
Efficient parallel computation of
arrangements of hyperplanes in d dimensions*

Torben Hagerup
Fachbereich 10, Informatik, Universitiit des Saarlandes, D-6600 Saarbriicken

Hermann Jung
Sektion Mathematik, Humboldt-Universitit Berlin, PF 1297, DDR1086 Berlin

Emo Welzl
Institut fiir Informatik, Fachbereich Mathematik, Freie Universitiit Berlin,

ArnimalIee 2-6, D-1000 Berlin 33

Abstract

We propose the jirst optimal parallel algorithm comput-
ing arrangements of hyperplanes in Ed (d 2 2). The
algorithm is randomized and computes the arrangement
of n hyperplanes within expected logarithmic time on a
CRCW-PRAM with O(nd/ log n) processors.

1 Introduction

A finite set H of n hyperplanes in Ed defines a dissec-
tion of Ed into at most O(nd) connected components of
various dimensions. This dissection is called arrange-
ment d(H) of H. A rrangements of hyperplanes are
fundamental in combinatorial geometry (especially in
the setting of cell complexes, see e.g. [15]) as well as in
computational geometry, due to numerous applications

POI-
For d = 2, a topological sweep technique yields an

optimal sequential algorithm [ll] which computes the
arrangement of n hyperplanes in time O(n2) and work-
ing space O(n). For d > 2, the only known algorithm,
computing the arrangement within optimal O(nd) time,
is based on an incremen$al approach [13]. Both algo-
rithms are inherently sequential.

So far, there is no known deterministic parallel al-
gorithm which computes d(H) in o(nd) time with op-

*Research partially supported by the DFG, SFB 124, TP B2,
VLSI Entwurfsmethoden und ParalIelitHt and by the ESPRIT II
Basic Research Actions Program of EC under contract no. 3075
(project ALCOM)

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

timal time-processor product’ O(nd). We propose the
first randomized parallel algorithm which achieves si-
multaneously a nontrivial time speed up and an optimal
time-processor product.

There are only few known techniques in the design
of efficient parallel algorithms. These are, in particu-
lar, the reduction to parallel prefix computation [14,17],
divide-and-conquer [l] an.d the sequential subsets tech-
nique [S], in which one stops a divide-and-conquer re-
cursion when the subproblems are of small size, and
solves all the subproblems sequentially, one processor
per subproblem.

Applying the divide-and-conquer approach or the se-
quential subsets technique in the design of randomized
parallel algorithms is not as easy as might appear at
first glance. Randomization has been successfully used
in a wide number of applications and has recently been
applied to design efficient sequential algorithms in com-
putational geometry [6,7,16]. Many of these algorithms
randomly choose a subset of the input set that is used
to partition the problem into smaller ones, where the
expected size of the subproblems can be well bounded
from above. Crucial to the parallelization of this ran-
domized approach is that, the expected parallel time is
bounded only by the sum of the maxima of the expected
time bounds of the processors in each level of recursion,
while the expected time of a sequential recursive al-
gorithm is the sum of expected time of all individual
steps. This is the main reason why Reif and Sen [18]
introduced the so called polling technique, which al-
lows to choose among several random samples the most
balanced one, thus decreasing the probability of a bad
sample.

We propose another approach to circumvent the
problems of the recursive divide-and-conquer technique.

lRecently, we have been informed that R-Anderson, P.Beame
and E. Brisson achieve deterministic time O(lognlog*n) with
O(nd/log n) processors, “Parallel Algorithms for Arrangements,”
these proceedings.

@ 1990 ACM 08979 l-370- 1/90/0007/0290 $1.50 290

We randomly choose a “large” subset of the input set
and solve the problem on this subset, applying a subop
timal parallel algorithm, which yields a subdivision of
the problem into a large number of very small subprob-
lems with total complexity proportional to the complex-
ity of the original one. Moreover, all these subproblems
can be solved independently and can be easily composed
to the general solution. The size of the random sample
depends directly on the factor the time-processor prod-
uct of the known suboptimal parallel algorithm is apart
from the optimum.

Thus, the proposed new algorithm mainly consists of
a deterministic suboptimal parallel algorithm and an
optimal sequential algorithm, applied to each of the
subproblems. This approach yields algorithms which
are considerably easier to implement then those follow-
ing the recursive divide-and-conquer method of Reif and
Sen.

The optimal parallel computation of arrangements
leads to randomized optimal parallel algorithms for sev-
eral other problems. We claim that the above approach
can be applied not only to the computation of arrange-
ments but to a number of other problems.

The paper is organized as follows. Basic geometrical
and combinatorial definitions are introduced in Section
2. Section 3 outlines the algorithms and their analysis,
and Section 4 discusses applications and open problems.

2 Preliminaries and Basic Definitions

We assume some familarity with basic notions about
arrangements of hyperplanes in Ed, see, e.g., [lo] for
a general treatment of arrangements. Hence we only
briefly recall some definitions.

A set H of n hyperplanes in Ed dissects the d-
dimensional Euclidean space into several connected
components, the faces of the arrangement d(H). The
dimension dim(f) of a face f is the smallest dimension
of an aEke subspace containing f. f is said to be a k-
face of d(H) if f is a face of d(H) with dim(f) = 6.
O-faces and l-faces are called vertices and edges, resp.,
whereas (d- 1)-faces and d-faces are the facets and cells,
resp., of an arrangement d(H).

Cells can be easily understood as intersections of half-
spaces, defined by the hyperplanes in H. A k-face f
(0 5 k < d) is contained in the intersection of (at least)
d - k hyperplanes of H. Following these definitions,
faces of d(H) are relatively open sets.

An arrangement d(H) will be represented by its com-
binatorial structure, the incidence graph of d(H). The
incidence graph G of d(H) is a directed graph with the
faces of d(H) as nodes and an edge between faces f and
g if f is on the boundary of g and dim(f) = dim(g) - 1.
In this case we say that f is a subface of g, g is a super-

face off, or f and g are incident. The incidence graph
will be given by the list of (marked) nodes and, for each
node, by the lists of its subfaces and superfaces.

For the sake of simplicity, we assume in the sequel
that the hyperplanes in H are in general position, by
which we mean that

1.

2.

any d hyperplanes intersect in a common point, but
no (d + 1) do, and

no pair of vertices in A(H) is contained in a hori-
zontal hyperplane.

Moreover, we consider a simplex se with the set Ho of
bounding hyperplanes, such that all vertices of d(H)
are contained in SO and H U HO is in general position.
From now on, whenever we talk about an arrangement
d(H’) (H’ G H) we mean the arrangement d(H’UHo),
ignoring the part outside so . Clearly the part inside se
contains already all incidence information about d(H’).
SO is added only to ensure that every face, ever consid-
ered in the algorithms, is bounded and contains a lowest
vertex. The general position assumption is no restric-
tion due to perturbation techniques [12], [20]. The fol-
lowing upper bound is basic to the complexity analysis
of the algorithms. For proofs we refer to [13] or to the
textbook of Edelsbrunner [lo].

Lemma 1 Given a set H of n hyperplanes in Ed, we
can bound the number of nodes and edges in the inci-
dence graph of d(H) by O(nd). Furthermore, the num-
ber of faces of d(H), visible from any fixed hyperplane
is bounded by O(ndB1).

In order to motivate further definitions, let us first
outline the general scheme of the algorithm, described
in detail in Section 3.

Given a set H of n hyperplanes in general position,

(1) choose a set R c H of r hyperplanes at random;

(2) compute the arrangement d(R) and the arrange-
ment d(H), restricted to facets in d(R), by a sub-
optimal algorithm, and distribute the hyperplanes
in H \ R to the cells in d(R);

(3) triangulate d(R) and distribute the hyperplanes in
H \ R to the cells of the triangulated arrangement

4%

(4) compute the arrangement d(H) in each of the
above cells independently by an optimal sequential
algorithm.

Following this scheme, we have to define the subdivi-
sion, computed in (2), and we have to specify the tri-
angulation, needed in (3).

291

The arrangement d(H) restricted to,facets in d(R)
(plus the cells in d(R)) will be denoted by d(H/R).
Formally, the set of faces F of d(H/R) is defined as
follows:

F = {f : f is a face in d(H)and

f E h, for some hyperplane h in R}

U{f : f is a cell in d(R)}.

Two faces f, g of d(H/R) are incident in d(H/R) if

(i) f is incident upon g in d(H) or

(ii) f is a facet in d(H), lying on the boundary of cell
g in d(R).

Obviously, for R = H we have d(H/R) = d(H)
while, in general, d(H) is a refinement of the subdi-
vision d(H/R). Furthermore, we define the skeleton
SK(H/R) of d(H/R) to be the undirected graph in-
duced by the vertices and by the edges in d(H/R).
The skeleton of d(H/R) contains the complete com-
binatorial structure of d(H/R), provided we add the
information about the set of defining hyperplanes to
each vertex v.

This leads to the definition of the extended skeleton
graph of d(H/R) to b e an undirected graph with the
set of nodes {(v, f) : v is a vertex in d(H/R) and f
is a k-face of d(H/R) with v on its boundary} , and
{(u,f), (v,g)} is an edge in this graph if f = g and
u and v are connected by an edge in the skeleton of

4HIR)-
Finally let us specify the triangulation, we are go-

ing to compute. This triangulation is called bottom
vertex triangulation (bv-triangulation, for short) and is
uniquely defined as the result of the following algorithm:
for k=2 to d do
begin
triangulate all k-faces f by selecting the lowest (with
respect to the Id-coordinate) vertex v on the boundary
of f and creating all k-simplices conv({v} U s), over all
(k - I)-simplices in the (already triangulated) boundary
off which do not contain v itself on their boundary
end,
where conv({v} U s) denotes the convex hull of the set
{v} u s. The above construction is unique and well-
defined, if we recall that we consider an arrangements
inside SO only, and H U Ho is in general position.

3 The Algorithm

First we describe a suboptimal parallel algorithm com-
puting an arrangement d(H) (d(H/R), resp.) of hy-
perplanes in Ed within logarithmic parallel time. The
algorithm consists of the following steps (n = card(H)
and r = card(R)):

(1)

(2)

(3)
(4

(5)

compute all O(n d-‘)linesl=hrn...nhd-r,with
hi E H, and all O(nd-lr) vertices of d(H/R);

sort the vertices of .a(H/ R) along each of the lines,
which yields the skeleton of d(H/R);

compute the extencled skeleton graph of d(H/R);

compute the connected components of the ex-
tended skeleton gra,ph of A(H/R), which yields the
set of faces of d(H,/R);

compute the incidences between faces in d(H/R).

It is obvious how to compute (1) and (2) efficiently in
parallel. The first step takes constant time on a PRAM
with O(nd-rr) processors and the second step O(log n)
time with the same number of processors.

Given any vertex v of d(H/R) and its set
H(v)={hr,. . . , hd} of defining hyperplanes , i.e. {v} =
n{h : h E H(v)}, it is easy to distinguish the 2k(i)
k-faces (1 5 k 2 d) which have v on their boundary.
Although we cannot easily compute the boundaries of
these faces, it is possible to decide the equivalence be-
tween faces having vertices u and v on their bound-
ary, which are connected by a edge in d(H/R). The
computation time depends only on d, not on n, which
is a consequence of the general position assumption.
Hence, step (3) can be done within constant time using
O(ndel r) processors.

Applying the Shiloah/Vishkin algorithm [19], the
connected components of the extended skeleton graph
of d(H/R) can be computed within logarithmic time
on a CRCW-PRAM with O(nd-lr) processors. These
connected components define the faces of d(H/R).

Since we have already computed the incidence rela-
tion between vertices and k-faces (k > 1) of d(H/R)
it is straightforward to extend this relation to compute
the incidences between k:- and (k + 1)-faces (0 5 k < d)
with work O(1) per vertex of d(H/R). Since the inci-
dences between vertices and k-faces are given by lists
of vertices on the boundary of a common face, and lists
of k-faces, having a vertex as the intersection of their
boundaries, it is easy to compute the lowest vertex on
the boundary of for each face in d(H/R), and lists of
hyperplanes h, intersecting the cells c in d(H/R), for
all cells.

Both can be done within time log n and processor
number O(nd-lr). Hence we can conclude:

Proposition 1 Let H be a set of n hyperplanes in Ed
in general position, and let R be a subset of H with
T = card(R).

(i) The above algorith,m computes A(H/R) within
O(log n) time, using a CRCW-PRAM with
O(ndB1 r) processors.

292

(ii) The bv-triangulation of A(R) can be computed on a
CRCW-PRAM in time O(logn), using O(rd) pro-
cessors.

(iii) The hype 1 rp anes in H \ R can be distributed to all
intersected cells in d(H/R) on an O(nd-lr) pro-
cessor PRAM in time O(log n).

Now we can describe the whole scheme of the final
algorithm. It is a two level application of the scheme
proposed in Section 2. We need the second level to de-
crease the expected complexity (in terms of intersecting
hyperplanes) of the remaining simplices, which corre-
sponds directly to expected parallel computation time.

Given a set H of n hyperplanes in Ed, we compute
the arrangement d(H) by the following steps (where
cl, cz > 0 are appropriately chosen constants, and IsI
denotes the cardinality of the set H, of hyperplanes in
H intersecting simplex .s):

(1)

(2)

(3)

(4)

(4.1)

(4.2)

(4.3)

(5)

(6)

(7)

(8)

select a random subset R C H of T = cl& hy-
perplanes;

compute d(H/R) and the bv-triangulation of d(R)
by the above suboptimal algorithm;

distribute the hyperplanes in H \ R to all d-
simplices of the triangulated arrangement d(R);

for all d-simplices s with Is] > loglldn
do

choose a random subset R, of H, of T, =

c2l4 1% ISI 1% -‘ldn hyperplanes;

compute A(H,/R,) n s and the bv-triangulation of
d(R,) n s by the above suboptimal algorithm;

distribute the hyperplanes in H, \ R, to all d-
simplices of the triangulated arrangement A(R,) n
s;
od

for all d-simplices s (computed either in (2) or in
(4.2)) with Is1 < log’ldn
do

compute the arrangement d(H) n s by an 0(IsI”)
time sequential algorithm [13];
od

for all remaining simplices s
do

compute d(H) n s applying the above suboptimal
algorithm;
od

(9) compute d(H) by merging the subdivisions of the
simplices.

Let us analyze the parallel computation time and the
number of processors the implementation of the differ-
ent steps takes. We do this by estimating the total
amount of work IV(n) of the PRAM, which corresponds
to the time-processor-product if the processors can be
easily scheduled. This method goes back to an idea
of Brent [S]. It can be proved that, given a parallel
algorithm A which solves a problem on a p(n) pro-
cessor PRAM within time t(n) and total work w(n),
we can design a parallel algorithm B which solves the
same problem on a q(n) processor PRAM within time
O(t(n) + w(n)/q(n)). The only assumption about algo
rithm A is that we know the processor scheduling of A,
i.e. that there is no computation overhead in scheduling
the q(n) processors of B to the operations , executed by
p(n) processors of A in one parallel time unit.

Most of the proposed algorithmic steps are either ob-
vious to implement or are done by the mentioned other
algorithms. It remains to explain, how the hyperplanes
are distributed to the d-simplices (in step (3) or in step
(4.3), resp.).

First we realize that the arrangement d(H/R)

(WWL) , resp.) already yields the distribution of
the corresponding hyperplanes to the cells c of d(R)
(d(R,), resp.). The final distribution to the simplices
is computed by testing intersection between each d-
simplex s in cell c and each hyperplane h intersecting
cell c. This can be clearly done in parallel with time-
processor product proportional to the product of the
number of d-simplices in cell c and the number of hy-
perplanes intersecting c.

Since the processor allocation is obvious for every sin-
gle step, we analyze these steps by bounding simultane-
ously the total amount of work w(n) and the parallel
computation time T(n) for each of them:

(1)

(2)

(3)

w(n) = O(nlog n) , T(n) = O(log n), assuming
the existence of appropriate random number gen-
erators.

IV(n) = O(nd) , T(n) = O(logn), see Proposition
1.

Let deg(c) denote the total number of faces on the
boundary of a cell c. It is obvious that the number
of simplices in a bv-triangulation of the cell c is
proportional to deg(c), where the constant depends
on the dimension d. Hence we can bound the total
work by

dedc)
E cell in A(R)

293

= o(*gR (&)‘“) @Y Lemma 1)

= O(nd log-@-l) n).

(4) Counting all intersections between the simplices
and the hyperplanes in H \ R reduces to list rank-
ing [2,9] over all lists of hyperplanes , belonging to
‘these simplices, i.e.

W(n) = 0 c ICI d%(c)
CE A(R)

= O(ndlog-@-l) n)

and T(n) = O(logn) (note that the sum in the
estimate of (4) equals the sum that appears in (3)).

Let S denote the set of d-simplices in the bv-
triangulation of d(R). Step (4) splits S into two sub-
sets: & = (s : s E S , IsI > loglid n} and & = S \ Sr.
Now, the analysis of (4.1)-(5) is similar to the analysis
of the previous steps.

(4.1)

w(n)=O(p,logn) =O(Aogn)

and T(n) = O(logn)

(4.2) Following Proposition 1, we can bound

W(n) = 0
(
sgl rs IsId-’ 1% I4

)

= 0 c (h-Id log2]s] log-%
(se1)

and T(n) = O(log n).

(4.3) Similarly to the analysis of (3), we obtain

W(n) = 0 f c ,Sld iogd-l]s] log-(d-l)l%
)

and T(n) = O(1).

(5) As in the analysis of (4),

= 0 c ,sld logd-l]s] log-(d-l)‘dn
(SESl)

(6) .g, IsId + C C ls’ld and
sES1 s’s%(s)

(7) ,(8) Proposition 1 yields

and T(n) = O(log71). Let S(s) denote the set of
d-simplices in the bv-triangulation of d(Rd) n s.
Again, (5) splits the sets S(s) into subsets &(s) =

(8’ : s’ E S(s) and]s’j < log’ldn) and &(s) =
S(s) \&. Hence, we can bound

and T(n) = O(logn:).

(9) This can be done with one processor per face in
the computed subdivision. Each processor, associated
with a k-face f (0 5 k < d) on the boundary of a d-
simplex, has to remove the incidences between f and its
superfaces and has to concatenate the incidence lists of
superfaces and subfaces of the two (k + 1)-faces in the
neighbouring cells split by f. This merging procedure
takes constant parallel time, provided we avoid conflicts
in concatenating the lists by introducing dummy list ele-
ments, one for each of the O(d) splitting k-faces f on the
boundary of the simplex. Let the (k+ 1)-face g of d(H)
be spread over 1 simplices ~1, . . . , sf . Each simplex .si
is given by the tupel of its vertices @l(i), a.. ,&+1(i)),
sorted accordingly to the lexicographic order of their co-
ordinates. This representation of the simplices induces
a lexicographic order over the set of all simplices. We
avoid conflicts in merging g1 = g II sr, s, gc = g n st by
obeying the rule, that the lists of superfaces and of sub-
faces, resp., of gi are hooked onto an arbitrary gj in one
of the neighbored simplices sj which are greater than
si, with respect to this lexicigraphic ordering. Hook-
ing simply means that the corresponding dummy list
element of $j is replaced by the list of gi.

A final concurrent write and prefix computation re-
moves multiple occurrences in these incidence lists and
completes the computation of the arrangement. These
steps take logarithmic time and a total work which is
only a constant multiple of the size of the incidence
graph of the subdivision computed in the previous steps
(l)-(S). Beside the analysis of each single step, we have
to guarantee the desired time-processor bound for the
processor allocation procedures before every step. This
can be easily done by list ranking [2,9] and parallel
prefix computation [14,1.7], both in logarithmic time
and processor-time product at most linear in the size
of the (intermediatly) computed subdivisions and inci-
dence graphs, resp.. The only more complicated cases

294

are the calls to the suboptimal parallel algorithms in
(4.2), (8) and to the sequential algorithms in (6), resp..
In order to allocate the correct number of processors to
the tasks (in (4.2) and in (8)) or to build blocks of tasks
with evenly distributed total task length (in (6)), we
have to bound the complexity of the called procedures
in advance. Here we take the (in general, pessimistic)
upper bounds, used in the analysis of the steps (4.2),
(6), and (8), resp.. S ince we have already computed the
number Is] of intersecting hyperplanes, these bounds are
easy to derive. Hence, the computational complexity of
the single steps dominates.

In order to complete the analysis of the described
algorithm it remains to bound the expected values of
the following functions:

(A) E (C.,,,]sld log”]s] log-” n) , for constants

a,b > 0;

P) E (Es,, IsId>;

(Cl E (L& C&S(s) b’ld);

First we introduce some more notations. Let pl, p2 be
two vertices of the arrangement d(H U Ho), pl , p2 E so.
W.l.o.g., let pr have smaller zd-coordinate than ~2.
The open line segment p1p2 connecting pl and ps is
called bv-chordin d(H), if the face in d({h : h E HUH0
and p1 E h}) containing plp2 is disjoint from the hori-
zontal hyperplane through pl . Let BH denote the set of
all bv-chords in d(H). It is easy to see that BH contains
all edges introduced by the bv-triangulation of any of
the arrangements d(R) for R C H.
Furthermore, Bk denotes the set of bv-chords in d(H)
which are intersected by i hyperplanes in H (not count-
ing those that determine the chord). Since all chords in
B& are edges of the bv-triangulation of d(H), we can
conclude

Corollary 1 card(Bs) = O(nd) , zuhere n = card(H).

This corollary can be strengthened to

Lemma 2 If H is a set of hyperplanes in Ed in general
position, then card(B&) = O(nd).

Proof. Following the lines of Clarkson and Shor [7], we
take a random sample R of H and estimate card(B&)
in relation to E(card(Bg)). As we have seen already
card(pR) = O(yd), where r = card(R). We choose
P = [n/2]. Then

0 (n”) = 0 (r”) = E (card(B;))

= G (card(B$)) .

(Since the general position assumption implies that
the number of hyperplanes determining the two end-
points of a bv-chord is not greater than 2d.) Hence
c;d(B$) = O(nd), with a constant exponential in d.

Lemma 2 is basic to the proof of the following upper
bounds.

Lemma 3 If H is a set of n hyperplanes in Ed in gen-
eral position and R s H is a random subset of size r,
then

where IBI denotes the number of hyperplanes in H in-
tersecting the chord B.

Proof. For the proof method, we refer again to [7].

n-w- PI
r -t(B)

where t(B) is the number of hyperplanes in H deter-
mining the two endpoints of B,

= 0 (n/r)d c Prob(B E Bi) :
BEBH /o)

= 0 ((n/r)dE(card(Bi))) = 0 (nd) ,

by Lemma 2. •l
Since every simplex has only a constant number of

edges, we can conclude

295

Corollary 2 If R is a randomly choosen subset of a
set H of n hyperplanes in Ed in general position, then
E(C IsId) = O(nd), where the sum is over the simplices
s in the bv-triangulation of d(R), and IsI ‘denotes the
number of hyperplanes in H intersecting s.

Corollary 2 yields an O(nd) upper bound for both (B)
and (C). Crucial to (A) and (D) it remains to bound the
probability of simplices s with large sets of intersecting
hyperplanes. We adapt some notation from Haussler
and Welzl [16], as it is needed for our purposes. Given
a set H of n hyperplanes and e > 0, we call a subset R
of H an e-net of H, if every open line segment that is
crossed’ by no hyperplane in R, is crossed by less than
en of the hyperplanes in H. In our previous setting, that
means that if chord B is in f3:, then it is crossed by at
most en of the hyperplanes in H. Applying results for
range spaces of finite VC-dimension [16], or Clarkson’s
analysis [6], we obtain

Lemma 4 Let H be a set on n hyperplanes in
Ed. Then a random subset R of H of size
fi(max{$ log f, 4 log $}) is an e-net of H with proba-
bility at least 1 - S.

Now Lemma 4 can be applied to bound the proba-
bility that the choosen random samples are not c-nets,
for

E = log’n/n , in step (l), and for

E = loglldn/]s] , in step (4.1).

For appropriate constants cl, cz in the above algorithm,
Lemma 4 implies

(i) E(max{Isl : s E S}) = O(log2n) and

(ii) Prob(max{ Is’] : s’ E S(s)} > loglldn) < &, for
s ESl.

Thus we can bound (A) and (D) as follows:

(A)

E c lsld logD]s] log%
(3ESl

= O(nd (log log n)O log-“n)

by (i) and Corollary 2, and

w

E c c b’ld 1s Is’1 sES1 s’ES1(5)
2intersected by, but not contained in

= c c Prob(]s’] > loglldn)]s’ld log Is’]
SE.51 S’ES(S)

= O(nd), by (ii) and Corollary 2.

Summarizing the previous estimations we can bound
the total work of the algorithm by O(nd), which is opti-
mal with respect to the output size. Together with the
logarithmic computation time and the described pro
cessor allocation schemes, Brent’s Lemma implies

Theorem 1 The arrangement of n hyperplanes in Ed
can be computed on a CRCW-PRAM with expected
parallel time O(log n) and optimal processor number
O(nd/logn).

4 Applications and open problems

Many problems formulated for point sets are easier
to approach in dual space, where the configuration of
points is mapped to an arrangement of the dual hyper-
planes (for more details, see [lo]). For some of them,
the dualized version of the problem can be easily solved
in parallel, provided the arrangement of hyperplanes is
given. An example is the Minimum Measure Simplicies
Problem [lo], which is stated as follows:
Given a set of n points in Ed, identify d + 1 of them
such that the spanned simplex has minimum measure
among all such simplices.

In other cases, the computation of the dual arrange-
ment dominates the computation time of the sequential
algorithm solving the problem, but it is not easy to
design an optimal parallel algorithm which solves the
dual problem for the given arrangement. Only recently,
Atallah, Chen and Wagener [3] proposed an optimal
parallel algorithm for the visibility of a simple polygon
from a point. This algorithm can be applied for the
optimal parallel computation of the visibility graph of
n nonintersecting line segments in the plane, provided
that the endpoints are sorted with respect to their polar
coordinates around each of them. It is well known that
these n sorted sequences of polar angles can be easily
obtained from the n sequences of vertices on the lines in
the dual arrangement. Thus, our algorithm yields the
first optimal parallel algorithms solving both problems,
i.e.

Corollary 3 The following problems can be solved on
a CRCW-PRAM in expected logarithmic time with op-
timal processor-time product:

(i) computing the minimum measure simplices of n
points in Ed ,

(ii) computing the visibility graph of n nonintersecting
line segments in the plane.

296

We conjecture that a number of other problems can
be solved efficiently in parallel, provided the arrang-
ment of the dual hyperplanes is given. For more candi-
dates, see [lo] and [ll].

Beside these applications to problems for point sets
which dualize to problems formulated for arrangements
of hyperplanes, we claim the proposed method of com-
bining a suboptimal parallel algorithm with an optimal
sequential one by a randomly choosen set of seperators
to be a useful tool in the design of efficient parallel algr+
rithm. Candidates for problems to be solved by similar
techniques are those, where we know already about the
power of (sequential) random sampling. Computing all
intersections of n line segments in the plane ([5,7]) could
be one such possible candidate.

Concerning the efficient parallel computation of ar-
rangements of n hyperplanes in Ed two main problems
remain open:

Design a randomized parallel algorithm which, us-
ing O(nd/ logn) processors, terminates in time

log n with probability at least 1 - 2-“O(l) .

Design a deterministic parallel algorithm which
works in time o(nd), and which uses an optimal
number of processors.

If we omit the second application of random sam-
pling in our algorithm (i.e., step (4)), then we obtain
in contrast to the first of the above open problems

Corollary 4 There is a CRCW-PRAM wiih
O(nd/ log4n) processors which computes the arrange-
ment of n hyperplanes in Ed and terminates in time
O(log4n) with probability 1 - 2~“.

References

PI

PI

[33

PI

[51

A.Aggarwal, B.Chazelle, L.Guibas, C.O’Dunlaing,
C.Yap, Parallel Computational Geometry. Algo-
rithmica 3 (19SS), 293-327

R.J .Anderson, G.L.Miller, Deterministic parallel
list ranking. Proc. AWOC’88, LNCS 319 (1988),
81-90

M.J.Atallah, D.Z.Chen, H.Wagener, An optimal
parallel algorithm for the visibility of a simple poly-
gon from a point. submitted to J. ACM, 1989

R-P-Brent, The parallel evaluation ofgeneral a&h-
metic expressions. J. ACM 21,2 (1974), 201-206

B.Chazelle, H.Edelsbrunner, An optimal algorithm
for intersecting line segments in the plane. Proc.
29th Ann. IEEE Symp. on Found. of Computer
Sci. 1988, 590-600

k31

PI

PI

PI

PI

PI

WI

1131

PI

[I51

P61

P71

WI

[191

WI

K.L.Clarkson, New application of random sam-
pling in computational geometry. Discrete Com-
put. Geom. 2 (1987), 195-222

K.L.Clarkson, P.W.Shor, Applications of random
sampling in computational geometry, II. Discrete
Comput. Geom. 4 (1989), 387-422

R.Cole, U.Vishkin, Deterministic coin tossing and
accelerating cascades: micro and macro techniques
for designing parallel algorithms. Proc. 18th Ann.
ACM Symp. Theory Comput. 1986, 206-219

R.Cole, U.Vishkin, Optimal parallel algorithms for
expression tree evaluation and list ranking. Proc.
AWOC’88, LNCS 319 (1988), 91-100

H.Edelsbrunner, Algorithms in combinatorial ge-
ometry. EATCS Monographs on Theoretical Com-
puter Science, Springer Verlag, 1987

H.Edelsbrunner, L.J.Guibas, Topologically sweep-
ing an arrangement. Proc. 18th Ann. ACM Sym-
pos. Theory Comput. 1986, 389-403

H.Edelsbrunner, E.P.Miicke, Simulation of simplic-
ity: A technique to cope with degenerate cases in
geometric algorithms. Proc. 4th Ann. ACM Sym-
pos. Comput. Geom. 1988, 118-133

H.Edelsbrunner, J.O’Rourke, R.Seidel, Construct-
ing arrangements of lines and hyperplanes with ap-
plications. SIAM J. Comput. 15 (1986), 341-363

M.J.Fischer, L.Ladner, Parallel prefix computa-
tion. J.ACM 27, 4 (1980), 831-838

B.Griinbaum, Convex Polytopes. John Wiley &
Sons, London, 1967

D.Haussler, E.Welzl, c-nets and simplex range
queries. Discrete Comput. Geom. 2 (1987), 127-151

C.Kruskal, L.Rudolph, M.Snir, The power of par-
allel prefix. Proc. 1985 IEEE Int. Conf. on Parallel
Proc., 180-185

J.H.Reif, S.Sen, Polling: A new randomized sam-
pling technique for computational geometry. Proc.
21st Ann. ACM Symp. Theory Comput. 1989,394
404

Y.Shiloach, U-Vi&kin, An O(logn) parallel con-
nectivity algorithm. J.Algorithms 3 (1982), 57-67

C.K. Yap, A geometric consistency theorem for
a symbolic perturbation scheme. Proc. 4th Ann.
ACM Symp. Comput. Geom. 1988, 134142

297

