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Abstract 

We propose the jirst optimal parallel algorithm comput- 
ing arrangements of hyperplanes in Ed (d 2 2). The 
algorithm is randomized and computes the arrangement 
of n hyperplanes within expected logarithmic time on a 
CRCW-PRAM with O(nd/ log n) processors. 

1 Introduction 

A finite set H of n hyperplanes in Ed defines a dissec- 
tion of Ed into at most O(nd) connected components of 
various dimensions. This dissection is called arrange- 
ment d(H) of H. A rrangements of hyperplanes are 
fundamental in combinatorial geometry (especially in 
the setting of cell complexes, see e.g. [15]) as well as in 
computational geometry, due to numerous applications 

POI- 
For d = 2, a topological sweep technique yields an 

optimal sequential algorithm [ll] which computes the 
arrangement of n hyperplanes in time O(n2) and work- 
ing space O(n). For d > 2, the only known algorithm, 
computing the arrangement within optimal O(nd) time, 
is based on an incremen$al approach [13]. Both algo- 
rithms are inherently sequential. 

So far, there is no known deterministic parallel al- 
gorithm which computes d(H) in o(nd) time with op- 
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timal time-processor product’ O(nd). We propose the 
first randomized parallel algorithm which achieves si- 
multaneously a nontrivial time speed up and an optimal 
time-processor product. 

There are only few known techniques in the design 
of efficient parallel algorithms. These are, in particu- 
lar, the reduction to parallel prefix computation [14,17], 
divide-and-conquer [l] an.d the sequential subsets tech- 
nique [S], in which one stops a divide-and-conquer re- 
cursion when the subproblems are of small size, and 
solves all the subproblems sequentially, one processor 
per subproblem. 

Applying the divide-and-conquer approach or the se- 
quential subsets technique in the design of randomized 
parallel algorithms is not as easy as might appear at 
first glance. Randomization has been successfully used 
in a wide number of applications and has recently been 
applied to design efficient sequential algorithms in com- 
putational geometry [6,7,16]. Many of these algorithms 
randomly choose a subset of the input set that is used 
to partition the problem into smaller ones, where the 
expected size of the subproblems can be well bounded 
from above. Crucial to the parallelization of this ran- 
domized approach is that, the expected parallel time is 
bounded only by the sum of the maxima of the expected 
time bounds of the processors in each level of recursion, 
while the expected time of a sequential recursive al- 
gorithm is the sum of expected time of all individual 
steps. This is the main reason why Reif and Sen [18] 
introduced the so called polling technique, which al- 
lows to choose among several random samples the most 
balanced one, thus decreasing the probability of a bad 
sample. 

We propose another approach to circumvent the 
problems of the recursive divide-and-conquer technique. 

lRecently, we have been informed that R-Anderson, P.Beame 
and E. Brisson achieve deterministic time O(lognlog*n) with 
O(nd/log n) processors, “Parallel Algorithms for Arrangements,” 
these proceedings. 
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We randomly choose a “large” subset of the input set 
and solve the problem on this subset, applying a subop 
timal parallel algorithm, which yields a subdivision of 
the problem into a large number of very small subprob- 
lems with total complexity proportional to the complex- 
ity of the original one. Moreover, all these subproblems 
can be solved independently and can be easily composed 
to the general solution. The size of the random sample 
depends directly on the factor the time-processor prod- 
uct of the known suboptimal parallel algorithm is apart 
from the optimum. 

Thus, the proposed new algorithm mainly consists of 
a deterministic suboptimal parallel algorithm and an 
optimal sequential algorithm, applied to each of the 
subproblems. This approach yields algorithms which 
are considerably easier to implement then those follow- 
ing the recursive divide-and-conquer method of Reif and 
Sen. 

The optimal parallel computation of arrangements 
leads to randomized optimal parallel algorithms for sev- 
eral other problems. We claim that the above approach 
can be applied not only to the computation of arrange- 
ments but to a number of other problems. 

The paper is organized as follows. Basic geometrical 
and combinatorial definitions are introduced in Section 
2. Section 3 outlines the algorithms and their analysis, 
and Section 4 discusses applications and open problems. 

2 Preliminaries and Basic Definitions 

We assume some familarity with basic notions about 
arrangements of hyperplanes in Ed, see, e.g., [lo] for 
a general treatment of arrangements. Hence we only 
briefly recall some definitions. 

A set H of n hyperplanes in Ed dissects the d- 
dimensional Euclidean space into several connected 
components, the faces of the arrangement d(H). The 
dimension dim(f) of a face f is the smallest dimension 
of an aEke subspace containing f. f is said to be a k- 
face of d(H) if f is a face of d(H) with dim(f) = 6. 
O-faces and l-faces are called vertices and edges, resp., 
whereas (d- 1)-faces and d-faces are the facets and cells, 
resp., of an arrangement d(H). 

Cells can be easily understood as intersections of half- 
spaces, defined by the hyperplanes in H. A k-face f 
(0 5 k < d) is contained in the intersection of (at least) 
d - k hyperplanes of H. Following these definitions, 
faces of d(H) are relatively open sets. 

An arrangement d(H) will be represented by its com- 
binatorial structure, the incidence graph of d(H). The 
incidence graph G of d(H) is a directed graph with the 
faces of d(H) as nodes and an edge between faces f and 
g if f is on the boundary of g and dim(f) = dim(g) - 1. 
In this case we say that f is a subface of g, g is a super- 

face off, or f and g are incident. The incidence graph 
will be given by the list of (marked) nodes and, for each 
node, by the lists of its subfaces and superfaces. 

For the sake of simplicity, we assume in the sequel 
that the hyperplanes in H are in general position, by 
which we mean that 

1. 

2. 

any d hyperplanes intersect in a common point, but 
no (d + 1) do, and 

no pair of vertices in A(H) is contained in a hori- 
zontal hyperplane. 

Moreover, we consider a simplex se with the set Ho of 
bounding hyperplanes, such that all vertices of d(H) 
are contained in SO and H U HO is in general position. 
From now on, whenever we talk about an arrangement 
d(H’) (H’ G H) we mean the arrangement d(H’UHo), 
ignoring the part outside so . Clearly the part inside se 
contains already all incidence information about d(H’). 
SO is added only to ensure that every face, ever consid- 
ered in the algorithms, is bounded and contains a lowest 
vertex. The general position assumption is no restric- 
tion due to perturbation techniques [12], [20]. The fol- 
lowing upper bound is basic to the complexity analysis 
of the algorithms. For proofs we refer to [13] or to the 
textbook of Edelsbrunner [lo]. 

Lemma 1 Given a set H of n hyperplanes in Ed, we 
can bound the number of nodes and edges in the inci- 
dence graph of d(H) by O(nd). Furthermore, the num- 
ber of faces of d(H), visible from any fixed hyperplane 
is bounded by O(ndB1). 

In order to motivate further definitions, let us first 
outline the general scheme of the algorithm, described 
in detail in Section 3. 

Given a set H of n hyperplanes in general position, 

(1) choose a set R c H of r hyperplanes at random; 

(2) compute the arrangement d(R) and the arrange- 
ment d(H), restricted to facets in d(R), by a sub- 
optimal algorithm, and distribute the hyperplanes 
in H \ R to the cells in d(R); 

(3) triangulate d(R) and distribute the hyperplanes in 
H \ R to the cells of the triangulated arrangement 

4% 

(4) compute the arrangement d(H) in each of the 
above cells independently by an optimal sequential 
algorithm. 

Following this scheme, we have to define the subdivi- 
sion, computed in (2), and we have to specify the tri- 
angulation, needed in (3). 

291 



The arrangement d(H) restricted to,facets in d(R) 
(plus the cells in d(R)) will be denoted by d(H/R). 
Formally, the set of faces F of d(H/R) is defined as 
follows: 

F = {f : f is a face in d(H)and 

f E h, for some hyperplane h in R} 

U{f : f is a cell in d(R)}. 

Two faces f, g of d(H/R) are incident in d(H/R) if 

(i) f is incident upon g in d(H) or 

(ii) f is a facet in d(H), lying on the boundary of cell 
g in d(R). 

Obviously, for R = H we have d(H/R) = d(H) 
while, in general, d(H) is a refinement of the subdi- 
vision d(H/R). Furthermore, we define the skeleton 
SK(H/R) of d(H/R) to be the undirected graph in- 
duced by the vertices and by the edges in d(H/R). 
The skeleton of d(H/R) contains the complete com- 
binatorial structure of d(H/R), provided we add the 
information about the set of defining hyperplanes to 
each vertex v. 

This leads to the definition of the extended skeleton 
graph of d(H/R) to b e an undirected graph with the 
set of nodes {(v, f) : v is a vertex in d(H/R) and f 
is a k-face of d(H/R) with v on its boundary} , and 
{(u,f), (v,g)} is an edge in this graph if f = g and 
u and v are connected by an edge in the skeleton of 

4HIR)- 
Finally let us specify the triangulation, we are go- 

ing to compute. This triangulation is called bottom 
vertex triangulation (bv-triangulation, for short) and is 
uniquely defined as the result of the following algorithm: 
for k=2 to d do 
begin 
triangulate all k-faces f by selecting the lowest (with 
respect to the Id-coordinate) vertex v on the boundary 
of f and creating all k-simplices conv( {v} U s), over all 
(k - I)-simplices in the (already triangulated) boundary 
off which do not contain v itself on their boundary 
end, 
where conv({v} U s) denotes the convex hull of the set 
{v} u s. The above construction is unique and well- 
defined, if we recall that we consider an arrangements 
inside SO only, and H U Ho is in general position. 

3 The Algorithm 

First we describe a suboptimal parallel algorithm com- 
puting an arrangement d(H) (d(H/R), resp.) of hy- 
perplanes in Ed within logarithmic parallel time. The 
algorithm consists of the following steps (n = card(H) 
and r = card(R)): 

(1) 

(2) 

(3) 
(4 

(5) 

compute all O(n d-‘)linesl=hrn...nhd-r,with 
hi E H, and all O(nd-lr) vertices of d(H/R); 

sort the vertices of .a( H/ R) along each of the lines, 
which yields the skeleton of d(H/R); 

compute the extencled skeleton graph of d(H/R); 

compute the connected components of the ex- 
tended skeleton gra,ph of A( H/R), which yields the 
set of faces of d(H,/R); 

compute the incidences between faces in d(H/R). 

It is obvious how to compute (1) and (2) efficiently in 
parallel. The first step takes constant time on a PRAM 
with O(nd-rr) processors and the second step O(log n) 
time with the same number of processors. 

Given any vertex v of d(H/R) and its set 
H(v)={hr,. . . , hd} of defining hyperplanes , i.e. {v} = 
n{h : h E H(v)}, it is easy to distinguish the 2k(i) 
k-faces (1 5 k 2 d) which have v on their boundary. 
Although we cannot easily compute the boundaries of 
these faces, it is possible to decide the equivalence be- 
tween faces having vertices u and v on their bound- 
ary, which are connected by a edge in d(H/R). The 
computation time depends only on d, not on n, which 
is a consequence of the general position assumption. 
Hence, step (3) can be done within constant time using 
O(ndel r) processors. 

Applying the Shiloah/Vishkin algorithm [19], the 
connected components of the extended skeleton graph 
of d(H/R) can be computed within logarithmic time 
on a CRCW-PRAM with O(nd-lr) processors. These 
connected components define the faces of d(H/R). 

Since we have already computed the incidence rela- 
tion between vertices and k-faces (k > 1) of d(H/R) 
it is straightforward to extend this relation to compute 
the incidences between k:- and (k + 1)-faces (0 5 k < d) 
with work O(1) per vertex of d(H/R). Since the inci- 
dences between vertices and k-faces are given by lists 
of vertices on the boundary of a common face, and lists 
of k-faces, having a vertex as the intersection of their 
boundaries, it is easy to compute the lowest vertex on 
the boundary of for each face in d(H/R), and lists of 
hyperplanes h, intersecting the cells c in d(H/R), for 
all cells. 

Both can be done within time log n and processor 
number O(nd-lr). Hence we can conclude: 

Proposition 1 Let H be a set of n hyperplanes in Ed 
in general position, and let R be a subset of H with 
T = card(R). 

(i) The above algorith,m computes A(H/R) within 
O(log n) time, using a CRCW-PRAM with 
O(ndB1 r) processors. 
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(ii) The bv-triangulation of A(R) can be computed on a 
CRCW-PRAM in time O(logn), using O(rd) pro- 
cessors. 

(iii) The hype 1 rp anes in H \ R can be distributed to all 
intersected cells in d(H/R) on an O(nd-lr) pro- 
cessor PRAM in time O(log n). 

Now we can describe the whole scheme of the final 
algorithm. It is a two level application of the scheme 
proposed in Section 2. We need the second level to de- 
crease the expected complexity (in terms of intersecting 
hyperplanes) of the remaining simplices, which corre- 
sponds directly to expected parallel computation time. 

Given a set H of n hyperplanes in Ed, we compute 
the arrangement d(H) by the following steps (where 
cl, cz > 0 are appropriately chosen constants, and IsI 
denotes the cardinality of the set H, of hyperplanes in 
H intersecting simplex .s): 

(1) 

(2) 

(3) 

(4) 

(4.1) 

(4.2) 

(4.3) 

(5) 

(6) 

(7) 

(8) 

select a random subset R C H of T = cl& hy- 
perplanes; 

compute d(H/R) and the bv-triangulation of d( R) 
by the above suboptimal algorithm; 

distribute the hyperplanes in H \ R to all d- 
simplices of the triangulated arrangement d(R); 

for all d-simplices s with Is] > loglldn 
do 

choose a random subset R, of H, of T, = 

c2l4 1% ISI 1% -‘ldn hyperplanes; 

compute A( H,/R,) n s and the bv-triangulation of 
d(R,) n s by the above suboptimal algorithm; 

distribute the hyperplanes in H, \ R, to all d- 
simplices of the triangulated arrangement A( R,) n 
s; 
od 

for all d-simplices s (computed either in (2) or in 
(4.2)) with Is1 < log’ldn 
do 

compute the arrangement d(H) n s by an 0( IsI”) 
time sequential algorithm [13]; 
od 

for all remaining simplices s 
do 

compute d(H) n s applying the above suboptimal 
algorithm; 
od 

(9) compute d(H) by merging the subdivisions of the 
simplices. 

Let us analyze the parallel computation time and the 
number of processors the implementation of the differ- 
ent steps takes. We do this by estimating the total 
amount of work IV(n) of the PRAM, which corresponds 
to the time-processor-product if the processors can be 
easily scheduled. This method goes back to an idea 
of Brent [S]. It can be proved that, given a parallel 
algorithm A which solves a problem on a p(n) pro- 
cessor PRAM within time t(n) and total work w(n), 
we can design a parallel algorithm B which solves the 
same problem on a q(n) processor PRAM within time 
O(t(n) + w(n)/q(n)). The only assumption about algo 
rithm A is that we know the processor scheduling of A, 
i.e. that there is no computation overhead in scheduling 
the q(n) processors of B to the operations , executed by 
p(n) processors of A in one parallel time unit. 

Most of the proposed algorithmic steps are either ob- 
vious to implement or are done by the mentioned other 
algorithms. It remains to explain, how the hyperplanes 
are distributed to the d-simplices (in step (3) or in step 
(4.3), resp.). 

First we realize that the arrangement d(H/R) 

(WWL) , resp.) already yields the distribution of 
the corresponding hyperplanes to the cells c of d(R) 
(d(R,), resp.). The final distribution to the simplices 
is computed by testing intersection between each d- 
simplex s in cell c and each hyperplane h intersecting 
cell c. This can be clearly done in parallel with time- 
processor product proportional to the product of the 
number of d-simplices in cell c and the number of hy- 
perplanes intersecting c. 

Since the processor allocation is obvious for every sin- 
gle step, we analyze these steps by bounding simultane- 
ously the total amount of work w(n) and the parallel 
computation time T(n) for each of them: 

(1) 

(2) 

(3) 

w(n) = O(nlog n) , T(n) = O(log n), assuming 
the existence of appropriate random number gen- 
erators. 

IV(n) = O(nd) , T(n) = O(logn), see Proposition 
1. 

Let deg(c) denote the total number of faces on the 
boundary of a cell c. It is obvious that the number 
of simplices in a bv-triangulation of the cell c is 
proportional to deg(c), where the constant depends 
on the dimension d. Hence we can bound the total 
work by 

dedc) 
E cell in A(R) 
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= o(*gR (&)‘“) @Y Lemma 1) 

= O(nd log-@-l) n). 

(4) Counting all intersections between the simplices 
and the hyperplanes in H \ R reduces to list rank- 
ing [2,9] over all lists of hyperplanes , belonging to 
‘these simplices, i.e. 

W(n) = 0 c ICI d%(c) 
CE A(R) 

= O(ndlog-@-l) n) 

and T(n) = O(logn) (note that the sum in the 
estimate of (4) equals the sum that appears in (3)). 

Let S denote the set of d-simplices in the bv- 
triangulation of d(R). Step (4) splits S into two sub- 
sets: & = (s : s E S , IsI > loglid n} and & = S \ Sr. 
Now, the analysis of (4.1)-(5) is similar to the analysis 
of the previous steps. 

(4.1) 

w(n)=O(p,logn) =O(Aogn) 

and T(n) = O(logn) 

(4.2) Following Proposition 1, we can bound 

W(n) = 0 
( 
sgl rs IsId-’ 1% I4 

) 

= 0 c (h-Id log2]s] log-% 
( se1 ) 

and T(n) = O(log n). 

(4.3) Similarly to the analysis of (3), we obtain 

W(n) = 0 f c ,Sld iogd-l]s] log-(d-l)l% 
) 

and T(n) = O(1). 

(5) As in the analysis of (4), 

= 0 c ,sld logd-l]s] log-(d-l)‘dn 
( SESl ) 

(6) .g, IsId + C C ls’ld and 
sES1 s’s%(s) 

(7) ,(8) Proposition 1 yields 

and T(n) = O(log71). Let S(s) denote the set of 
d-simplices in the bv-triangulation of d(Rd) n s. 
Again, (5) splits the sets S(s) into subsets &(s) = 

(8’ : s’ E S(s) and ]s’j < log’ldn) and &(s) = 
S(s) \&. Hence, we can bound 

and T(n) = O(logn:). 

(9) This can be done with one processor per face in 
the computed subdivision. Each processor, associated 
with a k-face f (0 5 k < d) on the boundary of a d- 
simplex, has to remove the incidences between f and its 
superfaces and has to concatenate the incidence lists of 
superfaces and subfaces of the two (k + 1)-faces in the 
neighbouring cells split by f. This merging procedure 
takes constant parallel time, provided we avoid conflicts 
in concatenating the lists by introducing dummy list ele- 
ments, one for each of the O(d) splitting k-faces f on the 
boundary of the simplex. Let the (k+ 1)-face g of d(H) 
be spread over 1 simplices ~1, . . . , sf . Each simplex .si 
is given by the tupel of its vertices @l(i), a.. ,&+1(i)), 
sorted accordingly to the lexicographic order of their co- 
ordinates. This representation of the simplices induces 
a lexicographic order over the set of all simplices. We 
avoid conflicts in merging g1 = g II sr, s, gc = g n st by 
obeying the rule, that the lists of superfaces and of sub- 
faces, resp., of gi are hooked onto an arbitrary gj in one 
of the neighbored simplices sj which are greater than 
si, with respect to this lexicigraphic ordering. Hook- 
ing simply means that the corresponding dummy list 
element of $j is replaced by the list of gi. 

A final concurrent write and prefix computation re- 
moves multiple occurrences in these incidence lists and 
completes the computation of the arrangement. These 
steps take logarithmic time and a total work which is 
only a constant multiple of the size of the incidence 
graph of the subdivision computed in the previous steps 
(l)-(S). Beside the analysis of each single step, we have 
to guarantee the desired time-processor bound for the 
processor allocation procedures before every step. This 
can be easily done by list ranking [2,9] and parallel 
prefix computation [14,1.7], both in logarithmic time 
and processor-time product at most linear in the size 
of the (intermediatly) computed subdivisions and inci- 
dence graphs, resp.. The only more complicated cases 
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are the calls to the suboptimal parallel algorithms in 
(4.2), (8) and to the sequential algorithms in (6), resp.. 
In order to allocate the correct number of processors to 
the tasks (in (4.2) and in (8)) or to build blocks of tasks 
with evenly distributed total task length (in (6)), we 
have to bound the complexity of the called procedures 
in advance. Here we take the (in general, pessimistic) 
upper bounds, used in the analysis of the steps (4.2), 
(6), and (8), resp.. S ince we have already computed the 
number Is] of intersecting hyperplanes, these bounds are 
easy to derive. Hence, the computational complexity of 
the single steps dominates. 

In order to complete the analysis of the described 
algorithm it remains to bound the expected values of 
the following functions: 

(A) E (C.,,, ]sld log”]s] log-” n) , for constants 

a,b > 0; 

P) E (Es,, IsId>; 

(Cl E (L& C&S(s) b’ld); 

First we introduce some more notations. Let pl, p2 be 
two vertices of the arrangement d( H U Ho), pl , p2 E so. 
W.l.o.g., let pr have smaller zd-coordinate than ~2. 
The open line segment p1p2 connecting pl and ps is 
called bv-chordin d(H), if the face in d({h : h E HUH0 
and p1 E h}) containing plp2 is disjoint from the hori- 
zontal hyperplane through pl . Let BH denote the set of 
all bv-chords in d(H). It is easy to see that BH contains 
all edges introduced by the bv-triangulation of any of 
the arrangements d(R) for R C H. 
Furthermore, Bk denotes the set of bv-chords in d(H) 
which are intersected by i hyperplanes in H (not count- 
ing those that determine the chord). Since all chords in 
B& are edges of the bv-triangulation of d(H), we can 
conclude 

Corollary 1 card(Bs) = O(nd) , zuhere n = card(H). 

This corollary can be strengthened to 

Lemma 2 If H is a set of hyperplanes in Ed in general 
position, then card(B&) = O(nd). 

Proof. Following the lines of Clarkson and Shor [7], we 
take a random sample R of H and estimate card(B&) 
in relation to E(card(Bg)). As we have seen already 
card(pR) = O(yd), where r = card(R). We choose 
P = [n/2]. Then 

0 (n”) = 0 (r”) = E (card(B;)) 

= G (card(B$)) . 

( Since the general position assumption implies that 
the number of hyperplanes determining the two end- 
points of a bv-chord is not greater than 2d.) Hence 
c;d(B$) = O(nd), with a constant exponential in d. 

Lemma 2 is basic to the proof of the following upper 
bounds. 

Lemma 3 If H is a set of n hyperplanes in Ed in gen- 
eral position and R s H is a random subset of size r, 
then 

where IBI denotes the number of hyperplanes in H in- 
tersecting the chord B. 

Proof. For the proof method, we refer again to [7]. 

n-w- PI 
r -t(B) 

where t(B) is the number of hyperplanes in H deter- 
mining the two endpoints of B, 

= 0 (n/r)d c Prob(B E Bi) : 
BEBH /o) 

= 0 ((n/r)dE(card(Bi))) = 0 (nd) , 

by Lemma 2. •l 
Since every simplex has only a constant number of 

edges, we can conclude 
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Corollary 2 If R is a randomly choosen subset of a 
set H of n hyperplanes in Ed in general position, then 
E(C IsId) = O(nd), where the sum is over the simplices 
s in the bv-triangulation of d(R), and IsI ‘denotes the 
number of hyperplanes in H intersecting s. 

Corollary 2 yields an O(nd) upper bound for both (B) 
and (C). Crucial to (A) and (D) it remains to bound the 
probability of simplices s with large sets of intersecting 
hyperplanes. We adapt some notation from Haussler 
and Welzl [16], as it is needed for our purposes. Given 
a set H of n hyperplanes and e > 0, we call a subset R 
of H an e-net of H, if every open line segment that is 
crossed’ by no hyperplane in R, is crossed by less than 
en of the hyperplanes in H. In our previous setting, that 
means that if chord B is in f3:, then it is crossed by at 
most en of the hyperplanes in H. Applying results for 
range spaces of finite VC-dimension [16], or Clarkson’s 
analysis [6], we obtain 

Lemma 4 Let H be a set on n hyperplanes in 
Ed. Then a random subset R of H of size 
fi(max{$ log f, 4 log $}) is an e-net of H with proba- 
bility at least 1 - S. 

Now Lemma 4 can be applied to bound the proba- 
bility that the choosen random samples are not c-nets, 
for 

E = log’n/n , in step (l), and for 

E = loglldn/]s] , in step (4.1). 

For appropriate constants cl, cz in the above algorithm, 
Lemma 4 implies 

(i) E(max{Isl : s E S}) = O(log2n) and 

(ii) Prob(max{ Is’] : s’ E S(s)} > loglldn) < &, for 
s ESl. 

Thus we can bound (A) and (D) as follows: 

(A) 

E c lsld logD]s] log% 
( 3ESl 

= O(nd (log log n)O log-“n) 

by (i) and Corollary 2, and 

w 

E c c b’ld 1s Is’1 sES1 s’ES1(5) 
2intersected by, but not contained in 

= c c Prob(]s’] > loglldn) ]s’ld log Is’] 
SE.51 S’ES(S) 

= O(nd), by (ii) and Corollary 2. 

Summarizing the previous estimations we can bound 
the total work of the algorithm by O(nd), which is opti- 
mal with respect to the output size. Together with the 
logarithmic computation time and the described pro 
cessor allocation schemes, Brent’s Lemma implies 

Theorem 1 The arrangement of n hyperplanes in Ed 
can be computed on a CRCW-PRAM with expected 
parallel time O(log n) and optimal processor number 
O(nd/logn). 

4 Applications and open problems 

Many problems formulated for point sets are easier 
to approach in dual space, where the configuration of 
points is mapped to an arrangement of the dual hyper- 
planes (for more details, see [lo]). For some of them, 
the dualized version of the problem can be easily solved 
in parallel, provided the arrangement of hyperplanes is 
given. An example is the Minimum Measure Simplicies 
Problem [lo], which is stated as follows: 
Given a set of n points in Ed, identify d + 1 of them 
such that the spanned simplex has minimum measure 
among all such simplices. 

In other cases, the computation of the dual arrange- 
ment dominates the computation time of the sequential 
algorithm solving the problem, but it is not easy to 
design an optimal parallel algorithm which solves the 
dual problem for the given arrangement. Only recently, 
Atallah, Chen and Wagener [3] proposed an optimal 
parallel algorithm for the visibility of a simple polygon 
from a point. This algorithm can be applied for the 
optimal parallel computation of the visibility graph of 
n nonintersecting line segments in the plane, provided 
that the endpoints are sorted with respect to their polar 
coordinates around each of them. It is well known that 
these n sorted sequences of polar angles can be easily 
obtained from the n sequences of vertices on the lines in 
the dual arrangement. Thus, our algorithm yields the 
first optimal parallel algorithms solving both problems, 
i.e. 

Corollary 3 The following problems can be solved on 
a CRCW-PRAM in expected logarithmic time with op- 
timal processor-time product: 

(i) computing the minimum measure simplices of n 
points in Ed , 

(ii) computing the visibility graph of n nonintersecting 
line segments in the plane. 
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We conjecture that a number of other problems can 
be solved efficiently in parallel, provided the arrang- 
ment of the dual hyperplanes is given. For more candi- 
dates, see [lo] and [ll]. 

Beside these applications to problems for point sets 
which dualize to problems formulated for arrangements 
of hyperplanes, we claim the proposed method of com- 
bining a suboptimal parallel algorithm with an optimal 
sequential one by a randomly choosen set of seperators 
to be a useful tool in the design of efficient parallel algr+ 
rithm. Candidates for problems to be solved by similar 
techniques are those, where we know already about the 
power of (sequential) random sampling. Computing all 
intersections of n line segments in the plane ([5,7]) could 
be one such possible candidate. 

Concerning the efficient parallel computation of ar- 
rangements of n hyperplanes in Ed two main problems 
remain open: 

Design a randomized parallel algorithm which, us- 
ing O(nd/ logn) processors, terminates in time 

log n with probability at least 1 - 2-“O(l) . 

Design a deterministic parallel algorithm which 
works in time o(nd), and which uses an optimal 
number of processors. 

If we omit the second application of random sam- 
pling in our algorithm ( i.e., step (4)), then we obtain 
in contrast to the first of the above open problems 

Corollary 4 There is a CRCW-PRAM wiih 
O(nd/ log4n) processors which computes the arrange- 
ment of n hyperplanes in Ed and terminates in time 
O(log4n) with probability 1 - 2~“. 
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