
DistributedPartialEvaluation

Michael Sperber Herbert IUaeren Peter Thiemann
Wilhelm-Schickard-Instituttlr lnforrnatik

UniversitiitTObingert
Sand13,D-72076Tiibingen,Germany

{sperber ,klaeren, thiernarm}@infonttatik. uni-tuebingen. de

Abstract

Partialevaluation is an automatic program transformation that op-
timizes programs by specialization. We speed up the specialization
process by utilizing the mtursl coiu%e-grairtedparallelism inherent
in the partial evaluation process. We have supplemented an existing
partial evaluation system for the Scheme programming language
by a farm-of-workers model for parallel partialevaluationin a net-
work of loosely coupled workstations. Our implementationspeeds
up specialization by a factor of 2-3 on 6 processors.

Keywords functional programming, automatic program transfor-
mation, partialevaluation

1 Introduction

Partial evaluation is a powerful program-speeidization technique
based on constant propagation. Given the static (known) parame-
ters of a source program, partial evaluation constructsa residuol
program—an optimized, specialized version of theprogram, which
on application to the remaining dynamic parametersproduces the
same resultas the original program applied to all parameters.

Partial evaluation has a number of applications in computer
graphics, scientific computation, operating systems, and metapro-
_ng. In P~c~~, paftid evaluation can automatically gen-
erateefficient parser generators from general parsers [23] as well
as compilers from interpreters[15,24]. For typical applicationsthe
speedup achieved by partialevaluationrangesbetween 2 and 10.

It is importantto improve the speed of partialevaluatorsfor the
following reasons:

1. Partial evaluation enables the construction of general and
highly psrameterizedsoftwaresystems withoutsacrificing ef-
ficiency Specialization turns the general system into a spe-
cialized, efficient one for specific parametersetting.

2. Automatic compiIer generationis a particularlypromising ap-
plication of partialapplication. The idea is to specialize a lsn-
guage definition in the form of an interpreterwith respect to
a program to be compiled, The specialized programcan then

Permissionto maked@Mmrd copy of all or partof thisworkfor per-
sonator classroomuscis grantedwithoutfeeprovidedthatcopiesarcnot
madeor dktributedfor profitor comrnercid advantage,thecopyrightno-
tice,thetitleof thepublicationanditsdateappear,andnoticeis giventhat
copying is by permissionof ACM,Inc. Tocopy otherwise,to republish,to
poston serversor to tedismbrrteto lists,requre.spriorspzitic permission
ardor a fee. PASC097, Wailea, Maui, HswtiI; @1997 ACM 0-89791-
951-31971tn)07.. . US$3.50

3.

be regardedas a compiled program Speeding up (and psral-
lelizing) partialevaluationthereforeimplies speeding up (and
parrdlelizing)compilation.

Specialization can be performed on demand (yielding run-
tirne code generation [3]) so parallelized part;al evaluation
amountsto psrallelized just-in-time compilation. In this area
speed is of tantamountimportance.

Building on an existing partial evaluation system for the
Scheme language [13,22] by one of the authors[26,27], we present
a model for parallelizing partial evaluation, along with an imple-
mentation of the model in a loosely coupled distributed environ-
ment. Even in this situatiom the parallelization pays off since the
parallelism is rathercoarse-grained. The ordy shared resource is a
centralspecialization cache.

In our preliminary experiments, typical speed-ups running on
Ethernetnetworksof 6 Unix machines rangebetween 2 and 3.

Overview The next section provides some technical background
on partial evrduation. Seaion 3 outlines our approach in general
terms and Section 4 describes some specifics of our implementat-
ion. In Section 5 we assess the performance of the implementa-
tion. Fkmlly, we discuss related work (Section 6) and conclude
(Seztion 7).

2 Partial Evaluation

This section provides some background on the standard partial
evaluationtechniquesrelevantto the presentwork. The focus is on
ofline przrrifdevaluation, the prevailing methods to perform partial
evaluation.

2.1 Offline Partial Evaluation

Oftline partial evaluation [8, 15] consists of two phases, binulng-
tirneonalysis (BTA) and specialization. The birrding time of an ex-
pression describes at whattime its value is available. The two basic
binding times are studc and dynumic. The partial evaluator can
compute the values of all static expressions in a program whereas
it has to produce residualcode for the dynamic ones-their values
areonly available when the residualprogram runs.

The binding-time analysis automaticallyprovidm binding-time
annotations for all expressions in a program, baaed on the bind-
ing times of its input parameters.This simplifies the second phase
to mere interpretationof annotatedprograms. It applies the pro-
gram to the static input, evaluatingstaticexpreasiorrsand building
a residual programfrom the dynamic ones.

80

A simple example for partial evaluation is a procedure for com-

pting the nth power of a number z, specialized to a static exponent
n, The binding-time analysis prcduces an annotated program:

(define (power n Z)
(if (= n O)

~
(1 Z (pouer (- n 1) x))))

In this listing, underlining is the annotation for “dynamic”—
those expressions of the program that will end up in the residual
program. Specializing the above program with respect to a value
yields a residual program like the following (for n = 3):

(clef he (poWer_n=3 x)
(* x (* x (* x l))))

As demonstratedin the example, the specislizer unfolds proce-
dure calls by default. TIds approach works in the example, since
a static if controls the recursion of power. However, unfolding is
not always desirable as it may lead to infinite specialization. It is
often necessary to prvduce recursive residual pfograms for recur-
sion underdynamic control. To this end, the binding-time analysis
(or the user) marks certain pmedutes as speciafizarionJ4nctkms.
Specializationfunctions areneverunfolded, butthespwislizer gen-
eratesspecialized residual procedures from them. The specialize
keepstrackof (memoizes) theresidualpmmdures (speciafizafions)
almdy created. Consequently, the specialize generatesonly one
residual pmmdure for each set of equivalent calls to a specializa-
tion function. Specialization functions typically enclose dynamic
conditionals or dynamic abstractions,as theseconstructs may give
rise to @narnic recursion.

As an example, consider power, again, but this time with static
x and unknown n. The corresponding annotatedprogramindicates
thatthespecialize cannot evaluatethe if:

(define (power g x)
(~ (- n o)---

Specializing this program for x = 15 yields a recursive pro-
gram thatexhibits a structurealmost identical to the original pro-
m.

(clef ine (power.x=15 n)
(if (= n O)

1
(* 15 (power-x=i5 (- n l)))))

The specialker maintains a speciakation cache in order to
identify equivalent calls to a specialization function. The cache
is necessary to ensure that speciahzation finished. The cache is a
mapping from specialktationfunctions and the static partsof their
argumentlists to residual function names.

The specialization cache works as follows: Sup~se the spe-
cialize entersa specialization function ~ with argumentsii. First,
the specialize extractsthe staticskefetcm3 and the dynamic parts
~ (determined by the BTA) from Z. Then, the specialize checks
whetherthe cache already contains ~F. If that is not the case, the
specialize enters~Einto thecache and specializes f‘s body: In any
case, the specialize generatesa residus! function call ~d). The
combination of a specialization firnction and an appropriatestatic
skeletonis called a static configumtion, since thatis what the spe-
cialize needs to createa specialization.

This scheme is called depth-j%st specialization because it
amounts to a depth-first traversalof the dynamic call graph of a
specialization process. As soon as the specialize encountersa spe-
cialization timction, it descends into a new specialization unless the
specialization cache already contains a matching static configura-
tion.

For effective psrallelization, the earlierbreadth-firstspecializa-
tion strategy [16] is more convenient. In this scheme, the spe-
cialization of a function’s My is completed before artynew spe-
cialization starts. The specialization cache consists of two parts,
a pending fist and a done cache. ‘l%e pending list contains static
configurations for which no specializations have been created yet
while the done cache contains calls whose specialization has been
completed. Checking thecache-as in the preceding description-
means checking for an entry in both lists.

2.2 ~ical Applications

~ical applications thatbenefit from partial evaluation (and gain
from parsllelization) are the automatic generation of efficient
parsers from general parsers, and compilation. Thus, our work
paves the road to automatic generation of parallel parser genera-
tors and compilers.

2.2.1 Parser Generation

Conceptually, a parser is a function that accepts as arguments a
grammar and an input string and returnssome by-product of the
construction of a derivation of the input string. It is straight-
forward to write such general parsers both for the LL and LR
method [9, 19,20, 23]. Partially evaluating a general parser with
respect to a static grammar yields highly efficient residual parsers
with performanceon parwith hand-tunedparsergeneratorssuch as
yacc or Bison [23].

Additionally, the same partialevaluation technology automati-
cally yields efficient parsergenerators[1, 15,26].

2.2.2 Compilation

Interpretersfor realistic programming languages are typically eas-
ier to write than efficient compilers. Furthermore, an interpreter
can be viewed as a semantics definition for a programming km-
guage. Partial evaluation can generate a compiler from an inter-
pret Since an interpreteris (simply put) a function from a pro-
gram and its input to an output, a partial evaluator can specirdize
an interpreterwith respect to a static program and thereby gener-
ate a residual compiled program with all interpretiveoverhead re-
moved [15]. This semantics-directedmethod can lead to efficient
and highly optimizing compilers for realistic languages [17, 24].

2.3 Concrete Context

The present work builds on Thiemann’s PGG system [26, 27], a
partialevaluation system for the full Scheme language, One of its
distinguishing featuresis its ability to perform static computations
that involve side effects. The use of side effects is completely or-
thogonal to psrallelization.

3 Distributed Partial Evaluation

We presenta basic model for distributedpartialevaluation, extend-
ing it stepwise to get reasonable performance by minimizing com-
municationoverhead. Our firstapproach still uses one synchronous
message per specialization to coordinate the specialization process,
using essentiallyRPC [2]. We also presentan asynchronous model.

81

The synchronous method never performs work twice whereas the
asynchronous method s~ulatively startsa specialization thatmay
alreadybe performed elsewhere in the network.

3.1 Basic Concepts

The basic idea behind making partial evaluation amenable to par-
allelization is simple: Every single specialization only depends on
its static configuration. It may generatenew requests for special-
ization in the form of static configurations, but it is independent
from every other specialization. Therefore, it is naturalto consider
distributingthe work of creatingthespecializations to distinctcom-
putationalagentscalled specialization servers. Each specialization
server can perform work on an wbitrary specialization, given its
staticconfiguration.

As specialization produces more and more static configura-
tions, it is neceswuy to distributethework among thespecialization
serverspresent in the scenario. This is ordy possible centrally, as
the configurations generated by the different servers may overlap
in unpredictable ways. Hence, a designated computational agent,
the mernoizationmaster, keeps a central memorizationcache and a
pending list. It administersthesedata structuresand keeps the spe-
cialization servers busy. This model bears some similarity to the
farm-of-workers model [12, 28].

The sole task of the memorizationmaster is to serve as a mon-
itor for the central specirdizationcache. The specialization servers
specialize away and store the specializations to be collected after
completion.

The specialization serversunderstandthreebasic messages:

initialize This message directs the specialization server to com-
mence work, that is, to initialize its residual program store
and to startasking the memorizationmasterfor work.

specialirx conjig Specialize startingat some static configuration
config provided along with thespecialize message. Store the
resultingresidual procedure locally.

yield-residual-program Returnall specializations collected since
the last initialhe message.

The memorizationmasterinitially accepts two kinds of message
from the specialization servers:

server-is-idle A server sends this message when it has completed
work on a specialization.

register-static-config con.g A serversends this message when it
has encountered a call to a specialization function. The cor-
responding staticconfiguration config is partof the message.
The mastersimply adds thestaticconfigurationto its pending
list unless it has processed the staticconfiguration before.

During startup,the master initializes the specialization servers
by sendinginitializemessages, putsthemain function and its static
parametersas an initial static configuration entry in the pending
list, processes register-static-cordlg messages, and answers each
incoming server-is-idle message by a specisdize message back to
the res~tive specialization server. This happensasynchronously;
several threadsmay be active simultaneous]y on the memorization
masteraccessing the cache. When all serversareidle and thepend-
ing list is empty, specialization has completed the memorization
master sends yield-residual-program messages to all specirdiza-
tion serversand combines the returnedprogram fragmentsto yield
a complete residual program.

A specialization server,afterhaving received an initialize mes-
sage, sends a server-is-idle message to themasterand waits for fur-
ther instructio~pecialize messages which it processes, storing
the specializations. Hence, a serverhas at most one active threadat
any given time.

Figure 2 illustratesthe basic protocol m described above. The
dashed lines indicate asynchronous messages. However, the causal
relationshipbetween the messages entails what is effectively syn-
chronous communication.

3.2 Localizing Information

The above model works in principle, but is too simplistic for re-
alistic usage. It does not take into account that, on realistic net-
works, message passing is typically more expensive than com-
putation. Unfortunately, computing a specialization in the basic
model always involves one synchronous communication: a pair of
a server-is-idle message from a server to the memorizationmaster
and a specialize message back to the server. A server considers it-
self idle immediately after finishing one specialization. This niakes
for poor performance,

At worst, thebasic model involves sending staticconfi~ations
back and forthbetweenspecialization serverandmemorizationmas-
te~ the specialization server works on a specialization, registersa
staticconfiguration, finishes, sends theserver-is-idle message, and
may get the same static configuration back. Sending a specialize
message involves transmittinga staticconfiguration, and thusa po-
tentially largestaticdata structure.

A first remedy for this problem is to keep specialization as lo-
cal as possible on the specialization servers: A specialization server
now managesa local pending list and specialization cache. Itkeeps
trackof all static configurations encountered by the server and as-
signs a short,unique local identifier(local id) to each of them. With
thespeciahe message, the serverinforms the memorizationmaster
not only of the static configuration, but also of the local id it has
assigned to it. Then, whenevera serverbecomes idle, it can referto
its own pending list for more work. However, it may happen thata
different specialization serverhas encountered an equivalent static
configuration in the meantime. ‘l%erefore, the server still needs
to check back with the memorizationmasterif it should commence
work on a given staticconfiguration. Fortunately,thk only involves
transmittingthe (short) local id.

Consequently, the memorizationmasternow understandsa new
message:

can-server-work-on iknxrMd A local identifier&al-id accompa-
nies the message. The server, when sending this message,
waits for a boolean answerspecifying whetherit should com-
mence work on the static configuration that belongs to the
local identifier.

Also, the regiatefistatic-config message is extended to also
carry a local i&ntitier as an additional component.

Hence, a server only sends a server-is-idle message when its
local pending list becomes empty. Otherwise, it considers entries
from thependinglist until itencountersone wherethememorization
masterpositively acknowledges a can-aerve~work-on message.

3.3 Preempting Work

When the memorizationmaster assigns a static mrdiguration to a
server different from the one that generated the contlguration, it
can inform all servers that have equivalent static configurations
in the pending list. This information prevents the overhead of a
can-server-work-on message lateron. Naively, this would involve

82

pending
list ‘1./3 Ez ~~s=”:~O”~t_._

\---- --------_---- ---- ---- -------- -:----- -—------- ----- -----_1

w. .“% ,’”‘. /“
---- ‘. --.”

----- --

server-is-
idle

Memorization Master Specialization Server

J \ <

Figure 1: Basic model for distributedpartialevaluation

Memorization Specialization
Master Server

11
----&c@i@

- ~+~T~@fi~En!g- - -

. .@e@err~----

‘~~a~e----
--- ---

Figure 2: Basic Synchronous Specialization Protocol

sending an asynchronous message from the memorizationmasterto
the respective servers of the form kill-local-id along with a local
id.

Unfortunately,this also involves sending one message for each
of the local ids to be killed-thus saving only the time difference
between a synchronous and an asynchronous message. For a spe-
cific specialization server,the information about local ids thatother
servers have processed becomes only relevant when it sends the
(synchronous) can-server-work-on message to the master. Thus,
it is easy to extendthereturnvahseof thecan-aerve~work-on mes-
sage to also include a list of local ids whose static configurations
the masterhas assigned to other serverssince the last can-aerver-
work-on message. The mastermerely needs to keep trackof these
staticconfigurations.

Figure 3 shows the more developed model for distributedpar-
tial evaluation. The solid pair of lines describes the synchronous
message passing necessary for can-aemer-work-on messages.

Figure 4 illustratesthe protocol outlined above with one mem-
orizationmasterand two specialization servers.

3.4 Caching Static Skeletons

Both of the applications mentioned in Sec. 2.2 share the fact that
one data structurestays constant throughout the specializations:
The generic parser always passes around the gramrnaGthe inter-
preterneeds to ktxp track of the entire source program. Neverthe-
less, the currentspecialization model passes these data structures
anew with each specialize and each register-atatk-cosdlg mes-
sage.

In compilation, this is especially undesirable as the source pro-
gram can get large; the problem amounts to retransmittingthe
source program each time a specialization server registersand re-
ceives new work from the memorizationmaster.

Hence, it is necessary to cache the elements of a static skeleton
both on the memorizationmaster(to avoid retransmissionwith spe-
aalize messages) and the specialization server (to avoid retrans-
mission with register-static-contlg messages). Since these data
structuresare typically values of toplevel variables in the static
skeleton, a simple caching mechanism suffices.

83

I

<

I memo I

1 w..
pending
list I

Memorization Master

specialize
------ -----

can-server-
work-on

i Yes/no /

kill local ids

---- ---- --------- ---- ------- -
re$;t;;-- --

Static-config

‘--- --------

server-is-
idle

3.5 Choosing Work

In order to keep computation as local as possible, the memorization
masterand the specialization serverskeep trackof aprsferrsd spe-
cialization function which each specialization server will exhaust
before startingwork on other specialization functions. Conversely,
the memorizationmasterwill tries to avoid assigning staticconfig-
urations to servers which belong to a specialization function pre-
ferredby a a different server.

3.6 Speculative Specialization

An obvious weak point in theabove model is thesynchronouscom-
munication needed until a servercan commence work on a special-
ization. It is possible, however, to also convert this into an asyn-
chronous communication: The server still selects an entry from its
local pending list but also sends a message server-works-on with
thatentryand the server’s id to the masterwithout waiting for the
result. The masterconsults theglobal cache and eitherremoves the
entryfrom the pending list or (if some otherclient is alreadywork-
ing on thatparticularspecialk.ation) it triesto kill the specialization
on the specialization server.

In both cases when a specialization has terminated(success-
fully or due to a kill message) the specialization server continues
with the next entry from the pending list or sends aerve~is-idle to
the masterif the pending list is empty.

Unfortunately,speculative specialization does not yield the ex-
pected gains, as our experimentsin Sec. 5 show.

3.7 Sizes of Messagea

The only sizeahle messages are:

● specialize specialization requestsfrom the masterand

“+
/

/
I

I
1

\
\
\
\
\
1

>

\
1 I
I I

memo

cache

“’=”’m
Specialization Server

Figure 3: Synchronous model for distributedpartialevaluation

● register-stat ic-conf ig static configuration messages
from the spaialization server to the master.

Both messages involve the transmissionof entire static configura-
tions, which may bewme arbitrarilylarge. The messages server-
works-on and can-server-work-on only send unique ids, which
are established with register-static-conllg messages. The sizes of
the large messages are decreased using the techniques outlined in
Section 3.4. The result is that large data structuresare only tmns-
mittedonce, afterwardsonly a globally unique id is transmittedin
theirplace.

3.8 Detecting Termination

The memorizationmasterkeeps track of the number of specializa-
tion serversthathave been startedand of the number of specializa-
tion serversthat are currently idle. As soon as these numbers are
equal thecomputation has been completed.

4 Implementation

Our implementationof the distributedmodel builds on KaIi [6], a
distributedimplementationof the Scheme programming language.
This section gives an overview of Kali’s distributedenvironment,
and thenbriefly describes how the IWO system makes use of it.

4.1 w

Kali is an extension of the Scheme 48 system [18], an advanced
byte-code implementationof Scheme. Scheme 48 already provides
a sequentialimplementationof preemptivethreads.

Kali calls a computational agent in a distributedcomputing en-
vironment an address space. Each adtkss space wrresponds to a

84

Specialization Memorization Specialization
Server 2 Master Server 1

1------_w_~er-&d,e----

W$iw--,----

Figure4: Synchronous Specialization Protocol

Kali process which may reside anywherein a network. All address
spaces arepairwise connected by TCP/IP streamcomections.

Address spaces are first-class objects in Kali and may thus be
bound to variables, passed to procedures, and returnedfrom pro-
cedure calls. One address space may send a message to another
addressspace simply by calling a procedure on the remote address
space. Kali provides a remote-run! operation which startsa pro-
cedureproc on argumentsal an on an arbitraryaddressspace
aspace:

(remote-run ! aspace proc al . . . an)

The transmissionof both the code of the procedureand theval-
ues of the arguments is complete]y transparent. Most values are
simply copied to the remote address space. Sharing is respected
within a single message, but not across different messages (as it
would be the case, e.g., in Linda’s tuple space [4,5, 14]). Some
speciaf values are assigned global unique identifications(uids) and
aretransferredonly once. Among theseare

procedur&: the compiled code of a procedure is only transmitted
once while theenvironmentpart(containing thevaluesof the
free variables) is transmittedevery time.

proxies: a prwy is conceptually a distributedarray which is in-
dexed by address spaces. A proxy has a lccd value for
each address space, but it also holds information identify-
ing the address space thatcreated the proxy. The procedures
proxy -local-ref and proxy-creator provide access to
this information. Proxies are also transmittedusing unique
uid’s.

Furthermore, the thread system provides piaceholders which
serve as semaphores and also the necessary locking primitives
to grant exclusive access rights locally. On top of these ab-
stractions, the Kali system provides remote procedure calls with
remote-apply, thread migration, user-specified load-balancing,
and more [6].

lined above. Due to the modular design of the system (taking ad-
vantageof Scheme 48’s module system [21]) only the memorization
module has to be replaced, everythingelse remainsunchanged.

All messages are simply asynchronous (remote-run !) or syrt-
chronous (remote-apply) procedure cafls. For caching static
skeletons,proxies provide a straightforwardmechanism.

4.3 Implementation Problems

A problematic issue is symbol generation. In the course of each
specialization many new identifiers are generated for bound vari-
ables in the residual ptogram. The implementation language
Scheme uses symbols for variables and the standardsolution is to
provide a symbol generator that creates new symbols on the fly.
However, in the current implementation of Kali, locally created
symbols do not have a globally unique identity. Hence, our sys-
tem replaces symbols by “hand-made” globally unique numbers.
The master converts these numbers into syrrdxis rqwn collecting
the residualprogram.

5 Performance

We have run benchmarks on a cluster of six RS/6000 worksta-
tions running AIX connected by an Ethernetlocal area network.
Specifically, we have run an LR(l) parser generator [23] and per-
formed compilation of a large automatically generated Mixwell
pmglllm [16].

processors runtime CPU time speedup
seu 24.88 24.48
1“ 24.06 6.57 1.0
2 10.88 6.16 2.2
3 10.78 6.61 2.2
4 8.56 7.09 2.8
5 8.17 6.78 2.9
6 8.72 7.39 2.8

Table 1: Parsergenerationon a cluster of R!%OOOworkstations

4.2 Adapting the PGG

The changes in the P(3G system boil down to replacing the serial Tables 1 and 2 show the run times of parser generation and
implementation of memorization[27] by the distributedone out- the respectivespeed-ups. The “CPU time” column shows the CPU

85

processors runtime CPU time speedup
Seq 6.19 6.22
1 7.44 0.49 1.0
2 4.49 1.00 1.7
3 4.12 1.44 1.8
4 3.46 1.77 2.2
5 4.08 1.83 1,8
6 3.82 1.89 1.9

Table 2: Compilation on a cluster of RS/60C0 workstations

time on the memorizationmaster. Note that the tables only show
up to six processors-the seventhis the memorizationmaster. It is
not clear whetherthe tables indicate any saturationon the partof
the master-more sufficiently similar machines were not available
to us. The first line of each table shows the timings for the purely
sequential version of the system. Obviously, the initial message
overhead of the parallel version is already offset by the work divi-
sion between the memorizationmasterand the single specialization
server in the one-processor case. Note also thatthe CPU utiliza-
tion of the masterdoes not ultimatelychange significantly with the
addition of more specialkation servers. It does, however, present
a lower bound for the run time of the specialkation. This is an in-
dication thatsome optimization on our (currentlyfairly straightfor-
ward) memorizationmastermay yield higher maximum speedups.

All of these benchmarks use the synchronous model. Even
though we expected much smaller improvements due to the high
costs of synchronous communication, the resultshere were much
better than with speculative specialization, where our current im-
plementation only yields negligible speed-ups. Here, the high com-
munication latencies usually preventkill messages from themaster
to reach the server in time to stop any superfluouswork done. The
time gained by avoiding synchronous communication is offset by
the time spenton duplicate work.

6 Related Work

The notion of partial evaluation and its application to automatic
program generationstems from Futamura’swork [10]. Since then,
compiler generationhas been among the main fields of interestfor
researchersin partialevaluation. This led to the discovery of off-
line partirdevrduationand the construction of practical compiler
generators[16].

Consel and Danvy [7] have implemented a self-applicable par-
tialevaluatorfor thepurely functionedsubsetof Scheme on a shared
memory multi-processor machine. Their implementation exploits
featuresof MuI-T, a dialect of Scheme with titures [1 1]. More pre-
cisely, they assign one dedicated semaphore to each specialization
function. Therefore the speedup of their method is limited by the
number of specialization functions in the program. However, in a
shared-memory machine there is no need to transmitstaticconfig-
urationsand to assign unique identifiersas we do.

Our approach to parallelizing the PGG is inspiredby the farm-
of-workers model [12, 28]. Our implementation benefits funda-
mental y from Kali’s approach to a distributed higher-order lan-
guage [6].

7 Conclusions and Future Work

We havedemonstratedthatpartialevaluationhas some potentialfor
effective parallelization, giving rise to numerous applications. We
intendto extend our system in the following directions:

Recently, one of the authorshas developed a sequential im-
plementationof incrementalspecialization and specialization
on demand [27]. This implementationhas an intrinsic poten-
tial for parallelism: whereas the sequential implementation
interleaves speciahzation with running the specialized pro-
gram, a parallelimplementationcould continue specialization
during execution of the specialized program. A combination
with run-time code generation which is also already part of
the PGG system [25] can lead to just-in-time compilation.

We Lw4ievethatone of the limiting factors is the lack of glob-
rdly shareddata structuresin the Krdi Scheme system. ‘Ilk
lack gives rise to a large communication overhead if the spe-
cialize deals with large data thatchanges during specirdiza-
tion. It would he interestingto perform similar experiments
with a system like TS/Scheme [14].

It is not clear whether our strategyis also suited to shared-
memory multi-processors. We wo~d like to conduct a com-
parison between our method and the method proposed by
Consel and Danvy [7].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

BIRKEDAL,L., ANDWELINDER,M. Hand-writing program
generatorgenerators. In (To be pnmented at the PLLW 94
confenmce) (Sept. 1994), Springm-Verlag.

BIRRELL, A. D., ANDNELSON, B. J. Implementing remote
procedure calls. ACM Transactions on Computer Systems 2,
1 (1984).

BLACK, A., CONSEL,C., Pu, C., WALPOLE, J., COWAN,
C., AUTREY,T., INOUYE, 1., KETHANA, L., ANDZHANG,
K. Dream and reality: Incremental specialization in a com-
mercial operatingsystem. Tech. rep., Dept. of Computer Sci-
ence and Engineering, Oregon GraduateInstituteof Science
&Technology, Mar. 1995.

CARRIERO, N., AND GELERNTER,D. Linda in context.
Comnumicah”onsof theACM32, 4 (apr 1989), 444458.

CARR]ERO, N., AND GELERNTER,D. Coordination lan-
guages and their significance. Communications of the ACM
35,2 (Feb. 1992), 97-107.

CEJTJN,H., JAGANNATHAN,S., AND KELSEY,R. Higher-
orderdistributedobjects. ACM Transactionson Programming
L.unguagesand Systems 17,5 (Sept. 1995).

CONSEL, C., ANDDANVY, O. Putird evaluationin parallel.
LISP and Symbolic C’ompm”on 5,4 (1993), 315-330.

CONSEL,C., ANDDANVY,O. ‘fbtorial notes on partialeval-
uation. In Symposium on Principles of Programming Lun-
guuges ’93 (Charleston,Jan. 1993), ACM, pp. 493-501.

DYBKJER, H. Parsers and partial evaluation An experi-
ment. Tech. Rep. StudentProject 85-7-15, DIKU, University
of Copenhagen, July 1985.

FUTAMURA,Y. Partialevaluationof computation process-
an approach to a compiler-compiler. Systems, Computers,
Contds 2,5 (1971), 45-50.

HALSTEAD,JR., R. H. A language for concurrentsymbolic
computation.ACM Transactionson Pmgranrming Lunguages
and Systems 7,4 (1985), 501-538.

86

[12] HEY, A. J. G. Experiments in MIMD parallelism. In [28] TREGIDGO, R. W. S., AND DOWNTON,A. C. heessor
PARLE’89 Pamllel Arrhitectums and hngtmges Eunpa II farm analysis and simulation for embedded parallel process-
(1989), vol. 366 of Lzcture Notes in Computer Science, ings ystems. In Tmls and Techniquesfor TratrsputerApplica-
Springer-Verlag,pp. 28-41. tiorrs. Proceedings of the 12th Occam User Group Technical

[13] IEEE. Standard for the Scheme programming language.
Meeting (1990), S. J. Thmer, Ed., IOS-Press, pp. 179-189.

Tech. Rep. 1178-1990, Instituteof Electrical and Electronic
Engineers, Inc., New York, 1991.

[14] JAGANNATHAN,S. TS/Scheme: Distributed data structures
in Lisp. Lisp and Symbolic Computation 7 (1994), 283-305.

[15] JONES,N. D., GOMARD, C. K., AND SESTOFT, P. Par-
tial Evaluationand AutomaticProgram Genemtion. Prentice-
Hall, 1993.

[16] JONES,N. D., SESTOFT,P., AND!WNDERGAARD,H. An
experiment in partial evaluation: The generation of a com-
piler generator. In Rewriting Techniques and Applications
(Dijon, France, 1985), J.-P.Jouannaud,Ed., Springer-Verlag,
pp. 12+140. LNCS 202.

[17] JORGENSEN, J. Generating a compiler for a lazy language
by partirdevacuation. in NineteenthAnnual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages. Albuquerque, Nw Mexico (Jan. 1992], ACM, ACM,
pp. 258-268.

[18] KELSEY, R. A., AND REES, J. A. A tractableScheme im-
plementation. Lisp and Symbolic Computation 7, 4 (1995),
315-335.

[19] LEERMAKERS, R. The Functional Treatmentof Parsing.
KhtwerAcademic Publishers,Boston, 1993.

[20] MOSSIN, C. Partial evahration of general parsers. In
Symp.Partial Evaluation and Serrrantics-Based Program Afa-
nipufation ’93 (Copenhagen, Denmark, June 1993), ACM,
pp. 13-21.

[21] REES, J. A. Another module system for scheme. Partof the
Scheme 48 distribution,Jan. 1994.

[22] Revised4 report on the algorithmic language Scheme. Lisp
Pointers IV, 3 (July-September 1991), 1-55.

[23] SPERBER, M., AND THIEMANN, P. The essence of LR
parsing. In ACM SIGPLAN Syrnp. Partial Evaluation and
Semantics-Based Prvgram Manipulation ’95 (La Jolla, CA,
June 1995), W. Scherlis, Ed., ACM Press, pp. 146-155.

[24] SPERBER, M., ANDTHIEMANN,P. Realistic compilation by
partialevacuation.In Conference on Pmgmmming Language
Design and Implementation ‘% (Philadelphia, May 1996),
ACM, pp. 206-214. SIGPLAN Notices, 31(5).

[25] SPERBER, M., ANDTHIEMANN,P. ‘IWOfor theprice of one
Composing partial evaluation and compilation. (submitted),
1997.

[26] THIEMANN, P. Cogen in six lines. In Jntet-ndonal Con-
ference on Functional Prngramrning‘% (Philadelphia, May
1996), ACM, pp. 180-189.

[27] THIEMANN, P. Implementingmemorizationfor partialevrdu-
ation. In Programming Language Implementation and Logic
Pmgmmming (PLJLP ‘%) (Aachen, Germany, Sept. 1996),
H. Kuchen and D. Swierstra,Eds., vol. 1140 of LectureNotes
in ComputerScience, Springer-Verlag,pp. 198-212.

87

