
How much can we speedup

Gaussian Elimination with Pivoting? *

M. Leoncini

Dipartimento di Informatica

Universit& di Piss, Italy

Abstract

Consider the problem of determining the pivot sequence
used by the Gaussian Elimination algorithm with Partial

Pivoting (GEPP). Let N stand for the order of the in-

put matrix and let e be any positive constant. Assuming

P # NC, we prove that if GEPP were decidable in paral-

lel time Nliz-’ then all the problems in P would be char-
acterized by polynomial speedup. This strengthens the P-

completeness result that holds of GEPP. We conjecture that

our result is valid even with the exponent 1 replaced for 1/2,
and provide supporting arguments baaed on our result. This
latter improvement would demonstrate the optimality of the
naive parallel algorithm for GEPP (modulo P # NC).

1 Introduction

A fundamental research goal in the area of fast synchronous
parallel algorithms is to obtain superpolynomial speedups

in the time sufficient to solve given problems in P. Given a
computational problem II c P, the most ambitious aim is
to put it in the complexity class NC, that is to find a paral-

lel algorithm for II whose running time is a polylogarithmic
function of the input size on, e. g., a PRAM with polyno-

mially many processors. There is now a rich literature on

the complexity class NC (see [2, 7] for surveys and [8] for a
general critique).

Recently, there has been much interest in identifying
problems that, though probably not in NC, admit at Least
polynomial speedup. Vitter and Simons [11] identified a num-

ber of such problems (see also [8]). In addition, finding par-

allel algorithms that achieve only polynomial speedup can
be interesting even for problems in NC. The reason is that

polynomial speedup can usually be obtained with a limited

number of processors (say, a linear or quadratic function of

the input size), while the figures required to obtain super-

polynomial speedups are in many cases not practical.

“ Part of this work was done while the author was visiting the

“International Computer Science Institute”, Berkeley, CA. Support to

the author’s research has been given by the ESPRIT Bssic Research

Action, Project 9072 “GEPPCOM”, and by the M. U. R.S.T, 409% and

60~o funds.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distnbukd for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Together with the algorithmic interest, there is an obvi-

ous interest in finding complexity results. Assuming P #
NC, one could try to classify problems in P – NC with

respect to the achievable speedup. For instance, [11] con-

sider the class PC of problems that can be sped up by more
than a constant factor. On the other hand, [8] focus on the

problems that admit polynomial speedup, and classify these
further with respect to their inefficiency*. They introduce

the class EP, of problems solvable with constant inefficiency,
and the class SP, of problems solvable with polynomial in-

efficiency.
We clearly do not know whether these new classes of

problems actually differ from NC. However, [1] proves that
there are P-complete problems that appear to have a bound

on the amount of achievable speedup. Such problems are

said strictly T(n) -complete for P, for some complexity func-
tion T(n). More precisely, to say that a problem II is strictly

Z’(n) -complete amounts to saying that: (1) there is a paral-

lel algorithm solving II in time T(n), and (2) either there is

not a parallel algorithm for II running in time O(T(n)l-’),
for any positive c, or all the problems in P admit polynomial

speedup. If only (2) can be proved, then II is at most T(n)-
cornplete. For all practical purposes (i.e. unless P # NC),

proving that a certain problem is strictly T(n) -complete im-

plies that its T(n) -time parallel algorithm is optimal.

The first problem complete for P in the stricter sense

outlined above is the Square Circuit Value Problems, with

T(n) = nl/2 [1]. The technique used to prove this result

is a generic reduction from an arbitrary RAM computation.

However, one difficulty in finding other complete problems

through the reduction argument is that a polynomial blowup

in the size of the instances may not be acceptable (while

clearly this is not the caae in the proofs of P-completeness).

In this paper we address the problem of computing the

sequence of pivots chosen by the Gaussian Elimination algo-

rithm with Partial Pivoting (hereafter referred to as GEPP).

Pivoting provides an example of the need of control in reli-

able numerical computations. Such control must be imple-

mented using conditional statements which are in general

hard to parallelize. In fact, it is well-known that GEPP is

P-complete [10] and thus hardly in NC. Here we prove that

GEPP is at most nllz-complete for P. This is a simple con-
sequence of the main Lemma. Before stating the result, we

recall that the decision (or language recognition) version of

GEPP is a set, namely the set of matrices for which the al-

“The inefficiency of an algorithm is the ratio pTP /T, where T is

the sequential running time, p is the number of processors and T= is

the parallel time with p processors.

SPAA 94-6194 Cape May, N.J, USA
@ 1994 ACM 0-89791-671 -9/84/0006..&+.5O

290

gorithm returns a yes’ answer to a question concerning the

elimination order (see Section 4),

Main Lemma. Let t(n) and s(n) be constructible junc-
taons, and let A be any RAM deciston algorithm running in

time t(n) and using s(n) memory reg~sters. Then we can

eflectzveiy budd a square matrm M of order k(n) = t(n)s(n)
such that M c GEPP if and only ij A accepts the input.

The construction is NC computable.

In the construction of the matrix M in the Main Lemma,
we observe a blowup in the input sizet which is polynomial

(with respect to the running time of A) when the number of

registers used by A is O(((t(n))’).This is the reason why
we are currently unable to prove the optimality (modulo

P # NC) of the naive parallel algorithm for GEPP.

The rest of this paper is organized aa follows. In Section
2 we discuss the RAM computation model and present cer-

tain results that allow to simplify the model to some extent.

In Section 3 we show that any computation of a restricted
RAM can be simulated by Gaussian Elimination with Par-

tial Pivoting. Using this simulation result we prove the Main

Lemma in Section 4. Finally, in Section 4 we report some

concluding remarks.

2 Preliminary facts

The computation model we adopt is the RAM introduced by

Cook and Reckhow [3], using the logarithmic cost criterion

for time. For what concerns space, we adopt the uniform
cost model, i.e. we charge unit space for each register used

during the computation, independently of the number of bits
stored. We view RAMs as language acceptors and aasume
suitable conventions for the input/output (the output being

simply one bit). Table 1 shows the instruction set of the

RAM together with the execution times. The function 1(.)
is defined as follows (see [3]):

Instruction Execution time

&+cl 1

&+R3 l(Rj)
R,+ R,&Rk l(Rj) -t l(Rk)
R, + RR, l(R,) -t l(RR,)

RR, * Rj l(RR,) + l(Rj)

goto L 11

if& <0 then inst. \ 1(~)(+ cost of rest. if& < O)

Table 1: RAM instructions and execution times.

Before being able to apply our reduction of Section 3, we
must simplify the model in various ways. We begin with a

lemma on memory compaction which is an eaay adaptation

of a result in [1].

Lemma 1 A RAM with space demand s(n) can be restricted
to access only cells whose addresses are O(s(n)) on input

oj length n, with only a loss of a jactor O(log s(n)) m the
running time.

t In CaSe of GEPp we may take the order of the input matrix F@

the measure of size.

Lemma 1 means that, if we do not care about logarith-

mic slowdowns, we may assume that the programs make
use of initial segments of the RAiM storage. For our pur-

poses we can safely make this assumption. This is because
a function polynomially smaller than t(n) is also polynomi-

ally smaller than t(n)logk t(n), for any constant k. In the

following, we use the customary notation O(t(n)) to denote

O(t(n))(logt(n)p.
We now consider a RAM model without indirect address-

ing capabilities. The question of the power of such a model
is related to the issue of uniformity. A uniform RAM (say, a

RAM whose control program is independent of n) without

indirect addressing is essentially a counter machine equipped
with full addition. Dymond gave evidence that counter ma-
chines augmented with the capability of adding at most a

constant at each step, which he called Augmented Counter
Machines (ACMS), are polynomially weaker than RAMs [5].
More precisely, he proved that a T(n) time bounded ACM
with k registers can be simulated by a RAM running in
time O((T(n))(&+l)/(k+Z)). Also, extending his simulation
to ACMS with full addition seems possible [6]. On the other

hand, if we aasume a nonuniform RAM model without in-
direct addressing, the loss in the running time is at most

polylogarithmic.

Lemma 2 A RAM with running ttme t(n) and space de-
mand s(n) can be simulated by a nonuniform RAM with-

out indirect addressing capabilities with only polylogan’thmtc
slowdown. The length of the program of the simulating RAM

‘ssO(s(n)).

Proof By Lemma 1 we may assume that the original RAM
only accesses the first S registers. We replace each indirect
addressing instruction (i.e. indirect load or store) with a

macro statement performing a binary search in the set of
the first S registers. The macro statement leaves the result

in a fixed register, not otherwise used by the program. It

can be easily shown that the length of each macro statement
is El(s(n)), and clearly the number of such statements is in-

dependent of n. The running time of each macro statement
is O(log2 s(n)) (O(log s(n)) in the unit cost RAM, see also

[9]) plus the cost of the simulated instruction. Clearly this
implies a 0(log2 s(n)) slowdown. ■

Following [1], we say that a RAM is restricted if the
computations it executes are oblivious of the actual input
(i.e. if the kth instruction executed depends only on k and
the input size n). The following fact is known (see [1]).

Lemma 3 Any RAM with running tzme t(n) can be sim-

ulated by a restricted RAM with running tame O(t(n)L),

where L is the length of the program.

Lemma 3 holds for the general instruction set, and thus

also for a program which does not make use of indirection.

Combining Lemmas 1, 2, and 3 we get the following re-
sult .

Theorem 4 Let M be any RAM that runs in time t(n)

using s(n) space. Then there is a nonuniform restricted
RAM M’ such that the following hold: (i) M and M’ ac-
cept the same language, (ii) the length of the program of M’

is O(s(n)), (iii) M’ has running time ~(t(n)s(n)).

The RAM M’ in Theorem 4 makes only use of the fol-
lowing instructions:

291

1.R, + a;

2. R% _Rj

3. Ri+&*Rj~

4. ifRk <Othen Rj +Rj&Ri.

3 Simulating RAM computations by means of Gaussian
elimination

Let A be a RAM decision algorithm of time complexity t(n),
and let 1 be an input for A. We assume that A is oblivious

and does not make use of indirection, We describe how to
build a matrix A4(A, 1) such that the execution of Gaussian

Elimination with Partial Pivoting on M(A, 1) simulates the
execution of A on 1. The model of arithmetic we adopt is

a reasonable one. We assume that the GEPP is performed

using a fixed point number system, with minimum absolute
value m and maximum absolute value M. The value M

must satisfy the inequality M > t(n)2”@, where 2=J?7

is the magnitude of the largest number that can be generated
by a t(n) time bounded RAM [3]. We also suppose that

m = M– 1$, and that the operations are performed with

rounding (rather than truncation). It is not difficult to see
that our result holds, with minor modifications, also if we

assume a floating point number system.
We view the matrix M(A, 1) aa a two dimensional “pro-

gram”, and the GEPP algorithm as the interpreter for it.

Using this viewpoint, we show how any given statement of
our restricted RAM model can be translated into a corre-

sponding “statement” in M(A, 1). The matrix we obtain
is essentially block diagonal, having 0s almost everywhere

outside the main (block) diagonal. See Figure 1.

Let N be the number of statements executed by the pro-

gram A. Then the matrix M(A, 1) is block (N+2) x (N+2),
with block indexes ranging from O to N + 1. The order of
the first diagonal block equals the number of RAM registers
that hold the input 1 to the program. We assume, as cus-
tomary, that the input is contained in consecutive registers

RI,..., m, with the number i stored in register&. The last

diagonal block has order 1. Blocks 1 through N have orders

2 or 10. The order of the matrix is thus at most 10N + i + 2.

For k = 1,. ... N, the kth (diagonal) block represents the
I&h statement of the program A. Block O serves for initial-

ization purposes. The last diagonaf element is not involved

in the elimination process.

In the lower triangular part of M(A, 1) there is a 1 some-
where in block (h, k) iff, for some register Rj, the hth and

kth instructions of A use Rj (with no other instruction in
the middle using this register). Such 1s implement the log-
ical pipes between two consecutive instructions that make

use of the same RAM register. In the upper triangular
part of M(A, 1), there are nonzero entries only in the block

(O, N + 1), and in any block (O, j), for 1< j < N, such that
the jth instruction executed by the program ; a conditional

statement. Such nonzero entries (represented by x in Figure
1) contain the input values stored in the first consecutive

RAM registers.

! In real finite arithmetic usuaHy m– 1 > &f. Our result is not

affected by the assumption that m has no multiplicative inverse. We

may use any pair of representable numbers m’ and M’ such that

Tn’ = M-l, e.g. m’ = 2m provided that the representation base is

an even number, with now M’ strictly greater than t(n)2c~

Figure 1: Structure of the matrix i14(A, 1).

0

1

0

0

0

1

1

0

0

. . . .

. . . .

. . . .

.

. . . .

. . . .

. . . .

Figure 2: Initialization block (input in two registers)

Rj

Ri

R;

Ri

. .

.,.
. . . 1 0 . . . 0

.
. . . 1 0 . . 0

.

Figure 3: Assignment & + Rj

292

.

%zl:1 “o .:. o(p)
. . . o(a)

.,.
. . . 1 0

. ,. . .
. . . 0 i .:. o(i)

.

Figure 4: Assignment & * I& + Rj

The figures 2 to 5 show (enclosed in boxes) the diago-
nal blocks corresponding to the initialization phase (block

O) and to the three statements of our restricted RAM. We
use the notation O(X) to indicate that one entry contains O

initially and X by the time the simulation of the instruction

begins. These entries are called memory contents, because

the value X is related to the value stored by a certain RAM

register (denoted by the label on the left of the matrix) at

some point during the computation. The memory contents
entries correspond (i.e. have the same column index) to the

entries denoted by x in Figure 1.
We now prove informally that the execution of the GEPP

algorithm on the matrix M(A, 1) does indeed simulate the

execution of A on I. To do this we need introduce some
basic terminology. We let S denote the current instruction,
and assume that S is the kth instruction executed by A.
Therefore, the simulation of S is performed by the elimina-

tion process on the rows corresponding to the kth diagonal

block. When we refer to the matrix M(A, 1) at the step
h of the GEPP algorithm, we intend the state of A4(A, 1)

immediately before the execution of the hth pivot operation.
At any given step h, we classify the rows of the matrix

M(A, 1) according to their role in the elimination process.

1. A row that has been used as the pivot row in a step
s < h is dead at time h.

2. A non-dead row that has already been modified by a

previous pivot operation is living at step h. However,

initially, we assume that all the rows in block O are

living. The active part of a living row is the set of

entries with column indexes not less than than h.

3. A non-dead and non-living row is unborn at time h.

The idea behind the simulation is that certain rows of
the matrix correspond to the RAM registers used by A. In
general, there is more than one row corresponding to a given
register. However, at any given step of the elimination pro-
cess, and for any register used by A, there is exactly one

living row corresponding to that register (all the other rows
being dead or unborn). Assume that the register R3 is used
by the hth instruction and subsequently by the kth instruc-

tion of A. Then, within the simulation of the two instruc-
tions the living row corresponding to R2 will be the one in
the kth block.

The overall simulation process consists of a sequence of

‘h) denote the entries of A4(A, 1) be-pivot operations. Let ai,
fore the hth pivot step is performed. Then the pivot row for

the hth step is the ith iff the index i satisfies:

~=min{j : la~h)l < la~~)l,l= h,h+ l,...}.

Note that we adopt the usual strategy of choosing the top-

most row, among those with entries of maximum absolute

value in column h S. Once the pivot row has been selected,

the GEPP algorithm axchanges it with row h. This is usu-
ally done by simply exchanging the row indexes, kept in a

separate array. The last phase of the pivot operation con-

sists of updating the submat rix made of the i, jth entries,
for i > h and j ~ h. As is well-known, this is done by

means of linear combinations with the pivot row, in such a
way that the entries in position (i, h), for i > h, are set to

zero. As a consequence of this operation, some unborn rows
may change their status to living.

To illustrate the simulation of an instruction S, we as-
sume that the registers used by S are &, Rj, and (in case of

the if statement) Rk, and that the subsequent instructions
that involve these registers are the qth, rth, and sth, respec-
tively. With these assumptions. for each kind of instruction.. .
we show the entries of the kth diagonal block and the posi-

tions of the 1s in the blocks (q, k), (r, k), and (possibly) (s, k)

in the lower triangular part of the matrix. Moreover, we al-
ways show the memory contents entries in the last column

of the matrix.

The invariant conditions that hold at the end of the sim-
ulation of the kth instruction, for k < N, are the following:
(1) for any index j ~ O there is at most one living row corre-
sponding to the RAM register Rj (this is the row with mimi-

mum index among those in the blocks k+l, k+2, N); (2)
the memory contents entries of such row contain the value

aX, where X is the value stored in Rj after the execution

of the kth instruction by the program A, and a is a value
that depends on A, I, and k, but not on the register RJ.

. R; - Rj (see Figure 3). The assignment is simulated
by two pivot operations. The first operation copies

the memory contents of the living row corresponding
to R, to the first two unborn rows corresponding to
Ri and R] (if any). After this operation has been
performed there are (possibly) two living rows corre-
sponding to R,, but the one in block k has old memory
cent ents. This row is forced to become dead with the

second pivot operation (that leaves all the other rows
unchanged).

● Ri + Ri + Rj (see Figure 4). Also this simulation is
carried out with two pivot operations. As the result of

the first stem the value 0 in the memorv contents of

the living r;w corresponding to Rj are: ~1) copied to

first unborn row corresponding to Rj (if any), and (2)
added to (subtracted from) the value a in the memory
contents of the living row corresponding to Ri. The
second pivot operation copies the value a + ,6 in the

memory contents of Ri to the first unborn row corre-
sponding to the same register (if any). Note that if

a=aXand@=aY, thena +@=a(X+Y), andso
also the invariant condition (2) is satisfied.

. if & < 0 then Rj + Rj + Ri (see Figures 5 to 8).

The simulation of the conditional statement is per-
formed by means of ten pivot steps. Among the rows

$This is by no means a loss of generality, as 10ng as We Will reStriCt

to deterministic strategies for pivot selection. On the other hand, our

simulation will not work in case of a randomized strategy for breaking

ties.

293

R;
Ri

Rj
DI

Rk
Ri
Rj
D2
D3

D4

R;

R;

R;

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

~loo; oooo o “o
o –1OCIOOOOO o
00 –10 o 0 0 0 0 0
Oooiwloooo o
10001000 0 0
01000 –loo o
0 0 1 0 0 1 0 0 –Om –1
0000-1 1 mo o 0
Oooollo?no o
000000 Ornkf-mo

.,

100000000 0
.

000000000 “1
.
010000000 0
.

involved, there are four that do not correspond to any

RAM register. In the figures, these rows are labelled

D1, D4. Here the sequence of pivot rows chosen
by the Gaussian elimination algorithm depends on the
memory contents. If the test condition is not satisfied
the elimination sequence is

Rh, R,, RJ, Dl, Dz, Ds, Rh, D4, Ri, R>,

and otherwise is

Rh7Ri7R1Y D~lRh JRi1Dz7D31 D4JR3.

In the first case (Rk > O), after the simulation has been

completed, the memory cent ents oft he living rows cor-
responding to Rh, Ri, and Rj (Figure 7) coincide with
the memory contents of the rows that were living be-
fore the simulation (Figure 5).

In the second case (Rk < O), the memory contents
of all the living rows have been scaled by the same

value 1 – rm (Figure 8). To prove that the invariant
condition (2) is satisfied, assume that, for all indexes
i, the value stored in the RAM register R, before the
execution of the instruction S by A is a,. Assume

also that, by the time the simulation of S begins, the
value in the memory contents entries of the living row

corresponding to Ri is 6, = a~ (1 + Cm), where C is an
integer. Then, when the simulation of S is completed,

the memory contents of the living row corresponding
to R,

tit(l – 7-??%) = ~,(1 + Cm)(l – a~(l + Cm)m)

= %(1 + Cm)(l – ~hm)

= ~,(1 + (c – ~k)~).

In the above derivation we have used our rounding
mechanism, according to which, if a and b are integers,

. .. .

. . . o(T)

. . . (cl)

~~~ (;)
. . .
. . . 0
. . . 0
. . . 0
. . . 0
. . . 0
. . . 0
. .. .

. . . 0
.,. .

... 0
. ..

... 0
. .. .. .

Figure 5: Initial configuration for: if Rh ~ O then Rj +- R] -t-&

(a + bm)m = am. The invariant condition is thus
satisfied.’

The fact that, as the simulation proceeds, the memory con-
tents can be scaled by a fixed quantity (when a conditional
statement is executed whose condition is satisfied) does not
affect the result of successive evaluations of test conditions.
To see this, observe that the scaling factor after the execu-
tion of Q conditional statements is at least 1 – QLm, where

L is the magnitude of the largest integer generated during

the RAM computation. Since Q is at most t(n),it follows
that QL < M and thus 1 – QLm is always positive.

4 A hardness result for Gaussian elimination

Using the simulation of Section 3, we are now ready to prove
our main Lemma. According to [10], we formulate Gaussian

Elimination as a language recognition problem in the follow-
ing way:

Given a matrix A and indexes i and j, will the Gaus-
sian Elimination algorithm with Partial Pivoting use
the pivot in (initial) row i to eliminate column j?

Lemma 5 (Main Lemma) Let A be any RAM decimon
algorithm running m time t(n) and using s(n) memory reg-

isters (with t(n) and s(n) constructible functions). Let I
be an input for A, such that [11 = n. Then we can effec-
tively build a matriz M = M(A, 1) of order O(t(n)s(n)),
with O(t(n)) bit entries, such that M E GEPP if and only
ifA accepts the input. The construction can be accomplished

in space O(log t (n)).

Proof We first convert the program A into a restricted

RAM program A’ that does not make use of indirect ad-
dressing. From Theorem 4 we know that the length of A’ is

O(s(n)) and the slowdown in the running time 0(log3 s(n)).

294



. . . .

.,. –1

. . . 0

.,. 0

. . . 0

. . 0

. . . 0

. . . 0

. . . 0

. . . 0
. 0

. . . .

. . . 0

. . . .

. . . 0

,.. .
. . . 0

.,. .

. . .. . .. . .
Oo’ro

–1 o a o
0 -lPO
o OM1
00 0 l–mm
000 -am
000 –pm
o 0 0 –1
0001
0000
. . .. . .

000” —Tm
. . .. . .

0000
. . .. . .

000” —am

. . .

. . .

. . .

. . . . . .. . . . . .. . . . . .
0 0 0 0 0 . ..7-

0 0 0 0 0 . ..@
o 0000 . {
o 000 0 . . .
0 000 0 . . . ‘r

–loo o o!
1 0 0 ‘Om –1 ::: p
1 mo o 0 . . 0
1 OmOO.. .O
o Oml’f-mo. ..o
. . . . . .. . . . . .

0 0 0 0 0 .:. ;
. . . . . .. . . .,.

0000 1 .:. 0
. . . . . .. . . . . .

0000 0 .:. i’
. . . . . .,.. . . ..,. .,.

Figure 6: Intermediate configuration for: if Rk ~ O then Rj e Rj + &

.
. . . :1
. . . 0
. . 0
. . . 0
.,. 0
. . . 0
. . . 0

. 0
. . . 0
. . . 0

. . . .

. . . 0

. . .

. . . 0

. . . .

. . . 0

.,. .

0
-1
0
0
0
0
0
0
0
0

0

0

0

. . . . . .. . . . . .

o; o 00 0
off o 00 0

–1 P o 00 0
OM1OOO
00 007?20
00 0 00 0
00 0 00 0
00 –llm O

00 02mm
00 000m

. . . . . ..,. .!.

00 0 00 0
. . . . . .. . . . . .

00 0 00 0

. . . . . .. . . . . .. . . . . .
00 0 00 0
. . . . . .. . . . . .. . . . . .

0
0
0
0
0

0
0
0

M–m

o
0

0

. . .. . .

0 .:. ;
o . . . a
o . . . :
0 . . .

0 . . . T
o

–1 ::: ;
o . . . 0
0 ,.. 0
0 . . . 0
. . .. . .. . .
0 . . . 1-
. . .. . .. . .
0 ,,. P
. . .. . .. . .
0 . . . c1
. . ..,.. . .

Figure 7: Final configuration for: if hh <0 then Rj * RI + R,



. . . .

. . . –1

. . . 0

. . . 0

. . . 0

. . . 0
0

. . . 0

. . . 0

. . . 0

. . . 0

. . . .
,., 0

. . . .

. . . 0

. . . .

. . . 0

. . . .

0
–1

o
0
0
0
0
0
0
0

0

0

0

Figure 8:

. . .,. . . .. . . . . . . .

0;0 o 0 0 0 0 .:. T

Ocro o 0 0 0 0 . . .
–1P o 0 0 0 0 0 ~
Oit’fl o 0 0 0 0 :::
0 0 l–’rm o 0 0 0 0 . . . T
00 0 –100?730 Cr(l + mn)
000 0 000 –1 ::: (a+ P)(1 + Vrt)
000 0 Tno m o . . . (C I+ T)(1+7V71)
0000 Omm O... p+am
000 0 00 A40 . . . –p – urn

. . . . . . . .
. . . . . .

000 0 0 0 0 0 .:. T(l + 7??2)
. . . . . . .. . . . . . . .

000 0 0000 .:. (CY+p)(l+nn)
. . .,. . .. . . . . . . .

000 0000 0 .:. cr(l + rm)
. . . . . . . .. . . . . . . .. . . . . . . .

Final configuration for: if Rk ~ O then Rj ~ RJ + Ri

The work space required to generate A’ is clearly Q(log s(n)).

However. it is not difficult to see that the macro statements
of Lemma 2 that perform the binary search in the set of

s(n) RAM registers can be generated in space O(log s(n)).
The transformation that makes the program restricted is
also logspace computable, and therefore the overall space
demand is O(log s(n)).

Since A’ is restricted, the sequence of instructions exe-

cuted is oblivious of the actual input. Assume that the out-
put bit of A (indicating acceptance or rejection) is stored in
register RO at the end of A’s execution. We modify the pro-

gram by inserting, as the last instruction, the conditional

statement “if RO ~ O then R1 - R1”. In this way, the

question of acceptance by A can be restated as a question
on whether the test expression RO ~ O is satisfied. Call the

resulting program A“.
From A“ we build the matrix M(A)’, 1) according to the

rules of Section 3. The construction can be computed in
space O (logs(n)). Actually, each diagonal block can be gen-
erated in constant space. The only problem is to put the 1s

in the lower triangular part of the matrix. To do this, dur-
ing the generation of the lcth diagonal block it is necessary
to determine, for any register R] used by that instruction,

the sequence number of the next instruction using R, and
the index of the first row of the block corresponding to it.

This information can be easily gathered by a linear search
through the input program A“.

Clearly, the construction of M(A”, 1) cannot be accom-
plished, as suggested above, in two distinct steps, because
the programs A’ and A“ require space O(s(n)) simply to
be stored. However, M(A”, 1) can still be generated in

O(log t(n)) space, since the log space reduction is transitive.
Since each instruction can be simulated by a costant

number of pivot operations, the order of M (A”, 1) is at most
a constant times the running time of A“. By Theorem4 this

is O (t (n)s (n)). Using the simulation of Section 3, we con-
clude that the program A“, and thus A, accepts if and only

if to eliminate, e.g., column N — 2 the GEPP algorithm uses
row N. ■

Theorem 6 Let N denote the order of the input matrices.
Then Gaussian Elimination with Partial Pivoting is at most

N1/2 complete for P.

Proof Let II be any problem in P, and let A be a RAM

decision algorithm for II running in time t(n), on inputs of

size n. By Lemma 5 the question of acceptance by A is
reducible, in space log(t (n)) and thus also in parallel time

O(log t (n)), to Gaussian Elimination with Partial Pivoting

on a matrix of size O(t 2(n) ). Therefore, any algorithm solv-

ing the Gaussian Elimination problem in time 0( N1/2-C ),
would provide, combined with the reduction algorithm, a

decision procedure for II running in parallel time O(t 1-2’),
thus giving polynomial speedup. ■

5 Concluding remarks

The result provided in this paper is not the tightest possible.
It could be still possible to devise a parallel algorithm for

GEPP running in time, say, N
2/3 without having dramatic

consequences on the whole class P. We conjecture that this
is not the case and thus that the existing “gap” depends

on our current inability to prove the optimality (assuming
P # NC) of the naive parallel implementation of Gaussian
Elimination with Partial Pivoting.

One reason for believing this is that our Main Lemma

says a little more than the at-most N1/2 completeness of
GEPP. To see this, consider a sequential algorithm A that
solves a P-complete problem II. Suppose that A achieves the
best running time t(n) known for II and, moreover, that A

uses substantially less space than t(n), say s(n) = (t(n) )l-’,

for some positive e. In this case, we obtain polynomial

296



speedup over A if we are able to exhibit a decision pro-

cedure for GEPP running in parallel time O(N ~ ). For

instance, for ~ = 1/2, 0( N2/3) parallel time would be suf-

ficient (although, obviously, not sufficient to conclude that

II admits polynomial speedup, because A might not be the

fastest sequential algorithm for A).

One computational problem with the above mentioned
properties seems to be the decision version of the maximum

flow in sparse graphs with n nodes. To the best of author’s

knowledge, there is currently no parallel algorithm running
in time O(n2–c ) for this problem. However, we have se-

quential algorithms running in time 0(n2) and using O(n)
space, provided that the number m of edges is O(n) and
the capacities on the edges are small size integers (see, e.g.

the textbook [4]). Therefore we have s(n) = (t (n)) l- ~, i.e.
c = 1/2 in the argument of the above paragraph.

Acknowledgements

It is a pleasure to acknowledge the helpful comments and
conversations that I had with Bruno Codenotti and Anne

Condon on the subject of this paper.

References

[1] A. Condon. A Theory of Strict P-completeness. Pro..

STA CS 92, Lecture Notes in Computer Science, 577:33-
44.

[2] S.A, Cook A taxonomy of problems with fast parallel

algorithms. Information and Control, 64:2-22, 1985.

[3] S.A. Cook and R.A. Reckhow. Time Bounded Random

Access Machines. Journal of Computer and System Sci..
ences, 7:354–375, 1973.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Intro..

duction to Algorithms. The MIT Press/McGraw-Hill,,

1990.

[5] P.W. Dymond. Indirect Addressing and the Time Re-.
lationships of Some Models of Sequential Computation,

Comp. and Math. with Appl., 5:193-209, 1979.

[6] P.W. Dymond. Personal communication through E-

mail.

[7] R.M. Karp and V. Ramachandran. Parallel Algorithms

for Shared-Memory Machines. In: J. van Leeuwen (cd.).

Handbook of Theoretical Computer Science, Vol. A. The
MIT Press/Elsevier, 1990, 869-941.

[8] C.P. Kruskal, L, Rudolph, and M. Snir. A complex-

ity theory of efficient parallel algorithms. Theoretical
Computer Science, 71:95-132, 1990.

[9] F. Meyer auf der Heide. Lower bounds for solving linear

Diophantine equations on Random Access Machines. J.
A CM, 32:929-937, 1985.

[10] S.A. Vavasis. Gaussian Elimination with Pivoting is
P-complete. SIAM J. Disc. Math., 2:413-423, 1989.

[11] J.S. Vitter and R.A. Simons. New classes for parallel
complexity: a study of unification and other complete

problems. IEEE Trans. Comput., 35:403–418, 1986.

297


