Distributed Partial Evaluation

Michael Sperber

Herbert Klaeren

Peter Thiemann

Wilhelm-Schickard-Institut fiir Informatik
Universitit Tiibingen
Sand 13, D-72076 Tiibingen, Germany
{sperber,klaeren,thiemann}@informatik.uni-tuebingen.de

Abstract

Partial evaluation is an automatic program transformation that op-
timizes programs by specialization. We speed up the specialization
process by utilizing the natural coarse-grained parallelism inherent
in the partial evaluation process. We have supplemented an existing
partial evaluation system for the Scheme programming language
by a farm-of-workers model for parallel partial evaluation in a net-
work of loosely coupled workstations. Our implementation speeds
up specialization by a factor of 2-3 on 6 processors.

Keywords functional programming, automatic program transfor-
matjon, partial evaluation

1 Introduction

Partial evaluation is a powerful program-specialization technique
based on constant propagation. Given the static (known) param-
eters of a source program, partial evaluation constructs a residual
program—an optimized, specialized version of the program, which
on application to the remaining dynamic parameters produces the
same result as the original program applied to all parameters.

Partial evaluation has a number of applications in computer
graphics, scientific computation, operating systems, and metapro-
gramming. In particular, partial evaluation can automaticaily gen-
erate efficient parser generators from general parsers [23] as well
as compilers from interpreters {15,24]. For typical applications the
speedup achieved by partial evaluation ranges between 2 and 10.

It is important to improve the speed of partial evaluators for the
following reasons:

1. Partial evaluation enables the construction of general and
highly parameterized software systems without sacrificing ef-
ficiency. Specialization turns the general system into a spe-
cialized, efficient one for specific parameter setting.

2. Automatic compiler generation is a particularly promising ap-
plication of partial application. The idea is to specialize a lan-
guage definition in the form of an interpreter with respect to
a program to be compiled. The specialized program can then

Permission to make digital/hard copy of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, the copyright no-
tice, the title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. PASCO’97, Wailea, Maui, Hawaii; ©1997 ACM 0-89791-
951-3/97/0007. . . US$3.50

80

be regarded as a compiled program. Speeding up (and paral-
lelizing) partial evaluation therefore implies speeding up (and
parallelizing) compilation.

3. Specialization can be performed on demand (yielding run-
time code generation [3]) so parallelized partial evaluation
amounts to parallelized just-in-time compilation. In this area
speed is of tantamount importance.

Building on an existing partial evaluation system for the
Scheme language [13,22] by one of the authors [26,27], we present
a model for parallelizing partial evaluation, along with an imple-
mentation of the model in a loosely coupled distributed environ-
ment. Even in this situation, the parallelization pays off since the
parallelism is rather coarse-grained. The only shared resource is a
central specialization cache.

In our preliminary experiments, typical speed-ups running on
Ethernet networks of 6 Unix machines range between 2 and 3.

Overview The next section provides some technical background
on partial evaluation. Section 3 outlines our approach in general
terms and Section 4 describes some specifics of our implementa-
tion. In Section 5 we assess the performance of the implementa-
tion. Finally, we discuss related work (Section 6) and conclude
(Section 7).

2 Partial Evaluation

This section provides some background on the standard partial
evaluation techniques relevant to the present work. The focus is on
offtine partial evaluation, the prevailing methods to perform partial
evaluation.

2.1 Offline Partial Evaluation

Offline partial evaluation (8, 15] consists of two phases, binding-
time analysis (BTA) and specialization. The binding time of an ex-
pression describes at what time its value is available. The two basic
binding times are stafic and dynamic. The partial evaluator can
compute the values of all static expressions in a program whereas
it has to produce residual code for the dynamic ones—their values
are only available when the residual program runs.

The binding-time analysis automatically provides binding-time
annotations for all expressions in a program, based on the bind-
ing times of its input parameters. This simplifies the second phase
to mere interpretation of annotated programs. It applies the pro-
gram to the static input, evaluating static expressions and building
a residual program from the dynamic ones.

A simple example for partial evaluation is a procedure for com-
puting the nth power of a number , specialized to a static exponent
n. The binding-time analysis produces an annotated program:

(define (power n x)
(if (= n 0)
1
(x x (power (- n 1) x))))

In this listing, underiining is the annotation for “dynamic”—
those expressions of the program that will end up in the residual
program. Specializing the above program with respect to a value
yields a residual program like the following (forn = 3):

(define (power_n=3 x)

(* x (¢« x (¢ x1))))

As demonstrated in the example, the specializer unfolds proce-
dure calls by default. This approach works in the example, since
a static if controls the recursion of power. However, unfolding is
not always desirable as it may lead to infinite specialization. It is
often necessary to produce recursive residual programs for recur-
sion under dynamic control. To this end, the binding-time analysis
(or the user) marks certain procedures as specialization functions.
Specialization functions are never unfolded, but the specializer gen-
erates specialized residual procedures from them. The specializer
keeps track of (memoizes) the residual procedures (specializations)
already created. Consequently, the specializer generates only one
residual procedure for each set of equivalent calls to a specializa-
tion function. Specialization functions typically enclose dynamic
conditionals or dynamic abstractions, as these constructs may give
rise to dynamic recursion.

As an example, consider power, again, but this time with static
z and unknown n. The corresponding annotated program indicates
that the specializer cannot evaluate the if:

(define (power n x)
(if (=2 0)
1
(x x (power (- n 1) x))))
Specializing this program for x = 15 yields a recursive pro-
gram that exhibits a structure almost identical to the original pro-
gram.

(define (power_x=15 n)
(if (=n 0)
1
(+ 16 (power_x=15 (- n 1)))))

The specializer maintains a specialization cache in order to
identify equivalent calls to a specialization function. The cache
is necessary to ensure that specialization finished. The cache is a
mapping from specialization functions and the static parts of their
argument lists to residual function names.

The specialization cache works as follows: Suppose the spe-
cializer enters a specialization function f with arguments a. First,
the specializer extracts the static skeleton 5 and the dynamic parts
d (determined by the BTA) from @. Then, the specializer checks
whether the cache already contains f5. If that is not the case, the
specializer enters f5 into the cache and specializes f’s body. In any
case, the specializer generates a residual function call fs{(d). The
combination of a specialization function and an appropriate static
skeleton is called a static configuration, since that is what the spe-
cializer needs to create a specialization.

81

This scheme is called depth-first specialization because it
amounts to a depth-first traversal of the dynamic call graph of a
specialization process. As soon as the specializer encounters a spe-
cialization function, it descends into a new specialization unless the
specialization cache already contains a matching static configura-
tion.

For effective parallelization, the earlier breadth-first specializa-
tion strategy [16] is more convenient. In this scheme, the spe-
cialization of a function’s body is completed before any new spe-
cialization starts. The specialization cache consists of two parts,
a pending list and a done cache. The pending list contains static
configurations for which no specializations have been created yet
while the done cache contains calls whose specialization has been
completed. Checking the cache—as in the preceding description—
means checking for an entry in both lists.

2.2 Typical Applications

Typical applications that benefit from partial evaluation (and gain
from parallelization) are the automatic generation of efficient
parsers from general parsers, and compilation. Thus, our work
paves the road to automatic generation of parallel parser genera-
tors and compilers.

2.2.1 Parser Generation

Conceptually, a parser is a function that accepts as arguments a
grammar and an input string and returns some by-product of the
construction of a derivation of the input string. It is straight-
forward to write such general parsers both for the LL and LR
method [9, 19, 20, 23]. Partially evaluating a general parser with
respect to a static grammar yields highly efficient residual parsers
with performance on par with hand-tuned parser generators such as
yacc or Bison [23].

Additionally, the same partial evaluation technology automati-
cally yields efficient parser generators [1, 15,26].

2.2.2 Compilation

Interpreters for realistic programming languages are typically eas-
ier to write than efficient compilers. Furthermore, an interpreter
can be viewed as a semantics definition for a programming lan-
guage. Partial evaluation can generate a compiler from an inter-
preter: Since an interpreter is (simply put) a function from a pro-
gram and its input to an output, a partial evaluator can specialize
an interpreter with respect to a static program and thereby gener-
ate a residual compiled program with all interpretive overhead re-
moved [15]. This semantics-directed method can lead to efficient
and highly optimizing compilers for realistic languages [17, 24].

2.3 Concrete Context

The present work builds on Thiemann’s PGG system [26, 27], a
partial evaluation system for the full Scheme language. One of its
distinguishing features is its ability to perform static computations
that involve side effects. The use of side effects is completely or-
thogonal to parallelization.

3 Distributed Partial Evaluation

We present a basic model for distributed partial evaluation, extend-
ing it stepwise to get reasonable performance by minimizing com-
munication overhead. Our first approach still uses one synchronous
message per specialization to coordinate the specialization process,
using essentially RPC [2]. We also present an asynchronous model.

The synchronous method never performs work twice whereas the
asynchronous method speculatively starts a specialization that may
already be performed elsewhere in the network.

3.1 Basic Concepts

The basic idea behind making partial evaluation amenable to par-
allelization is simple: Every single specialization only depends on
its static configuration. It may generate new requests for special-
ization in the form of static configurations, but it is independent
from every other specialization. Therefore, it is natural to consider
distributing the work of creating the specializations to distinct com-
putational agents called specialization servers. Each specialization
server can perform work on an arbitrary specialization, given its
static configuration.

As specialization produces more and more static configura-
tions, it is necessary to distribute the work among the specialization
servers present in the scenario. This is only possible centrally, as
the configurations generated by the different servers may overlap
in unpredictable ways. Hence, a designated computational agent,
the memoization master, keeps a central memoization cache and a
pending list. It administers these data structures and keeps the spe-
cialization servers busy. This model bears some similarity to the
farm-of-workers model [12, 28].

The sole task of the memoization master is to serve as a mon-
itor for the central specialization cache. The specialization servers
specialize away and store the specializations to be collected after
completion.

The specialization servers understand three basic messages:

initialize This message directs the specialization server to com-
mence work, that is, to initialize its residual program store
and to start asking the memoization master for work.

specialize config Specialize starting at some static configuration
config provided along with the specialize message. Store the
resulting residual procedure locally. :

yield-residual-program Retumn all specializations collected since
the last initialize message.

The memoization master initially accepts two kinds of message
from the specialization servers:

server-is-idle A server sends this message when it has completed
work on a specialization.

register-static-config config A server sends this message when it
has encountered a call to a specialization function. The cor-
responding static configuration config is part of the message.
The master simply adds the static configuration to its pending
list unless it has processed the static configuration before.

During startup, the master initializes the specialization servers
by sending initialize messages, puts the main function and its static
parameters as an initial static configuration entry in the pending
list, processes register-static-config messages, and answers each
incoming server-is-idle message by a specialize message back to
the respective specialization server. This happens asynchronously;
several threads may be active simultaneously on the memoization
master accessing the cache. When all servers are idle and the pend-
ing list is empty, specialization has completed; the memoization
master sends yield-residual-program messages to all specializa-
tion servers and combines the returned program fragments to yield
a complete residual program.

82

A specialization server, after having received an initialize mes-
sage, sends a server-is-idle message to the master and waits for fur-
ther instructions—specialize messages which it processes, storing
the specializations. Hence, a server has at most one active thread at
any given time.

Figure 2 illustrates the basic protocol as described above. The
dashed lines indicate asynchronous messages. However, the causal
relationship between the messages entails what is effectively syn-
chronous communication.

3.2 Localizing Information

The above model works in principle, but is too simplistic for re-
alistic usage. It does not take into account that, on realistic net-
works, message passing is typically more expensive than com-
putation. Unfortunately, computing a specialization in the basic
model always involves one synchronous communication: a pair of
a server-is-idle message from a server to the memoization master
and a specialize message back to the server. A server considers it-
self idle immediately after finishing one specialization. This makes
for poor performance.

At worst, the basic model involves sending static configurations
back and forth between specialization server and memoization mas-
ter: the specialization server works on a specialization, registers a
static configuration, finishes, sends the server-is-idle message, and
may get the same static configuration back. Sending a specialize
message involves transmitting a static configuration, and thus a po-
tentially large static data structure.

A first remedy for this problem is to keep specialization as lo-
cal as possible on the specialization servers: A specialization server
now manages a local pending list and specialization cache. It keeps
track of all static configurations encountered by the server and as-
signs a short, unique local identifier (local id) to each of them. With
the specialize message, the server informs the memoization master
not only of the static configuration, but also of the local id it has
assigned to it. Then, whenever a server becomes idle, it can refer to
its own pending list for more work. However, it may happen that a
different specialization server has encountered an equivalent static
configuration in the meantime. Therefore, the server still needs
to check back with the memoization master if it should commence
work on a given static configuration. Fortunately, this only involves
transmitting the (short) local id.

Consequently, the memoization master now understands a new
message:

can-server-work-on local-id A local identifier local-id accompa-
nies the message. The server, when sending this message,
waits for a boolean answer specifying whether it should com-
mence work on the static configuration that belongs to the
local identifier.

Also, the register-static-config message is extended to also
carry a local identifier as an additional component.

Hence, a server only sends a server-is-idle message when its
local pending list becomes empty. Otherwise, it considers entries
from the pending list until it encounters one where the memoization
master positively acknowledges a can-server-work-on message.

3.3 Preempting Work

When the memoization master assigns a static configuration to a
server different from the one that generated the configuration, it
can inform all servers that have equivalent static configurations
in the pending list. This information prevents the overhead of a
can-server-work-on message later on. Naively, this would involve

Memoization Master

)y specialize \
[N e [
memo _-T s P RN
-~ S .
L cache register- \
. A
4 memo-point | '
ZCZf§ZICIZZCIZZZIZzZZfZZZZzZzIZzZzZZzZzZzZo
| FccozzzzzzzzzzszzfpsszzzzIzaziis 2
. /
pending y
liSt ‘\\\ /////\\\ //,
N) TTmeee-moT | T
server-is-
idle

Specialization Server

Figure 1: Basic model for distributed partial evaluation

Memoization Specialization
Master Server
-~ ~ SPecialize
"""" >
. g i
; teré%“‘i’cgn— -
e 1eReS R
- -
serv et,‘s_'“_i_\e’ I
U
- - - -sge':iaﬁZe
N
\)

Figure 2: Basic Synchronous Specialization Protocol

sending an asynchronous message from the memoization master to
the respective servers of the form kill-local-id along with a local

Unfortunately, this also involves sending one message for each

of the local ids to be killed—thus saving only the time difference
between a synchronous and an asynchronous message. For a spe-
cific specialization server, the information about local ids that other
servers have processed becomss only relevant when it sends the
(synchronous) can-server-work-on message to the master. Thus,
itis easy to extend the return value of the can-server-work-on mes-
sage to also include a list of local ids whose static configurations
the master has assigned to other servers since the last can-server-
work-on message. The master merely needs to keep track of these
static configurations.

Figure 3 shows the more developed model for distributed par-

tial evaluation. The solid pair of lines describes the synchronous
message passing necessary for can-server-work-on messages.

Figure 4 illustrates the protocol outlined above with one mem-

oization master and two specialization servers.

83

3.4 Caching Static Skeletons

Both of the applications mentioned in Sec. 2.2 share the fact that
one data structure stays constant throughout the specializations:
The generic parser always passes around the grammar; the inter-
preter needs to keep track of the entire source program. Neverthe-
less, the current specialization model passes these data structures
anew with each specialize and each register-static-config mes-
sage.

In compilation, this is especially undesirable as the source pro-
gram can get large; the problem amounts to retransmitting the
source program each time a specialization server registers and re-
ceives new work from the memoization master.

Hence, it is necessary to cache the elements of a static skeleton
both on the memoization master (to avoid retransmission with spe-
cialize messages) and the specialization server (to avoid retrans-
mission with register-static-config messages). Since these data
structures are typically values of top-level variables in the static
skeleton, a simple caching mechanism suffices.

L Memoization Master
_J

specialize —)

- -~ -~

can-server- ,
work-on / \

|
memo klll local lds \‘ memo
cache S S S cache
—=-=== === === —F - - - = 1
J --1----I5 e yteintiiil Bl dhl J
re.glster- \)
—~ static-config Mg \
. . P .
pending R S T pending
list T list
) server-is-)
idle

- - -

L Specialization Server

Figure 3: Synchronous model for distributed partial evaluation

3.5 Choosing Work

In order to keep computation as local as possible, the memoization
master and the specialization servers keep track of a preferred spe-
cialization function which each specialization server will exhaust
before starting work on other specialization functions. Conversely,
the memoization master will tries to avoid assigning static config-
urations to servers which belong to a specialization function pre-
ferred by a a different server.

3.6 Speculative Specialization

An obvious weak point in the above model is the synchronous com-
munication needed until a server can commence work on a special-
ization. It is possible, however, to also convert this into an asyn-
chronous communication: The server still selects an entry from its
local pending list but also sends a message server-works-on with
that entry and the server’s id to the master without waiting for the
result. The master consults the global cache and either removes the
entry from the pending list or (if some other client is already work-
ing on that particular specialization) it tries to kill the specialization
on the specialization server.

In both cases when a specialization has terminated (success-
fully or due to a kill message) the specialization server continues
with the next entry from the pending list or sends server-is-idle to
the master if the pending list is empty.

Unfortunately, speculative specialization does not yield the ex-
pected gains, as our experiments in Sec. 5 show.

3.7 Sizes of Messages
The only sizeable messages are:

e specialize specialization requests from the master and

® register-static-config static configuration messages
from the specialization server to the master.

Both messages involve the transmission of entire static configura-
tions, which may become arbitrarily large. The messages server-
works-on and can-server-work-on only send unique ids, which
are established with register-static-config messages. The sizes of
the large messages are decreased using the techniques outlined in
Section 3.4. The result is that large data structures are only trans-
mitted once, afterwards only a globally unique id is transmitted in
their place.

3.8 Detecting Termination

The memoization master keeps track of the number of specializa-
tion servers that have been started and of the number of specializa-
tion servers that are currently idle. As soon as these numbers are
equal the computation has been completed.

4 Implementation

Our implementation of the distributed model builds on Kali [6], a
distributed implementation of the Scheme programming language.
This section gives an overview of Kali's distributed environment,
and then briefly describes how the PGG system makes use of it.

41 Kali

Kali is an extension of the Scheme 48 system [18], an advanced
byte-code implementation of Scheme. Scheme 48 already provides
a sequential implementation of preemptive threads.

Kali calls a computational agent in a distributed computing en-
vironment an address space. Each address space corresponds to a

Specialization Memoization Specialization
Server 2 Master Server 1
-~ _SP_eci'auZe
T~
[~ - SetVeris i) .
T T .- —>~}< register-sﬂﬁc.‘cgn—s— -
jalize _ _ 4
- _SPfo_a - an Se‘,vet_wotk'o
yes .
. /no, kify focal jg
"~ - - Berstaticcong, serverisidle
~><_ _—— -
- - -sEecialize
Y ¥ To- >y

Figure 4: Synchronous Specialization Protocol

Kali process which may reside anywhere in a network. All address
spaces are pairwise connected by TCP/IP stream connections.

Address spaces are first-class objects in Kali and may thus be
bound to variables, passed to procedures, and returned from pro-
cedure calls. One address space may send a message to another
address space simply by calling a procedure on the remote address
space. Kali provides a remote-run! operation which starts a pro-
cedure proc on arguments al . .. an on an arbitrary address space
aspace:

(remote~run! aspace proc al ... an)

The transmission of both the code of the procedure and the val-
ues of the arguments is completely transparent. Most values are
simply copied to the remote address space. Sharing is respected
within a single message, but not across different messages (as it
would be the case, e.g., in Linda’s tuple space {4, 5, 14]). Some
special values are assigned global unique identifications (uids) and
are transferred only once. Among these are

procedures: the compiled code of a procedure is only transmitted
once while the environment part (containing the values of the
free variables) is transmitted every time.

proxies: a proxy is conceptually a distributed array which is in-
dexed by address spaces. A proxy has a local value for
each address space, but it also holds information identify-
ing the address space that created the proxy. The procedures
proxy-local-ref and proxy-creator provide access to
this information. Proxies are also transmitted using unique
uid’s.

Furthermore, the thread system provides placeholders which
serve as semaphores and also the necessary locking primitives
to grant exclusive access rights locally. On top of these ab-
stractions, the Kali system provides remote procedure calls with
remote-apply, thread migration, user-specified load-balancing,
and more [6].

4.2 Adapting the PGG

The changes in the PGG system boil down to replacing the serial
implementation of memoization [27] by the distributed one out-

85

lined above. Due to the modular design of the system (taking ad-
vantage of Scheme 48's module system [21]) only the memoization
module has to be replaced, everything else remains unchanged.
All messages are simply asynchronous (remote-run!) or syn-
chronous (remote-apply) procedure calls. For caching static
skeletons, proxies provide a straightforward mechanism.

4.3 Implementation Problems

A problematic issue is symbol generation. In the course of each
specialization many new identifiers are generated for bound vari-
ables in the residual program. The implementation language
Scheme uses symbols for variables and the standard solution is to
provide a symbol generator that creates new symbols on the fly.
However, in the current implementation of Kali, locally created
symbols do not have a globally unique identity. Hence, our sys-
tem replaces symbols by “hand-made” globally unique numbers.
The master converts these numbers into symbols upon collecting
the residual program.

5 Performance

We have run benchmarks on a cluster of six RS/6000 worksta-
tions running AIX connected by an Ethernet local area network.
Specifically, we have run an LR(1) parser generator [23] and per-
formed compilation of a large automatically generated Mixwell

program [16].

processors runtime CPUtime speedup
seq 24.88 24.48

1 24.06 6.57 1.0

2 10.88 6.16 22

3 10.78 6.61 22

4 8.56 7.09 2.8

5 8.17 6.78 29

6 8.72 7.39 28

Table 1: Parser generation on a cluster of RS/6000 workstations

Tables 1 and 2 show the run times of parser generation and
the respective speed-ups. The “CPU time” column shows the CPU

processors runtime CPU time speedup
seq 6.19 6.22

1 744 0.49 1.0

2 449 1.00 1.7

3 412 1.44 1.8

4 3.46 .77 22

S 4.08 1.83 18

6 3.82 1.89 1.9

Table 2: Compilation on a cluster of RS/6000 workstations

time on the memoization master. Note that the tables only show
up to six processors—the seventh is the memoization master. It is
not clear whether the tables indicate any saturation on the part of
the master—more sufficiently similar machines were not available
to us. The first line of each table shows the timings for the purely
sequential version of the system. Obviously, the initial message
overhead of the parallel version is already offset by the work divi-
sion between the memoization master and the single specialization
server in the one-processor case. Note also that the CPU utiliza-
tion of the master does not ultimately change significantly with the
addition of more specialization servers. It does, however, present
a lower bound for the run time of the specialization. This is an in-
dication that some optimization on our (currently fairly straightfor-
ward) memoization master may yield higher maximum speedups.

All of these benchmarks use the synchronous model. Even
though we expected much smaller improvements due to the high
costs of synchronous communication, the results here were much
better than with speculative specialization, where our current im-
plementation only yields negligible speed-ups. Here, the high com-
munication latencies usually prevent kill messages from the master
to reach the server in time to stop any superfluous work done. The
time gained by avoiding synchronous communication is offset by
the time spent on duplicate work.

6 Related Work

The notion of partial evaluation and its application to automatic
program generation stems from Futamura’s work [10]. Since then,
compiler generation has been among the main fields of interest for
researchers in partial evaluation. This led to the discovery of off-
line partial evaluation and the construction of practical compiler
generators [16].

Consel and Danvy [7] have implemented a self-applicable par-
tial evaluator for the purely functional subset of Scheme on a shared
memory multi-processor machine. Their implementation exploits
features of Mul-T, a dialect of Scheme with futures [11]. More pre-
cisely, they assign one dedicated semaphore to each specialization
function. Therefore the speedup of their method is limited by the
number of specialization functions in the program. However, in a
shared-memory machine there is no need to transmit static config-
urations and to assign unique identifiers as we do.

Our approach to parallelizing the PGG is inspired by the farm-
of-workers model [12,28]. Our implementation benefits funda-
mentally from Kali’s approach to a distributed higher-order lan-

guage [6].

7 Conclusions and Future Work

‘We have demonstrated that partial evaluation has some potential for
effective parallelization, giving rise to numerous applications. We
intend to extend our system in the following directions:

86

e Recently, one of the authors has developed a sequential im-
plementation of incremental specialization and specialization
on demand {27]. This implementation has an intrinsic poten-
tial for parallelism: whereas the sequential implementation
interleaves specialization with running the specialized pro-
gram, a parallel implementation could continue specialization
during execution of the specialized program. A combination
with run-time code generation which is also already part of
the PGG system [25] can lead to just-in-time compilation.

e We believe that one of the limiting factors is the lack of glob-
ally shared data structures in the Kali Scheme system. This
lack gives rise to a large communication overhead if the spe-
cializer deals with large data that changes during specializa-
tion. It would be interesting to perform similar experiments
with a system like TS/Scheme [14].

e Tt is not clear whether our strategy is also suited to shared-
memory multi-processors. We would like to conduct a com-
parison between our method and the method proposed by
Consel and Danvy [7].

References

[1] BIRKEDAL,L., AND WELINDER, M. Hand-writing program
generator generators. In (7o be presented at the PLILP 94
conference) (Sept. 1994), Springer-Verlag.

[2] BIRRELL, A. D., AND NELSON, B. J. Implementing remote
procedure calls. ACM Transactions on Computer Systems 2,

1(1984).

[3] BLACK, A., CONSEL, C., Pu, C., WALPOLE, J., COWAN,
C., AUTREY, T., INOUYE, J., KETHANA, L., AND ZHANG,
K. Dream and reality: Incremental specialization in a com-
mercial operating system. Tech. rep., Dept. of Computer Sci-
ence and Engineering, Oregon Graduate Institute of Science
& Technology, Mar. 1995.

[4] CARRIERO, N., AND GELERNTER, D. Linda in context.
Communications of the ACM 32, 4 (apr 1989), 444-458.

[S] CARRIERO, N., AND GELERNTER, D. Coordination lan-
guages and their significance. Communications of the ACM
35, 2 (Feb. 1992), 97-107.

[6] CEJTIN, H., JAGANNATHAN, S., AND KELSEY, R. Higher-
order distributed objects. ACM Transactions on Programming
Languages and Systems 17, 5 (Sept. 1995).

[7] CONSEL, C., AND DANVY, O. Partial evaluation in parallel.
LISP and Symbolic Compuation 5, 4 (1993), 315-330.

[8] CONSEL, C., AND DANVY, O. Tutorial notes on partial eval-
uation. In Symposium on Principles of Programming Lan-
guages 93 (Charleston, Jan. 1993), ACM, pp. 493-501.

[9) DYBKJZER, H. Parsers and partial evaluation: An experi-
ment. Tech. Rep. Student Project 85-7-15, DIKU, University
of Copenhagen, July 1985.

[10) FUTAMURA, Y. Partial evaluation of computation process—
an approach to a compiler-compiler. Systems, Computers,
Controls 2, 5 (1971), 45-50.

[11]) HALSTEAD, JR., R. H. A language for concurrent symbolic
computation. ACM Transactions on Progranuming Languages
and Systems 7, 4 (1985), 501-538.

{12]

[13]

(14]

(15]

[16]

(171

(18]

[19]

{20

(21]

[22]

[23]

[24]

{25]

[26]

[27]

HEY, A. J. G. Experiments in MIMD parallelism. In
PARLE’89 Parallel Architectures and Languages Europa 1]
(1989), vol. 366 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 28-41.

IEEE. Standard for the Scheme programming language.
Tech. Rep. 1178-1990, Institute of Electrical and Electronic
Engineers, Inc., New York, 1991.

JAGANNATHAN, S. TS/Scheme: Distributed data structures
in Lisp. Lisp and Symbolic Computation 7 (1994), 283-305.

JONES, N. D., GoOMARD, C. K., AND SESTOFT, P. Par-
tial Evaluation and Automatic Program Generation. Prentice-
Hall, 1993.

JONES, N. D., SESTOFT, P., AND S@NDERGAARD, H. An
experiment in partial evaluation: The generation of a com-
piler generator. In Rewriting Techniques and Applications
(Dijon, France, 1985), J.-P. Jouannaud, Ed., Springer-Verlag,
pp. 124-140. LNCS 202.

JORGENSEN, J. Generating a compiler for a lazy language
by partial evaluation. In Nineteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages. Albuquerque, New Mexico (Jan. 1992), ACM, ACM,
pp- 258-268.

KELSEY, R. A., AND REES, J. A, A tractable Scheme im-
plementation. Lisp and Symbolic Computation 7, 4 (1995),
315-335.

LEERMAKERS, R. The Functional Treatment of Parsing.
Kluwer Academic Publishers, Boston, 1993.

MoOsSIN, C. Partial evaluation of general parsers. In
Symp. Partial Evaluation and Semantics-Based Program Ma-
nipulation '93 (Copenhagen, Denmark, June 1993), ACM,
pp. 13-21.

REES, J. A. Another module system for scheme. Part of the
Scheme 48 distribution, Jan. 1994.

Revised® report on the algorithmic language Scheme. Lisp
Pointers IV, 3 (July-September 1991), 1-55.

SPERBER, M., AND THIEMANN, P. The essence of LR
parsing. In ACM SIGPLAN Symp. Partial Evaluation and
Semantics-Based Program Manipulation 95 (La Jolla, CA,
June 1995), W. Scherlis, Ed., ACM Press, pp. 146-155.

SPERBER, M., AND THIEMANN, P. Realistic compilation by
partial evaluation. In Conference on Programming Language
Design and Implementation ’96 (Philadelphia, May 1996),
ACM, pp. 206-214. SIGPLAN Notices, 31(5).

SPERBER, M., AND THIEMANN, P. Two for the price of one:
Composing partial evaluation and compilation. (submitted),
1997.

THIEMANN, P. Cogen in six lines. In Jnternational Con-
ference on Functional Programming '96 (Philadelphia, May
1996), ACM, pp. 180-189.

THIEMANN, P. Implementing memoization for partial evalu-
ation. In Programming Language Implementation and Logic
Programming (PLILP '96) (Aachen, Germany, Sept. 1996),
H. Kuchen and D. Swierstra, Eds., vol. 1140 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 198-212.

87

[28] TREGIDGO, R. W. S., AND DOWNTON, A. C. Processor

farm analysis and simulation for embedded parallel process-
ing systems. In Tools and Techniques for Transputer Applica-
tions. Proceedings of the 12th Occam User Group Technical
Meeting (1990), S. J. Turner, Ed., IOS-Press, pp. 179-189.

