars as redundant link connection
switches, see Fig. 2l It is a multiprocessor system with distributed memory and
with communication based on message passing. It consists of N identical worker
processor subsystems P ...Pn, control subsystem PS, control path, link connec-
tion switches (crossbars) A and B. Each working processor P; has a K (K<<N)
communication links Lj; ... Ljk connected to the crossbars A and B through
the processor link switch. Worker processor can execute a task and communicate
at the same time. Connections are prepared by a global control subsystem PS in
the switches A and B that are interchangeably used as the active and configured
communication resources. Reconfiguration is done sequentially. Reconfiguration
of the single connection takes R time units.

An application program is partitioned into sections which assume fixed direct
inter-processor connections set in active communication resources. The connec-
tions for the next program sections are prepared in the configured communication
resources in parallel with current program execution. At the section boundary
processor links are switched between resources A and B in a very short time
and the execution of next program sections is enabled. The program execution
control is done by the PS subsystem. It collects messages on link occupation sent
using control path and initializes link reconfiguration. In parallel with reconfig-
uration, the synchronization of the processors for execution of the next section
is performed using synchronization path. The simplest implementation of such
path is a bus, but more efficient solution can be done with hardware barrier
synchronization. In this paper we are interested in the asynchronous processor-
restrained control strategy, where connection switching is controlled at the level
of dynamically defined processor clusters.

3.1 The Program Schedule

Task execution order is determined by the program schedule. As opposed to sys-
tem with simple on-request reconfiguration [4], in the look-ahead reconfigurable
environment the schedule also consists of program partitioning into sections.

100 E. Laskowski

P, < e
P3 3 |9/ 5 8
P, o /o 4 7 |
Pl Y 2 |
Lrrtrrrrrrrrorrro.
N=4K=1 time

Fig. 3. A Gantt chart for the schedule of DAG from Fig. [l

Schedule is defined as task-to-processor and communication-to-link assignment
with specification of starting time of each task and each communication (see
Fig.[3)). Assignment preserves the precedence constraints coming from the pro-
gram graph and from the assumed execution model. A processor can execute
one task at the moment. A communication is asynchronous and non-blocking.

Fig. 4. Modeling of schedule from Fig. Bl in terms of the APG.

It occupies one link of sending processor and one link of receiving processor. A
link can be used for transmission of one message at the moment. Intra-processor
communication cost is negligible.

A program with specified schedule is expressed in terms of the Assigned
Program Graph (APG), which assumes the synchronous communication model
(CSP-like). It allows us to use some existing software tools for profiling parallel
program execution time in the look-ahead inter-processor connection reconfig-
uration [3]. An APG consists of two kinds of nodes: the non-communicating
code nodes (which correspond to tasks in DAG, shown as rectangles in Fig. €
and communication instruction nodes (circles in Fig. dl). There are two kinds of
edges in the graph: activation edges (vertical lines in Fig. Hl) and communication

Fast Scheduling and Partitioning Algorithm 101

1 2
3 4 Section 1: a
Section2: b
Section 3: d
5 Section 4: c,e
b [e]

Fig.5. a) Communication Activation Graph for APG from Fig. @
b) CAG graph partitioned into sections.

edges (horizontal lines, solid for inter-processor and dashed for intra-processor
communications in Fig.). Two communication nodes and the connecting them
inter-processor communication edge correspond to a communication in DAG.
Each processor is assigned a subgraph built of several activation paths with
nodes, which are scheduled on this processor. Asynchronous, non-blocking com-
munications in a look-ahead reconfigurable environment requires modeling by
CSP-like communications as used in APG, which is done as follows. Processor
link behavior is modeled as a set of activation paths parallel to the computation
path (marked as L;; on Fig. H) since each link works independently of proces-
sor and others links. Each communication is modeled as an activation path on
the sender processor, which is used for sending a message to the link path. The
communication is modeled in a similar manner on the receiver processor. Due
to these paths, communication is sent without blocking the sending processor
and, on the receiver side, link can be freed immediately after reception of the
message. Program sections are defined by identification of such subgraphs in
the APG that the validity conditions hold. They assure the correct execution of
many sections in parallel in the system with the look-ahead created connections.
A valid program graph partitioning for the processor-restrained strategy takes
into account external communications only (labeled with a...e in Fig. H)) and has
to fulfil the following conditions:

a) Section subgraphs corresponding to program sections are mutually disjoint in
respect to external communication edges. Each communication edge belongs
to one and only one section. Section boundaries can cross activation edges.

b) Section subgraphs are connected in respect to activation and communication
edges.

c¢) Section subgraphs are complete in respect to activation paths. It means
that a section contains all communication edges, which are incident to all
communication nodes on all activation paths that can be found between any
two communications nodes, which belong to the section.

d) A correct partition shows stability of inter-processor link connections inside
sections. Processor link connections inside section subgraphs do not change.

102 E. Laskowski

To enable an easier partitioning analysis we introduce another program graph
representation, which is called communication activation graph (CAG). This
graph is composed of nodes, which correspond to external communication edges
of the APG and of edges, which correspond to activation paths between commu-
nication edges of the APG, Fig. Bh. The rules for partitioning communication
activation graphs are as described below.

e A partition of a program into sections defines a partition of the commu-
nication activation graph into disjoint subgraphs.

e The edges which connect nodes contained in a section subgraph in the
communication activation graph define a connected subgraph when considered
as undirected.

e All nodes on each path, which connects two nodes belonging to a section
subgraph belong to the same section.

A partition of an exemplary program communication activation graph into
sections is shown in Fig. Bb. Communication activation edges, which do not
belong to any section are denoted by dashed lines.

4 Scheduling in the Look-Ahead Reconfigurable Systems

The goal of the scheduling algorithm, presented in this paper, is to produce
schedules for the given DAG, such that execution time of the specified program
is minimized. The proposed algorithm is based on the idea of list scheduling. It
is a commonly used heuristic, since the scheduling problem has been proved to
be NP-complete [5] for general task graphs with communication.

The proposed algorithm is improved versions of ETF (Earliest Task First)
scheduling, proposed by Hwang et al. [2]. The algorithm schedules ready tasks. At
each scheduling step, the earliest schedulable task is assigned first. The earliest
starting time est of the task n; is determined by preceding tasks allocations, their
completion time, communication delays and the current time point. The main
difference from original version of ETF is that instead of fixed inter-processor
network topology, we investigate system with look-ahead dynamically created
connections. It means that we have to take into account a limited number of
links, links contention, connection reconfiguration and section activation time
overheads. Modification of ETF consists in the new formula used for evaluation
of the earliest starting time. The flow chart of Ready procedure used in modified
ETF is given in Fig. B Ready (n;, P;) returns the time when the last mes-
sage for task n; will arrive at processor P;. There are additional communication
time overheads that simulate link reconfiguration control when network topol-
ogy should be changed. Overheads are introduced into total communication time
when link reconfiguration is necessary and there is no sufficiently long time gap
after last communication to do reconfiguration in advance and without delaying
program execution. The algorithm minimizes these overheads by reduction of
the number of link reconfigurations.

Fast Scheduling and Partitioning Algorithm 103

Procedure Ready(n;, P;)
Tine := 0
For each n; O Predecessors n;
Tarive - = finishing time of task n
P, 1= processor which task n; is scheduled on
If P # P Then
Tarive = Tarive + Cji
If P and P, are connected Then
send := link of P connected to P
recv := link of P connected to P
El se
send : = last recently used link of P
recv := last recently used link of P
I'f time since last use of link Lj seng OF Tink Lj ecy
in previous configuration < R Then
TAulve L= TArrlve + R
Endl f
Endl f
Al'locate comunication e ; on links Lj sena @and Lj ecy
Endl f
I'f Time < Tarive Then
Time := Tarive
Endl f
EndFor
Return Tine

Fig. 6. The Ready procedure used in scheduling algorithm.

4.1 The Fast Graph Partitioning Algorithm

The graph partitioning algorithm (see Fig. [[) is a second phase of the scheduling
procedure. The algorithm starts with initial partitioning, which consists of sec-
tions built of single communications. In every step, a vertex of CAG is visited and
the algorithm tries to include current vertex to existing sections. The vertices are
visited once in the order of their ascending finishing time, which is taken from
the program schedule. Sections for clustering are determined by examination of
incoming edges of the current vertex. The heuristic tries to find such a subset of
those sections, which can be joint (including current vertex) into single section
that doesn’t break rules of graph partitioning (see Sect. BI) and thus, can be
used in a section clustering. The subset, which gives the shortest program exe-
cution time, is selected. In case of a tie, the heuristic selects the biggest subset,
which leads to reducing the number of sections and thus, could reduce section
activation time overheads. When section clustering doesn’t give any execution
time improvement, the section of the current vertex is left untouched and one
of two communication resources is assigned to it. As with section clustering, the
choice of the resource depends on program execution time. In the next heuristics
steps, this section could be joint to the vertex’s successors section(s).

4.2 Evaluation of Program Execution Time

Program execution time is estimated by measuring the time of the symbolic
execution of the program graph partitioned into sections. Program execution is
simulated by the execution of the graph in a modeled look-ahead dynamically
reconfigurable system [3]. The APG graph of the program is automatically ex-
tended at the section boundaries by subgraphs, which model the look-ahead

104 E. Laskowski

Begin
Thest : = max val ue of program execution tinme
B :=initial set of section, each section is conposed of single
communi cati on
For each vertex v of communication activation graph taken in
the order of ascending finishing time {1}
P := set of all predecessors of v
S := set of sections that contain communications fromP, S OB
Mest == 0
For each subset MO S
C := set of all communications that are contained
in sections fromM
If v and Cjoint into single section
preserve the conditions of valid graph partitioning {2}
Then
T := program execution tinme with
v and C placed in single section
I'f T < Toest OF (T = Thest and [M > | Mest|) Then
Toest =T
Mest := M
Endl f
Endl f
EndFor
I'f Mest # O Then
B =B - Mest
Include to B a new section built of v and communi cati ons
that are contained in sections in Mest
El se
s := section that consists /only/ of communication v
Assi gn conmuni cation resource to section s
Endl f
EndFor
End

Fig. 7. The general scheme of the fast graph partitioning algorithm.

reconfiguration control, see Fig. 8l The functioning of the control path, synchro-
nization path and the global control subsystem PS is modeled with the use of
program graph extensions. The bus is used as control and synchronization paths
(see Fig.) and it is simulated as a subgraph, which contains concurrent pro-
cesses corresponding to transmissions over the bus. The reconfiguration process
is modeled by pairs of parallel input communications followed by a sequential
process, which corresponds to crossbar reconfiguration latency. The activation of
application processes after reconfiguration is done by a broadcast transmission
over the bus.

5 Experimental Results

The results of the presented algorithm are compared to a scheduling algorithm,
which applies genetic graph partitioning. This algorithm uses the same modified
ETF heuristic in the first phase. The second phase, which consists of scheduled
program graph partitioning by a genetic algorithm, has been presented in [3].

Evaluation results of the algorithm performance are shown in Fig.[9l It shows
the speedup

S = (Tgen — Tfast)/Tgen x 100

in total execution time T, of a program partitioned by the fast algorithm
against the execution time Tgen obtained with the use of the genetic heuristic.

Fast Scheduling and Partitioning Algorithm 105

Py Lu P2 La P L Pa La

|
[end of link use messages
- —

Bus simulation process

o0
0O
TR

Sectjon ¢ g»--- -

6

% “Activation Reconfiguration

process process

8
[

Fig. 8. Modeling the reconfiguration control in an APG.

The results are shown for two exemplary program graphs, executed in the
look-ahead environment with the following program and system parameters (see
Sect. Bland [3] for definitions):

tl: N =10,K = 2,a = 250,v = 45, synchronization via bus;
ts: N =6,K =4,a = 800,v = 37, hardware barrier synchronization.

The reconfiguration time of a single connection tr is in range 20..400, and
section activation time tv = tf +ts+ta is in range 5..300, where a is mean time
interval between reconfigurations in the program.

The results are shown as a function of reconfiguration control efficiency R =
a/(tr 4+ tv) of the program executed on a given system, which is a ratio of the
average time interval between reconfigurations of the same processor link in the
program to the reconfiguration service time in the system.

We can see that the fast partitioning algorithm gives good speedup, with
scheduled program execution times better or comparable than in the genetic
approach. The results are better for programs executed in the system with bigger
number of processor links. The explanation is that in such kind of system, the
vertices of CAG have bigger number of incoming edges and thus, heuristic has
a wider range of section for selection for clustering. When the reconfiguration
control efficiency is low or the number of processor links is small, the genetic
heuristic gives good results.

Another important performance factor is the algorithm time complexity. Our
experiments show that execution of fast partitioning algorithm is one magnitude
order faster than the genetic approach. The average algorithm execution times
on the Dec Alpha 533Mhz work-station were over 4 min. for the genetic approach
and about 30 sec. for the fast partitioning method proposed in this paper. Taking

106

E. Laskowski

into account result quality, it means that fast partitioning algorithm is a better
solution in practical applications.

Speedup [%]
20,00%
A —— — —
15,00% n
2 N
~
s - N —=—Graph t5, tv < 25
— N
10,00% = < —= 0y —a— Graph t5, tv > 200
- AN ——Graphtl, tv> 50
N e
5,00% Graph t1, tv < 20

0,00%

-5,00% - - -
Reconfiguration efficiency

Fig. 9. The speedup of the fast partitioning algorithm against the genetic heuristics.

6 Summary

The paper presents task scheduling algorithm for the look-ahead reconfigurable
multi-processor system. It is based on the ETF list scheduling heuristics and uses
clustering approach to the program graph partitioning problem. The difference
between presented algorithms has strong influence on the algorithm execution
time. The presented algorithm is much faster than the one with genetic heuristics
and gives better or comparable results, which has been proved by our experi-
ments. The future works will focus on partitioning algorithm improvement and
studies on others list scheduling strategies.

References

1.

2.

M. Tudruj, Look-Ahead Dynamic Reconfiguration of Link Connections in Multi-
Processor Architectures, Parallel Computing ’95, Gent, Sept. 1995, pp. 539-546.
J.-J. Hwang, Y.-Ch. Chow, F. D. Angers, Ch.-Y. Lee; Scheduling Precedence
Graphs in Systems with Interprocessor Communication Times, Siam J. Comput.,
Vol. 18, No. 2, pp. 244-257, April 1989.

E. Laskowski, M. Tudruj, A Testbed for Parallel Program Execution with Dynamic
Look-Ahead Inter-Processor Connections, Proc. of the 3rd Int. Conf. on Parallel
Processing and Applied Mathematics PPAM 99, Sept. 1999, Kazimierz Dolny,
pp. 427-436.

T. Kalinowski, Program Ezecution Control in Dynamically Reconfigurable Multi-
Processor Systems, PhD Thesis, Institute of Computer Science PAS, Warsaw
1997.

El-Rewini H., Lewis T. G., Ali H. H. Task Scheduling in Parallel and Distributed
Systems. Prentice Hall 1994

	Introduction
	A Parallel Program Model
	The Look-Ahead Reconfigurable Multi-processor System
	The Program Schedule

	Scheduling in the Look-Ahead Reconfigurable Systems
	The Fast Graph Partitioning Algorithm
	Evaluation of Program Execution Time

	Experimental Results
	Summary

