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Abstract

Reported are experiences and practical results from para.-

lelizing the modular GCD algorithm for sparse multivariate
polynomials. The strategy is to identify key computation

steps in the sequential algorithm and implement them in

parallel. The two major steps of the sequential algorithm—
computing the GCD modulo several primes and applying the

Chinese Remainder Algorithm on the integer coefficients—
are easily partitioned into independent subtasks. The sub-
task of computing the GCD modulo one prime can be subdi-
vided further. Several parallel strategies for the multivariate

GCD modulo a prime are presented. Actual timings on a
Sequent Balance with 26 processors are presented.

1 Introduction

Polynomial Greatest Common Divisor (GCD) is a basic ca-

pabilit y in any computer algebra system. Since the early
days of symbolic computation, polynomial GCD has been
an active area of research. Well-known algorithms include
modular GCD [4], reduced PRS (polynomial remainder se-
quence) [8], subresultant PRS [5], EEZ GCD, and sparse
modular (SMGCD) algorithms. The reader is referred to

[6] and [13] for a history and a survey of polynomizd GCD

algorithms.
For multivariate polyr,omials, the EEZ algorithm is nor-

mally very effective and provides a lifting procedure that

is also important in polynomial factorization. For sparse
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multivariate polynomials (with many missing terms), the

SMGCD algorithm can be very efficient. These procedures

can become even faster by employing parallelism. For infor-

mation on the use of parallelism in computer algebra, the

reader is referred to [10] [17]. Here we will focus on the

SMGCD algorithm.
We consider the para.llelization of the SMGCD algorithm

on shared-memory multiprocessors (SMP), a popular MIMD
architecture that is both affordable and widely available.
Our department maintains a 12-processor Encore Multimax
and a 26-processor Sequent Balance. The latter is the pri-

mary machine used in our work. Our experience with par-
allel factorization (P FACTOR [23] and PLIFT [24]) helped
much in the current investigation.

Without inventing a brand new parallel algorithm, our

strategy is to parallelize key steps in the SMGCD algorithm

as given by Zippel [25]. We briefly introduce the SMGCD

algorithm and define necessary notations in the next sec-
tion. Then we specify our parallel strategy and describe the
PSMGCD package which implements the proposed parallel

algorithm. Porting the PARI computer algebra library [3] to

the Sequent Balance [22] allowed us to avoid coding many
basic polynomial operations and to concentrate on paral-
lelism. PSMGCD is extensively tested and timing results
are included to show the effect of the parallelization.

2 The Sparse Modular GCD Algorithm

We wish to compute G = gcd(U, V) for polynomials U, V c

~[zo,. . . . zt], where G is sparse. Assume the variables are
numbered so that zo haa the highest degree appearing in
either U or V, and that U and V are primitive with respect
to zo. An overview of the sequential SMGCD algorithm is
given. The reader is referred to [25] for Zippel’s original

present ation of the algorithm.
SMGCD substitutes randomly chosen integer values for

the variables xl through z ~ in U and V to reduce the multi-
variate GCD computation to one of univariate polynomials

in Z!P [z O], then recovers the lost variables one at a time, us-
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Input: peZZ+, u,v Ez[zo, . . . ],Xt,
cl=(a], . . ..at)e z.,

Output: gcd(.Y, V) mod p if a is good

m

Go = ~ go,,z:a + gcd(~(~o, a), V(XO, cr)) mod p

1=1

For s from 1 to t do

U.i--u(xo,..., zs, o.+l, . . .. at) modp

V.tv(zo,.., , z., a.+l,..., cr,)modp

d - min{deg(U., z.), deg(V~, z.)}

Fori C{l,. ... m}do
n~ - the number of power-product terms in g~_l,i

N + max{n,ll ~ i < m}

Randomly select distinct ~1, . . . . ~d E ~P

Choose distinct &l, . . . . tjv E z;-’

For(j, k)c {l,..., d}x{l,... ji}dodo

Tj,k + gcd(U.(zo, &~, B~), vs(~O, <k, ~j)) ‘n ‘P[zo]

For i 6 {1,... , m} do T,,j,k - coeff(T3,k, z~’)

For(i, j)~{l,..., rn}x{l, d}dlo}dlo

h,,j - SflNTERP(p, g.-l,,, tl, . . . . <n, ,

~i,j,lj . . . . ‘l_t, j,n, )

Fori C{l, . . ..rn}do

g,,, + D-INTERP(p, d + 1, g.s-1,,, h,,l, . . . . h,,d,

ffs, h,... , rfh)
m

Gs * ~gs,t(zl,..., zs)z:’

,=1

Return Gt

Figure 1: SMOD.GCD(p, U, 1< a)

ing techniques that are efficient for sparse lpolynomials. The

prime p must be large enough to guarantee that the result

mod p is the same as the actual GCD. In practice, if p is too
big to allow single precision computation, the algorithm in-

stead would be carried out modulo severad single-precision

primes and the Chinese Remainder Algorithm (CRA) for
integers [12] is used to coalesce the results.

Our implementation of SMGCD is sho~wn in Fig. 1.

SMODGCD(U, V, a, p) computes the image of G modulo the
prime p if given a “good” evaluation point,l. Tests to check

whether G is indeed the true GCD are not shown to keep

Fig. 1 simple.
We first compute

m

GO(ZO) = ~go,,r~ = gcd(UO, VO) mod P

1=1

using some algorithm for the GCD of twct univariate poly-

nomials over a finite field (e.g., the Euclidean algorithm).

1This choice i* ~r~cial: if it causes any non-zero term to evaluate

to zero an incorrect result (discovered by dividing the result into U

and V) is obtained. When this occurs the process must be started
all over again with a new evaluation point. The probablhty of this

happening can be reduced arbitrarily by selecting larger primes [25].

Using the variable of highest degree as the main variable also reduces

this probability.

Input: p G Z?+

f = ~v,z;:” . ..z:,q eizp[z], . . ..zq]. pt#o
,=1

(1, . . ..tn E z:, where g, = (ti,],.. .,&,, q),

r],...,rn~ z.

Output: ~ c ZZPIZI, . . . . z~] such that ~(.$~) s Tj mod p

forallj=l, . . ..rr

Solve the system of equations

Y1[~~;l . . . (;;99 + . ..+yn~.:q . .. f.;q=rl

cl’1””” C2aq+”” ”+ Yn<~;”.. &Y6q=~n

o!~%p to obtain solutions VI = ~1,.. ., y. = PW

n

Return
x

%,1 C,, q
Fixl ...~g

,=1

Figure 2: SflNTERP(p, f,(l, . . . . <n, rl, . . . . r~)

Then we successively recover

m

G,(zo, . . ..x$) = ~gs,, (zl, . . ..z$)z~ =gcd(U,, V.) modp,

,=1

where U. and Vs are as defined in Fig. 1, from G,_ 1, un-

til Gt s G mod p is obtained. Notice that we are relying
heavily on the assumption that Gs is the correct image of
Gin ZPIZO,..., x ~]. Each term g,,, of G, is recovered from
the corresponding term g$–l,, of G,_l, by first using sparse

interpolation to obtain polynomials h,,y, each of which is

congruent to g,,, modulo a different linear polynomial, then

applying dense interpolation to gs–I,tand hi ,J. Subalgo-
rlthms for termwise sparse and dense interpolation are given

in Figures 2 and 3, respectively. To iiluminat e the behavior
of the algorithm we describe the steps taken to compute the
gcd of two polynomials having three variables. After al and

m are randomly chosen, the univariate GCD

GO(ZO) = G(so, CY1,02)

= gcd(U(xo, CQ, cr2), V($o, Cl’l, crz))

= go,ndm + go,m–lz:m-’ + . . . + 90,1 Z:1.

k computed. The goal now is to determine the coefficient

polynomials gz,, (zl, X2) for i = 1, ..., m. We assume that

GO, G1 and G2 all have the same nonzero terms in so; if the
assumption is proven wrong we start over again. Compute
d, the bound for the degree of Z1 in G(zo, z], Z2), choose 91
through ~d, and compute all the h,,~. Since each system of
equations is of size one, the sparse interpolation step at this

stage is trivial:

h C,3 = coeff(gcd(U(zo,8j, ci2), V(XO, P~, CY2)), Z~*)

= 92,:(PJ, @2)

Dense polynomizd interpolation at d + 1 values, go,,,

h:,l, . . .,h,,d C z~, produces m,i(zl). Assembling these we
obtain

m

G1(ZO, Z1) = G(zo, zl, cM) = ~gl,, z;’.
,=1

Let d now denote the degree bound computed for Zz in G.
We randomly select new values /31 through ~d and compute

67



Input: p,tezz+, fl, . . .. f4Gzzp[zl. zs_l],_l],

A, . . ..4t Ez?p

Output: f c ZPIZ1,... .z,] such that
f(zl,..., Zs-l, @i) = fi

fora.lli=l,... t.t

Use CRA for polynomials to interpolate ~ from

jl =jmod (z, -41)

Figure 3: DJNTERP(p, t, fl,... , ft, ~l,..., 1$1)

the images h,,~ (z1 ) using sparse interpolation. Dense inter-
polation is then used to construct Qz,a(z1, zz ), the polyno-
mial coefficients for each xo term in Gz = gcd( U, V). Let us

illustrate the sparse interpolation by an example. Suppose
we are recovering Gz(zo, z1, z2) from G1 (ZO, z1) in ZZlg, and

that

u2(ztJ, $1, z2) = z: +s1$: + (z; +Zzzl)z: +

(z: + 22X;+ 4) Zo + 4X1

V2(Z0, Z1,Z2) = Zt +Z2X: + (z; +Zzzl)z: +

(Z2Zf + X:X1 +4) ZO + 4~2

cr2 = 7

GI(zo, z1) = G2(z0, q,7)

= Z:+(Z; +7 Z1)ZO+4

= 91,3d +91,230 +91,1

In order to use dense interpolation to recover G2, we need
GI and d = min(deg(U2, x2), deg(Vz, x2)) = 1 more image
of Gz in Z19[Z0, ZI]. The coefficient h,,l of each term of

the new image is obtained from gl,; by sparse interpolation:

first ~1 = 4, and <l = (l), &2 = (8) are chosen as prescribed

by the algorithm. Then

TI,l = gcd(U(*o, tl)Pl), v(xo, tl, Bl)) = d +5x0 +4
TI ,2 = gcd(U(zo,62, Pi), v(~o, <2,h)) = d +~0 +4

are computed, giving us

Tl,l,l = coeff(Tl,l, z:) = 4 r1,1,2 = coeff(Tl,2, 2j) = 4
72,1,1 = coeff(Tl,l, z:) = 5 r2,1,2 = coeff(Tl,2, z:) = 1

7-3,1,1 = coeff(~l,l, x:) = 1 73,1,2 = coeff(Tl,z, 2$) = 1.

Then hl,l = 4 and hs,l = 1 are found by solving the trivial
linear systems gl = rl,],l = rl,l,z and yl = T3,1,1 = ~3,1,z.
To determine hq,l, the system of equations

?/2(1)2 -f- W(l) = f2,1,1,

Y2(8)2 + w(8) = r2,1,2,

is solved over ZZ1.J. This gives us hl,z = z; + 4zl.
Now dense interpolation can be used on each term of the

two polynomials

Gz = z~+(z~+7z1)x0 +4 mod (ZZ -7)

G2 s t~+(z~+4z1)zo+4 mod(zj -4)

to produce

G2(z0, zl, zz) = z;+ (z? + Z1 ZZ)ZO +4.

Input: U, VCZIZO,..., Q]

Output: gcd(U, V)

Choose a set of primes P such that their product is greater

than twice a predicted bound on the integer coefficients
of the GCD.

For each prime p E P do in parallel

Choose at random a c ZZ~, and compute

~P = ~ yi,pqy . . . ~:e,t + PSPMODX.GCD(U, V, a,p)

,=1

Fori~ {l,..., r} do in parallel

Use CRA to recover ~; from ~j,p for all p e P

T

Return
x

y,x;”o .,. &

,=1

Figure 4: Naive partitioning of top level

3 Parallel Sparse Modular GCD Strategies

We now consider strategies for partitioning the SMGCD al-

gorithm into independent subtasks, keeping interaction be-
tween subt asks low yet minimize redundant calculation.

Task partitioning is possible on many levels. Shortly we

shall consider three methods for partitioning SMOD.GCD,

but first we shall discuss two methods to subdivide the work
at the topmost level. This is only necessary when G has

multiple-precision integer coefficients. We shall refer to a

generic partitioning of SMOD-GCD aa PSPMODX.GCD.
The naive top level partition is given in Fig. 4. In this

method, a parallel version of CRA for integers [21] would

allow subdivision of the final recovery of the gcd from its
various images mod p, although the grain-size may be too

fine for this to be practical on many architectures.
An alternate partitioning of the top level is given in

Fig. 5. It seems preferable for several reasons.
First, this approach computes the GCD modulo one prime

at a time and terminates as soon as the true GCD is de-
termined. On the other hand, the naive partitioning must

compute the GCD modulo all of the chosen primes before
it can detect the true GC D. This is inefficient since the pre-

dicted bound on the integer coefficients of the GCD is often
too large [16].

Also, all available processes are employed to compute
each single GCD image in the second approach while the
naive partition can only use as many parallel processes as
the number of images required.

Finally, the partitioning of Fig.5 uses only sparse interpo-

lation for computing additional images of the GCD, once the
first GCD image (i.e. G mod po) is computed. The GCD im-

ages GP are computed baaed on the structure 2 of G mod p..

For example, if G mod PO = z~” + z~” +... + x~”, then ~P is
assumed to be of the form GP = LZOZ&” + al w~” + . ..+atz#o

where the at 6 Z?.p. The a, are computed via sparse inter-

polation.
The naive partitioning, on the other hand, computes each

of the ~p starting from scratch. None of the ~P is used as a
model for computing other images. Hence many unnecessary

computations are performed.

2 It is possible that the image computed first is erroneous and,

hence, all of the subsequent 47P are also erroneous. This possibility,

however, can be arbitrarily small by choosing large po. See footnote

1
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Input: u,v Ez[zo,..., zt]
r

Output: gcd(U, V) = ~7,z:”0 . . . z:’” C Z[zO, . . . . Q]

1=1
Choose P and a as in naive partitioning, select pO ~ P

and let P’ =P–{po}
r m

‘R= ~y,z;”” . ..J* = ~gt,, (m,..., m)z;’

,=1 i=l
- PSMGCD_i(U, V, cr, po)

If 72. divides both U and Vover Z, thenreturn ‘R
Fori Cal,..., m}do

ni - the number of power-product, terms in gt,,

N tmax{n,ll ~ z’ < m}

For each prime p 6 P’ do (* sequential loop *)

Choose distinct &l,..., CN E ZZ~

Forle {l,..., N} do in parallel

Te e gcd(U(zO, &), V(zo, ft)) in ~P

Fori~ {l,... , m} do in paralLel

r,,e * coeff(Tl, x;’)

Fori E{l,..., m} do in parallel

~t i - S.-INTERP(p, gt,, ,&l, . . ,t~,, ~$,1, . . . , ~I,m, )

T m

%) = ~ 7i,pz:”0 . . . z;;” + ~Ft,, (zl, . . . . x,) x:’

,=1 iel

Fori6 {l,... , r} do in parallel

Use CRA to update the intege,r coefficients of ‘R

given 71, y,,P and p.

r

Set R. ~ ~ 7iX~”0
C*,t

...x~

isl

If 1? divides both U and Vover Z?, then return 72

Figure 5: Sophisticated partitioning of top level

3.1 Parallelization of SMOD.GCD

We now turn to the parallelization of SMOD.GCD: Figures

6-8 lay out three possibilities. The same notation as given
in Fig. 1 is used here.

3.1.1 PSMGCD.1

PSMGCD.1 derives GO,G1,. . . . Gt in sequence, but the tasks
performed to get G. from G,_l are done in parallel. This
method performs the sparse interpolation stage first, then
synchronizes to perform the dense interpolation next. The
sparse interpolation stage computes all the h,,k in parallel.
The dense interpolation, in turn, interpolates (in parallel)

the gs,, from the polynomials hi,~.

3.1.2 PSMGCD3

Similar to PSMGCD-I, PSMGCD-2 com~putes G~ by com-
puting Go, GI, ..., Gt in sequence. The tasks performed to
get G. from G._l are done in parallel :as well. However,
instead of performing sparse interpolation followed by dense
interpolation, the second method divides the work so that

both sparse and dense interpolation for the term gs,, are

Input: pczz+, U,vcz[zo, . . ..xt].
a=(a], . . ..at)e z.,

Output: gcd(U, V) mod p if a is good

m

Go = ~ go,, x:’ - gcd(u(xo, a), V(XO, a)) mod p

,=1

For s from 1 to t do (* sequential loop *)

i7$t.V(zo,...,, a,+l,l, at)modpmodp

Vb-v(zo,. ... @g,crS+l, . . ..at)modp

d - min{deg(U., z3), deg(V~, z~)}

Fori E{l, . . ..m}do
n~ + the number of power-product terms in gs-l,i

N trnax{~ill ~ ~ < ~}

Randomly select distinct 01, ...,bd~z~

Choose distinct (l,. . . . (N e ZZ;-l

For(j, k)~{l,..., d}x{l,l V}doin doin parallel

T,,k - gcd(U,(zo, &, P~), v.(~O, <k,/%)) ‘n ‘P[zo]

Forie {l,..., m} do ~,,~,~ + coeff(T’’,~, r:’)

For(i, j)g {l,..., m} x {l, . ..jd} do in parallel

h,,~ e S.INTERP(P, gs–l,i, 61, . . . ,~n;,

TI,J,l, . . . , TS,J,71,)

Fori~ {l,..., m} do in parallel

gs,, + D-INTERP(p, Q!+ l,g,–1,,, h,,l, . . . . h,,~, as,

Pi,..., Pd)

i=l

Return Gt

Figure 6: PSMGCD.l(U, ~ a,p)

done independently of the sparse/dense interpolation for all
other terms. This requires less synchronization among the

computational t breads. Notice that a t bread recovering g~,,
may further subdivide to compute hi,l in parallel.

3.103 PSMGCD3

PSMGCD_3 recovers go,,, ..., gt,i in sequence independent
of the recovery of the other terms of Gt. This is especially

useful if many terms of the GCD involve only a minor sub-
set of the variables involved. For example, if the variables
occuring in the term gt,i are z], X4, ~f3, then both of the

sparse and dense interpolation steps are applied to recover

only these variables.
This scheme is effective since there is a way to compute

degree bounds of the variables that occur in each term of
the final gtd. Each term may proceed at its own pace, using
more time to recover one variable and less time to recover
another. This allows us to prune a large amount of extra

work arising from conservative bounds on the degree.
One way to find the variables occuring in each term of

the final gcd along_wit~ their corresponding degree bounds
is to compute gcd(17S, V,) mod p, s = 1, . . . ,t, where

v. = U(zo, al, . . ..a$_l. jas+l,l, crt)crt) modp

v, = V(zo, al,... ,cr S_l, z~, cr~+l, . . ..at)modp.
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Input: pe z+, U,vez[zo,. ... zt],
CY=(w, ..<,crt)cz;,

Output: gcd(U, V) mod p if a is good

m

Go = ~go,, x:’ ~ gcd(u(~o, a), V(ZO, a)) mod p

For

,=1

s from 1 to t do (* sequential loop *)

U, + U(SO,..., x~, c+l,l, cIt)cIt) modp

v. +- V(zo,... ,z~, a~+l, . . ..at)modp

d t min{deg(U,, z.), deg(V,, x.)}

Fori~{l, . . ..m}do
ni + the number of power-product terms in

gs–l,t

N + max{nill ~ i < m}

Randomly select distinct ~1,..., ~d C ~P

Choose distinct &l,. . . . .$~ G iz;-l

For(jjk) Cal,..., d}x{l, N}do N}do in parallel

T3,, t gcd(U.(zo, t~, ~,), Vs(~O, t~, @~))

in ZZP [zo]

For i C {1,..., m} do Ti,j,h +- cOeff(Tj,k,z~’)

Fori~ {l,..., m} do in parallel

Forj6 {l,..., d} do in parallel

hi,j t S-INTERP(p, gs-l,i, ~l, . . . ,fnt,

T:,J,l, . . . j r~,j,n, )

g.,i ~ DJNTERp(P,~ + 1,9s-1,,, lz.t,I, . . . . hi,d.,

as, h,. ... pd)

$=1

Return Gt

Figure 7: PSMGCD.2(U, V, a,p)

These bivariate gcds may be computed in parallel in the

mecomrmtation section of PSMGCD-3 using PSMGCD-1 or
~sMGdD-2. This precomput ation of the bi~ariate gcds may
actually provide some speed up. To show this, observe that
each gt,; now involves it crating at most t — 1 variables. This

is in contrast to blindly introducing exactly t — 1 variables
without blvariate gcds computations.

In addition, this approach predicts lower variable degree
bounds than the conservative bounds min{deg(U., z.), deg

(V,, x.)} for 2 s s s t. As a result, the sparse and dense
interpolation stages are performed much faster since, as the

two inner parallel loops of Fig.8 indicate, both stages depend

on the degree bound used,
In %INTERP, the solution of the systems of linear equa-

tions may be performed in parallel. Kaltofen et al [11] sug-

gest a more efficient sequential approach which may also be
paral.lelized. Similarly the CRA for polynomials in D-INTERP

may be performed in parallel. It is not clear whether such
a fine partitioning of the problem will afford any significant
speedup on current hardware, although in the future this

may prove useful.

Also in PSMGCD.3, since it is not necessary to choose
the .f~ at random, we posit a function GEN-EVAL-PT that

deterministically returns the appropriate value that must be

Input: Pe z+, u,v Ezqzo,..., zt],
CY=(al, ....at)ez.,

Output: gcd(U, V) mod p if a is lucky

Morse l,..., t do in parallel (* Precompute bivariate gcds *)

Use any GCD algorithm to compute gcd(~~, ~,) mod p and

m

set G(zo, z,) = ~ Wfs)(z.)zj’ + gcd(~.,~~)

,= 1

d.,, = deg(w[s)(zs)) for all 1< s ~ t,l ~ i < m

d+max{d~,ill <s ~t,l ~i~m}

Randomly select distinct ,&, . . . . .8d ● ~P

,=1

For i c {1,..., m} do in parallel (* Main computation *)

(* The scope of ~, j, k, n, and ~, is limited to *)
(* current lteratlon of the outer parallel loop. *)

For s = 2 to t if d.,i >0 do (* sequential loop *)

n - the number of power-product terms in g~-1,,

Fork G{l,. ... n}do
~, e GEN_EVAL_PT(p, s, k)

(* Inner loop 1 *)

For (j, k) c {1, . . . ,d,,,} x {1, . . . ,n} do in parallel

If T,,j,k has not yet been computed then

Ts,3,k - gcd(U, (zo, f~,13~), vs(~o,~k, h)) in ~PIXO]

T,,J,k + coeff(T,,j,k, x;’)

Forj~ {l,..., d,,, } do in parallel (* Inner loop 2 *)

lt,,j + S-INTERP(pj gs-l,i, fl, . . . ,en,
Tt,j,l, . . ., 7_*,J,n)

9$,, e D-INTERP(P, d,s,i + 1, gs-l,t, h~,l, . . . .
h,,d,,,, cls, pi,..., @&,,)

i= 1

Figure 8: PSMGCD.3(U, V, cr,p)

shared by other computationrd threads.

4 Parallel Implementation of PSMGCD

As an experiment to show the effectiveness and the practi-

cality of the various parallel strategies presented, we have

implemented the parallel approach shown in figure 6. The
results are very promising. Three input scmnplefi are shown

in figures 9 through 11, with timing results obtained by
computing the GCD of these polynomials using different
number of processes for each input.

The PSMGCD package is written in the C language with
Sequent parallel extensions. It c@ls on routines from the
Sequent parallel programming library and the PAR13 com-

puter algebra system (appendices A and B) and runs under

3we mademinor modifications to PARI to put its internal stack

in shared memory.
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Sequent’s DYNIX operating system [2],
Our implementation uses a data partition method called

microt asking [2] to execute loop iterations in parallel. In this

method, independent processes execute the loop body using

different sets of data. For example a secluential loop of the

form

For (i = O; i c N; i++)

{
point = Generate an evaluationpoint

Compute GCD of U and V at point

}

can be implemented in parallel sa

For (i = pid, i < N; i+= nprocs)

{
point.i = Generate an evaluation point
g.i = Compute GCD of U and V at point-i

1

where nprocsis the number of processes to use and pid (O
~pid<nprocs - l)is aunique process l[D assigned toeach

process.
In addition to microtasking, PSMGCD makes heavy us-

age of the shared memory feature to facilitate inter-processes
communication. All the relevant data, such as /31 through

lb and fl the univariate gcds computed in the first parallel
loop, areallkept inshared memory accessible by all running

processes.

4.1 PSMGCDUsage

PSMGCD can be used in two different modes:

●

●

Filter mode: PSMGCD takes a set of multivariate
polynomials pairs from standard input and produces

output on standard output. Inthisway PSMGCD can
process several input requestsin afile or from another
process via a pipe connection.

Server mode: PSMGCDruns asanetwork server readv

to receive TCP/IP stream socket connections. Th&
allows processes running on remote hosts to send GCD

requests to PSMGCD.

The input to PSMGCD consists of the two polynomial,
thenumber ofprocesses to use, andanoptional upper bound
on the coefficients of the target GCD.

Ifnot supplied, avery conservative aprioriupperbound

is calculated by PSMGCD. For example, to compute

gcd((zz + Z1 + 2)4 (3X2 + 3 ZI – 1),

(-z, +4X1 +2) (Z2 + z, + 2)3)

using 4 processes and given the upper bound 100, one types:

PSMGCD 4 100

(X1+X2+2)-4*(3*X1+3*X2-1)

(X1+X2+2)-3*(4*X1 -x2+2)

(Note that expression expansion is done by PSMGCD.)
PSMGCD requires theuseof twoirnportant parameters

to control the parrdIel activities inside the program.

nprocs: the total number of processes to use. This pa-
rameters provided by the user, but cannot be greater
than the number of hardware processors.

np: The total number of primes to use. This parameter is
computed internally and depends on the aprioriupper

bound on the integer coefficients of G.

Figure 9: Timings for Caae 1

Number of p-seconds
Processes

1 121094885

2 65203089

3 47711299

4 38042621

5 32697187

6 28213439

7 26844616

8 25528374

9 25435541

10 25144418

12 23724676

G = ~3~:+~:+~:~2~:+t:~:+~;~: +Z:+Z;Z:Z; +Z;2+-(

Z;Z2Z: +Z:z: +X3 +x; +Z;z; +Z;Z2+Z: +x; +2

U = G(z4+z;+z2+zI+1)

V = G(z4+x3+z;+z1)

Figure 10: Timings for Case2

Figure 11: Timings for Case3
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5 Conclusion

The investigation here indicates that the sparse modular
GCD algorithm can be parallelized effectively on shared
memory multiprocessors. The PSMGCD package can be

used as a network server for clients requiring polynomial
factorization on the same or different machine. It can be

also used as a stand alone GCD computing utility for other

computer algebra problems.
A final note: The authors have repeatedly found the cur-

rent state of software support for parallel programming fa-

cilities (e.g., shared memory management ) to be frustrating.
We hope this situation will be addressed in the next gener-

ation of system software.

A Hardware Environment

Our implementations were carried out on a Sequent Bal-

ance [15] [20] configured with 26 processors and 32 Mbytes of
shared memory. The architecture is built around the system

bus, which links all memory modules, input /output devices,

and the system CPU’S. The bus operates at 10 MHZ yield-

ing a channel bandwidth of 80 Mbyte/s. 32 bit addresses

and 64 bit data are multiplexed on the 64 bit bus. The sys-

tem bus access the memory in data packets of I, 2, 3, 4, and
8 bytes.

Memory read and memory write requests are stored in
separate queues to increase the system bus bandwidth. In-

dividual requests and responses are interleaved in sequential
bus cycles [20].

In addition, the Balance system avoids bus congestion

by providing a distribute control-mechanism in which the

status of the read and write queues are checked before any
read or write requests are honored. Request accesses are

denied unless there is space in the corresponding queue.
The processors in the Balance system are packaged on

dual processor boards which are all functionally equivalent.

They can be added, removed, or replaced without affecting

the operating system. Each board contains two NS32032

general-purpose processors capable of executing 0.75 MIPS.

Each processor has a cache memory of 8 Kbytes, a floating
point co-processor, a memory management unit, and a sys-
tem link and interrupt handler chip. A small memory used
to store frequently used routines is also provided [2].

B Software Environment

Our software environment consists of the PARI computer

algebra system [9] as an algebraic kernel and the Sequent
parallel programming library [15] and Dynix operating sys-
tem [18] for parallel execution of processes.

The PARI computer algebra system is a highly small
portable system capable of manipulating algebraic expres-

sions. It can be used as a stand alone interactive system

or as an ordinary library callable from any other users pro-
grams.

The system is written in C and hence it is highly portable.
To increase efficiency, three versions are available: one for
the MACINTOSH personal computers, another for the SUN/3

workstations, and a third version for any 32-bit machine
with no memory constraints.

PARI has 18 different kinds of data types. All of the

PARI data types are recursive in nature. We describe below
the data types that are relevant to our work:

1. Inte ers are limited in absolute value to less than
f2104880 (roughly 315623 digits).

2.

3.

4.

Reals allow precision of at most 315623 significant
decimal digits and exponent absolute value of at most
223 – 1 = 8388607.

Integermods and Polymods are represented by two
components: the modulus and the value.

Polynomials are completely recursive: their compo-
nents (i.e. terms) can be of any type and can be inter-

mixed.

The PARI system consists of 3 hierarchical levels. The

basic kernel is made up of routines for performing addition,

subtraction, multiplication, and division between single and

multiple precision integers and reals. The speed of the whole
system is highly affected by the efficiency of these routines.

Part of this level is written in assembly for the SPARC work-
stations version. The generic kernel consists of a large set of

routines for performing the four standard operations on all

of the other PARI objects. This part is written in C. The

highest level is a larger collection of routines for performing

input and output and operations from linear algebra, numer-

ical analysis and number theory, This level SJSOincludes a

syntacticsJ parser for the interactive user interface.

To implement our algorithm, we found it necessary to

modify PARI to run in a parallel environment on the Se-
quent Balance. PARI allocates a stack which cent ains all
its computations; the software has been modified so that

several processes running PARI will have their individual

stacks allocated in shared memory so that any one PARI
process can access data in another PARI process’s stack—

although it is not allowed to modify another process’s data,
so as not to confuse the other process’s garbage collector.

The Sequent parallel programming library [19] is a set of

C routines which allow the programmer to execute C sub-

programs in parallel. The library provides simplified access
to the following capabilities:

●

●

●

b

●

Process creation and identification.

Shared memory management.

Mutual exclusion.

Idle process suspension (useful during serial program
sections).

Process synchronization.
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