
Multithreaded Algorithms for the Fast Fourier Transform

Parimala
Thulasiraman

�
Kevin B. Theobald� Ashfaq A. Khokhar� Guang R. Gao�

ABSTRACT
In this paper we present �ne-grained multithreaded algo-
rithms and implementations for the Fast Fourier Transform
(FFT) problem. The FFT problem has been formulated us-
ing two distinct approaches based on the dataow concepts.

The �rst approach, referred to as the receiver-initiated al-
gorithm, realizes the FFT iterations as a parent-child re-
lationship while fully exploiting the underlying parallelism.
The second approach, referred to as the sender-initiated al-
gorithm, follows a data-ow model based on the producer-
consumer style of programming and can be adopted to dif-

ferent architectural parameters for achieving high perfor-
mance. The implementations of the proposed algorithms
have been carried out on the EARTH (E�cient Architecture
for Running THreads) platform. For both the algorithms,
we analyze the ratio of remote vs local threads and study its
impact on the experimental results. Our implementation re-

sults show that for certain block sizes on �xed problem size
and machine size, the receiver-initiated approach performs
better than the sender-initiated approach. For large num-
ber of processors, both the algorithms perform well, yielding
execution times of only 10 msec for an input of 16 K data

points on a 64 processor machine, assuming each processor
running at 140 MHz clock speed.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems|complexity mea-

sures, performance measures

General Terms
Fine-Grained, Multithreading, Dataow Architecture, Par-
allel Algorithms, Non-Preemptive

�Department of Electrical and Computer Engineering, 140
Evans Hall, University of Delaware, Newark, DE 19716.
Email: fthulasir@capsl.udel.edu,
theobald@capsl.udel.edu,

ashfaq@eecis.udel.edu,

ggao@capsl.udel.edug.

1. INTRODUCTION
Traditionally, digital image/signal processing algorithms are
computationally intensive due to the large amount of data
involved in the underlying applications. For example, a typ-
ical multispectral image may have a resolution of 8192�8192

pixels with 8 bits per pixel and 125 spectral bands, result-
ing in a spatial data set containing more than 8 Gbytes
for each scene. Similarly, application of inverse scatter-
ing techniques to obtain material properties of the objects
in a target image involves solving large sparse system of
linear equations where matrices typically grow as big as

100; 000�100; 000. Performing transform operations such as
FFT, DCT, or Wavelet, in real time on such large data sets
requires high performance computing [20, 19, 11]. The Fast
Fourier Transform (FFT) [5] has been studied extensively
as a frequency analysis tool in diverse application areas such
as audio, signal, and image processing [18], and several other

real time data applications [7, 16]. In general the FFT based
frequency analysis of a multidimensional data set can be re-
alized by performing 1D-FFT alternately on each dimension
of the data interleaved with data transpose steps. The 1-D
FFT on an input of N data points requires (N/2) log2(N/2)

complex multiplication operations which takes most of the
computation time for large data sets. The FFT problem
has been studied on various parallel machines [13]. It can
be well parallelized using shu�e exchange network [2, 23].
Other parallel implementations have been performed on lin-
ear arrays [25], hypercubes [1, 2], and mesh architectures

[12, 11]. Two types of latencies are normally embedded in
parallel implementations: communication latency (due to
remote accesses) and synchronization latency (due to data
dependencies) [10]. Conventional message passing MPPs do
not yield high performance if such latencies are frequent in
the parallel solutions employed. Several techniques at the

software and hardware levels (such as superscalar, super-
pipelined, VLIW, prefetching) [8] have been used to hide or
tolerate both communication and synchronization latencies.
But the most general technique is multithreading. Multi-
threading tries to overlap computation with communication
by means of threads (a thread is a set of instructions exe-

cuted sequentially) thereby tolerating latencies. This paper
investigates multithreaded algorithms and implementations
for Fast Fourier Transform (FFT) on �ne-grained multi-
threaded computing paradigms. We de�ne a �ne-grained
multithreaded paradigm as the one that has abundant num-

ber of threads and the cost of switching between threads is
minimal [24]. The imbalance in computation and commu-
nication in a parallel FFT algorithm and the global nature

176

 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.



of the embedded communication patterns makes it an ideal

candidate for multithreaded platforms.

Sohn et. al. [22] have studied the FFT problem on EM-X
multithreaded architecture. Given N points (N is a power
of 2) and P processors, N/P points are partitioned and dis-
tributed to each of the processors. The iterative FFT al-

gorithm is implemented on each processor by creating h

threads in each processor to handle N/P points. Each thread
operates on (N/Ph) points. It is claimed that on the EM-X
architecture, 2 to 3 threads perform the best overlap with
communication. Matteo Frigo and Steven Johnson [6] have
developed a set of library C functions called codelets to com-

pute the DFT for arbitrary image size and real or complex
numbers. A compiler called gen�t has been developed that
takes the input N at compile time and generates a set of
optimized codelets to calculate the DFT for N points. At
runtime, they use a dynamic programming algorithm to de-
termine the best set of codelets to execute. The algorithm

is portable and adaptable on various architectures. A multi-
threaded version of the Cooley-Tukey DFT algorithm using
the divide and conquer approach has also been developed
using the multithreaded language Cilk [15].

In this paper, we study the FFT problem on non-preemptive

multithreaded architectures. In a non-preemptive model
a thread once started runs to completion. Assuming this
model of computation, we develop two di�erent dataow
style algorithms for the FFT problem. The �rst algorithm is
a �ne grained algorithm referred to as the receiver-initiated

algorithm. In this algorithm a parent-child relationship is
established between threads, while fully exploiting the un-
derlying parallelism in the FFT problem. The number of
threads scales linearly with the product of input size and
the number of processors. The second algorithm, referred
to as the sender-initiated algorithm is a coarse-grained al-

gorithm, where the number of threads can be set based on
the architectural characteristics of the target platform. This
algorithm models the FFT problem as a producer-consumer
problem and can be adopted to di�erent architectural pa-
rameters for achieving high performance.

We have used the EARTH- E�cient Architecture for Run-

ning THreads [9, 24] platform for our implementations, which
is a �ne-grained, non-preemptive, dataow architecture. We
present analytical and experimental results for both the al-
gorithms. Our implementation show that for certain block
sizes on �xed problem size and machine size, the receiver-

initiated approach performs better than the sender-initiated
approach. For large number of processors, both the algo-
rithms perform well, yielding execution times of only 10
msec for an input of 16 K data points on a 64 processor ma-
chine, assuming each processor running at 140 MHz clock

speed. For reference purposes, we have also implemented
the best known sequential algorithm for the FFT on a single
node MANNA. The algorithm takes 866ms for performing
FFT on 216 data points on an i860 processor [24].

The rest of the paper is organized as follows: Section 2

presents the multithreaded algorithms. Analytical results
are presented in Section 3. The experimental framework
of the EARTH model is given in Section 4. Performance
results of the algorithms are presented in Section 5. Our

Figure 1: The Buttery Operation

observations and conclusions are presented in Section 6.

2. FINE-GRAINED MULTITHREADED AL-
GORITHM

The FFT problem may be solved recursively or iteratively.

In general, iterative version of the FFT algorithm is more
suitable for distributed memory parallel machines [13, 14].
In the following we present two dataow style multithreaded
algorithms for the FFT computation based on the iterative
solution. These algorithms di�er from each other in terms
of dataow style and in number and sizes (weights) of the

threads employed.

2.1 Receiver-Initiated Algorithm
The receiver-initiated algorithm is a �ne-grain multithreaded
algorithm based on the Cooley-Tukey style [4] of the FFT
signal ow graph.

Let us assume we have N ( N=2m) data elements and P
(P=2p) processors. A buttery computation (Figure(1)) is
performed on each of the data points in every iteration and
there are altogether logN iterations. The buttery com-
putation can be conceptually described as follows: a and b

are points or complex numbers.The upper part of the but-

tery operation computes the summation of a and b with a
twiddle factor w while the lower part computes the di�er-
ence. In each iteration, there are N/2 summations and N/2
di�erences.

In general, a parallel algorithm for FFT, with blocked data

distribution of N elements on P processors, involves com-
munication for log P iterations and terminates after logN
iterations. If we assume shu�ed input data at the begin-
ning, the Cooley-Tukey Style (Figure 2), the �rst logN �

log P iterations require no communication. Therefore, dur-

ing the �rst logN � log P iterations, a sequential FFT algo-
rithm can be used inside each processor. At the end of the
(logN�log P )th iteration, the latest computed values for N

P

data points exist in each processor. The receiver-initiated
algorithm consists of two phases, the sequential phase and
the multithreaded phase. The mulithreaded phase of the

algorithms starts at the end of the logN � log P iterations.

Conceptually, the multithreaded phase starts from the �nal
output. Consider the N output data points at the end of
the logN -th iteration. The buttery computation for any
data point in this iteration requires two data points from

the previous iteration (Figure(1)). For the multithreading
phase, the algorithm works on only N

2
output data points.

The remaining N

2
data points can be generated with just one

additional local buttery operation for each point. There-
fore, given P processors, each processor computes FFT for

only N

2P
data points at the �nal output.

177



x

x

x

x

x

x

x

 2

  5

7

4

1

3

x y
0

y

y

y

y

y

0

7

w0
8

w0
8

w0

w0
8

8

w

w

w

w

0

0

8

8

8

8

w

w

w

ww

0

2

2

3

8

8

8

8
2

1

P

P

P

0

1

2

3

log(P) = 2 stages (P = 4)

Non-Local Computations

log(N)-log(P) stages
Local Computations

P

6

iteration 2iteration 1iteration 0 iteration 3

1

2

3

y

y
5

6

4

Figure 2: The Cooley-Tukey signal ow graph
(N=8)

Considering the dataow style, each processor, for each of

its N

2P
local data points, sends out two threads: one to itself

and another to the destination processor holding the other
data point. The set of parameters of a thread is comprised
of a function name, destination processor number, and it-
eration number. These threads are sent to obtain the data
values computed at the previous iteration. At a particu-

lar iteration i, the processors upon receiving these threads
send out two more threads with iteration number i-1. This
process continues until the log Pth iteration is reached. At
this point, the latest locally computed data element is trans-
ferred to the corresponding requester. When the requester
receives the two data elements, the buttery operation is

performed.

Note that the buttery computation is performed only after
the two data values have arrived for the two threads sent
out. The thread computing the buttery computation is
therefore synchronized by two signals. The arrival of these

signals acknowledges the arrival of the two data elements
computed at the previous iteration.

The above algorithm can be illustrated with an example.
Consider Figure(2) with (N = 8) data elements and (P = 4)

processors. Since the multithreaded algorithm is performed
on only N

2
points, each processor contains N

2P
output data

points. That is for this example, P0 has y0, P1: y4, P2:
y2 and P3: y6. The �rst logN � log P iterations are per-
formed locally by each processor. And therefore, the com-
puted values of the buttery operation for each data element

is available at the end of the logN � log P iterations. The
processors then switch to the multithreaded version of the
algorithm.

Let us consider one particular data element y0 at logN -th
iteration, that is at iteration 3 (refer to Figure( 2)). The re-

ceiver initiated approach starts from y0 and proceeds back-

wards for log P = 2 iterations.

P0 which holds y0 sends out two requests using two separate
threads: one to its mate processor P2 and the other to itself
for the computed data elements x1 and x0 at iteration 2,
respectively. Of course, at iteration 2, x0 and x1 have not
yet been computed. Therefore, consider the actions of pro-

cessor P2 at iteration 2. This involves: Processor P2 upon
receiving and executing the thread from P0 sends out two
more threads to P2 and P3 for data elements at iteration 1.
At iteration 1, the latest locally computed data values exist
and P2 and P3 transfer x1 (x1 + w

0
8x5) and x3 (x3 + w

0
8x7)

respectively to processor P2 which requested these data at

iteration 2. At this point P2 computes the buttery opera-
tion and sends the result back to P0 which requested it at
iteration 3. Now P0 has received one data element. Simi-
larly the same type of communication is performed to receive
the second data element. When the two data points have
arrived at P0 the buttery operation is performed and y0 is

computed. Now the processor P0 holding y0 computes its
mate's value y4 at the last iteration.

In the above scheme, a parent-child relationship is estab-
lished between threads. This parent-child relationship and
the synchronization signals which act as acknowledgment

signals allow e�cient multithreading. It also ensures the
correctness of the program without any data race condi-
tions or corruption of data. Also, there are equal number
of threads per processor, thereby, balancing the work load.
For N

2P
data points per processor, 2i N

2P
threads are sent

out, where i = 1 � � � log P . The processors execute the but-
tery computation for each related pair of threads as per
the arrival of data points and these could be in any order.
Therefore, a processor either sends out threads or performs
computations; it never sits idle. The algorithm e�ciently
overlaps computation with communication. Note that in

this algorithm, buttery computations over same data ele-
ments are computed in di�erent processors, giving rise to
redundant computation load. However, the algorithm can
be easily adapted to varying degrees of parallelism and syn-
chronization overheads. The analytical section explains the
complexity analysis in detail.

2.2 Sender-Initiated Approach
The sender-initiated algorithm is based on the Gentleman-

Sande [7] signal ow graph for the FFT problem. The num-
ber of threads is �xed at compile time to be equal to N

B
,

where B is the block size, consisting of contiguous data el-
ements. The N

B
threads are distributed to each of the pro-

cessors in a round-robin fashion, thereby balancing the load

across the processors. Each processor performs the FFT
computation on B data points.

The Gentleman-Sande signal ow graph (Figure 3) can be
viewed as each data point requiring a mate data point for
performing the FFT computation. The mate may be located

in a di�erent thread in a di�erent processor depending on the
FFT iteration. In this case, a thread (called the consumer
thread) for each of its points sends the recently computed
value to the thread (called the producer thread) containing
the mate points. The sending and receiving of information
requires certain amount of synchronization between the pro-

ducing and consuming threads to be set up apriori. Also, the

178



++

x

x

x

x

x

x

x

x

0

1

 2

 3

4

  5

6

7

+

+

+

+

-

-

-

-

+

-

-

+

-

-

+

-

+

-

+

-

+

-

+

+

Figure 3: Gentleman-Sande Signal Flow Graph

mate points change at each iteration during the execution
of the algorithm. However the communication and synchro-

nization is performed at a block level. That is each thread,
computes the values for its B points and uses a split phase
transaction operation to move data to its mate thread(s).

As mentioned above, each thread consumes data from the
previous iteration and produces data for the next iteration.

This producer-consumer function is realized as a second level
thread (a thread within a thread), called �ber. We explain
the concept of second-level threads as follows. The data is
produced in a producer thread and using a split-phase trans-
action operation, the produced values are delivered to the
corresponding consumer thread in another processor. The

consumer thread in the other processor is activated when it
receives a synchronization signal from its mate thread. Note
that at each iteration, the threads have to determine the lo-
cation of its mate thread and set up the synchronization slots
appropriately during runtime. Therefore, the producer and
consumer threads act as second level threads (�bers) within

a threaded function. The synchronization slots act as ac-
knowledgment signals and the second-level threads comprise
a data-ow style of programming.

We illustrate the above producer-consumer approach with

an example (Figure 3) (We have represented the signal ow
graph di�erently [7] for easier explanation of the sender-
initiated algorithm). Assume N=8, P=4 and B=2. Then
there are N

B
= 4 threads. Points x0, x1 are in thread 0;

x2,x3 in thread 1; x4,x5 in thread 2; x6,x7 in thread 3. These
threads are distributed to each of the 4 processors (thread

0 is executed by P0, thread 1 by P1,etc.,). In Figure 3, all
edges going upwards are marked positive (+) and all edges
going downwards are marked negative (-). This indicates
that a+bw or a-bw is computed at + and - marked points
respectively. Consider the �rst iteration of the algorithm.
The mate points of x0, x1 in thread 0, P0 are x4, x5 and

are located in thread 2, P2. Thread 0 computes x0w
n, x1w

n

(where n=0 or 1 ... or 3) and sends the computed values

to the consuming mate thread (which is in thread 2 of P2).
Similarly the consuming thread of thread 0 in P0 receives
the computed values (x4w

n, x5w
n (where n=0 or 1 ... or

3)) from the producing thread of thread 2, P2. In the next
iteration, thread 0's mate thread is thread 1. The setting up
of synchronization slots between the threads is performed at

the start of the new iteration.

3. ANALYTICAL RESULTS
3.1 Receiver-Initiated Algorithm
In the Receiver-Initiated algorithm, given N points and P

processors, the data points are partitioned into block of size
N

P
and each block is assigned to one processor. This al-

gorithm can be implemented incorporating varying degrees
of parallelism depending on the target architecture and the
number of processors. In the following, we analyze this al-

gorithm under two such scenarios.

In the �rst scenario, we exploit full parallelism by generating
maximum number of threads at the expense of redundancy
in the buttery computations at di�erent processing nodes.
In the second scenario, we limit the number of threads gen-

erated to completely avoid redundant computations at the
expense of synchronization overheads between di�erent pro-
cessors. The implementation results are reported only for
the �rst scenario. In both the scenarios, the ratio of lo-
cal versus remote threads are studied. The performance
of the algorithm lies in the balance between the number

of remote and local threads and on their overlapped asyn-
chronous scheduling.

3.1.1 Scenario 1:
Consider a particular point yi at log P -th iteration during
the multithreaded phase of the algorithm. Initially, it sends
out two requests in the form of two threads. These threads
at log P � 1-th iteration in turn send two more threads for
a total of four threads. This process continues over log P it-
erations. The thread generation process in this manner can

be viewed as a binary tree of height P starting from each of
the data point yi in the �nal iteration. The internal nodes
of such a tree correspond to the threads performing but-
tery computations and the arcs correspond to the threads
gathering the data. Thus the number of threads performing
the (remote) communication is 2(P � 1) and the number of

local threads performing the local computations is (P � 1).
There are N=2 such binary trees of parent-child threads, one
corresponding to each even indexed data point in the �nal
output column. The odd indexed data will be automatically
computed due to the buttery computation in the �nal it-

eration. Therefore, total number of threads is N(P � 1)
and the number of buttery computation for the �nal log P
iterations is N

2
(P � 1).

Considering the �rst logN � log P iterations as well, the
processors perform local buttery computations on N

P
points

over these iterations. This can be realized as a sequential
FFT algorithm over N

P
data points using a single thread

in each processor. Therefore, there are P local threads per
iteration for logN � log P iterations. However, each thread
in this case is performing N

2P
log N

P
buttery computations.

For the next logP iterations, the multithreaded algorithm

is performed.

179



Summarizing, the total number of local threads is P+N

2
(P�

1) and the total number of remote threads is N(P �1). The
ratio of local threads versus remote threads is:

N

2
(P � 1) + P

N(P � 1)
= O(1)

The total number of of buttery computations:

(P (
N

2P
log

N

P

) +
N

2
(P � 1) = O(NP ); forP > logN

3.1.2 Scenario 2:
In the above analysis, each of the N

2
points requests data

from its mate processors by means of threads and these re-
quests yield a binary tree pattern. However, the N

2
binary

trees created are not necessarily unique, thereby, duplicat-
ing work. The algorithm can be implemented by realizing
only unique trees, decreasing the amount of computation
and avoiding to send unnecessary number of threads. For
example, if yi and yj follow the same path, then yi performs
the buttery computations and communicates the computed

value to yj eliminating yj from performing the same compu-
tations as yi. This can be realized as follows: Initiate 2 � N

2

threads at the Nth iteration, each collecting a unique data
point generated at the N-1th iteration. Next, initiate only
4*N

4
out at N-1th iteration. This process continues for log P

iterations, at which point, 2log P * N

2log P
threads are sent out.

Therefore, in the multithreaded phase of the algorithm, the
total number of threads involving communication is N log P
and the number of buttery computations is N

2
log P .

Summarizing, the total number of local threads including
the sequential phase is P + N

2
log P , and the ratio of local

to remote threads:

(P + N

2
log P )

N log P
= O(1):

The total number of buttery computations:

(P (
N

2P
log

N

P

) +
N

2
log P = O(N logN)

3.2 Sender-Initiated Approach
In the Sender-Initiated approach, the algorithm can be for-
mulated as if the number of processors in the system has no
bearing to creating the threads. For a given block size B

and N data points, there are N

B
threads in the system.

� Case 1: B = N

N

B
= 1 thread. A sequential algorithm in this case.

� Case 2: B < N

N

B
= b threads. Given P processors, b

P
threads per proces-

sor.

� P = b : 1 thread per processor, this leads to a very
coarse-grained approach.

� P < b : b

P
threads per processors, threads are dis-

tributed to processors in a round robin fashion.

� P > b : not an interesting case.

The number of threads in the algorithm can be adopted to

the architectural features of the target platform.

Each thread consists of producer and consumer �bers (micro-
threads). However, in the analysis we will treat the �bers
and threads as the same. In the multithreading phase of
the algorithm, the �rst log P iterations, the number of re-

mote threads is N=B log P when P � N=B. The number
of local threads is N log P during the multithreaded phase.
However, there is an additional cost of N log P over log P
iterations for setting up the N synchronization slots at each
iteration. The ratio of local to remote threads is :

(P +N log P )

N=B log P

When N

B
= P , this yields a very coarse grained algorithm

with local to remote threads ratio of O(N
P
). When B is a

small constant, the algorithm is highly �ne-grained with lo-
cal to remote threads ratio of O(1). The number of buttery

computations in all the cases is N

2
logN .

Note that in terms of the complexity analysis, the sender
initiated approach is comparable to the second scenario of
the receiver-initiated algorithm.

4. EXPERIMENTAL FRAMEWORK
In the following, we briey describe the EARTH model and
platform that have been used in our experiments.

EARTH (E�cient Architecture for Running THreads) [9]
is a multithreaded program execution model targeted to
high-performance of parallel and distributed multiprocess-

ing. The EARTH platform supports latency tolerance by
e�cient exploitation of �ne-grained parallelism available in
many applications. In the EARTH programming model,
code is divided into threads that are scheduled atomically
using dataow-like synchronization operations [9].

Conceptually, each EARTH node consists of an Execution

Unit (EU), which executes the threads and a Synchroniza-

tion Unit (SU), which performs the EARTH operations re-
quested by the threads. The current hardware designs for
EARTH use an o�-the-shelf high-end RISC processor for the
EU and custom hardware for the SU [17]. However, other

implementations are also possible.

In the EARTH programming model, a programmer can ex-
press parallelism by utilizing two form of threads: �rst-level
and second-level threads. First-level threads are declared as

threaded functions. When a threaded function is invoked,
a thread is spawned to execute the function. Note that the
caller thread will continue its own execution without wait-
ing for the return of the forked threaded function.The body
of a function can be further partitioned into �bers [24].
These �bers are referred to as second-level threads. When-

ever a user suspects that an operation may incur unpre-
dictable latencies, the user can choose to use an EARTH
split-phase transaction operation. In a split-phase transac-
tion, data transfer and synchronization are combined into
an atomic operation to avoid potential race conditions in
the network. A thread need not block until a synchroniza-

tion signal is received when using this operation. It may

180



execute other instructions. A synchronization signal may

trigger the spawning of other threads. For example, an user
may decide to put the consumer who will need the result
of the long latency operation in a di�erent �ber. The pro-
ducer thread may synchronize the consumer thread when its
data is ready. This ensures that a �ber can be executed in
a non-preemptive fashion avoiding any waste of processor

resources. The EARTH runtime system will hide the la-
tency by multithreading as long as the program has enough
parallelism to generate threads or �bers.

Currently, programs are written in Threaded-C, which ex-
tends the C language with multithreading instructions. It

is clean and powerful enough to be used as a user-level, ex-
plicitly parallel programming language.

The EARTH programming model has been realized on a
MANNA platform. MANNA ( Massively parallel Archi-

tecture for Numerical and Nonnumerical Applications) is a

multiprocessor platform built by GMD-FIRST. Each pro-
cessing node consists of two Intel i86x XP RISC CPUs (sim-
ilar to the Intel Paragon), but without the OS "�rewall" to
facilitate runtime system research and experiments.

5. PERFORMANCE RESULTS
In this section, we discuss the performance results for the al-

gorithms presented in the previous sections. The algorithms
have been implemented in the Threaded-C language on the
simulator for EARTH- MANNA called SEMi.

There are two con�gurations supported by the SEMi simu-
lator: EARTH-MANNA-D and EARTH-MANNA-S con�g-

urations. In section 4, we explained that the EARTH EU
and SU emulate the two processors of the MANNAmachine.
This is called the dual processor (DUAL) version or EARTH-
MANNA-D. But since most multiprocessors have only one
CPU per node, we also have a single processor (SPN) imple-

mentation where only one processor of the MANNAmachine
emulates both the EU and SU. With only a single CPU to
execute both the program code and the multithreading sup-
port code, it is necessary to �nd an e�cient way to switch
from one to the other. The EARTH operations are there-
fore replaced by in-line code in the EU to carry out these

operations rather than sending the requests to the SU. For
some simple operations, doing them in-line in the EU may
take less of the EU's time than sending the request to the
SU [24]. We have experimented with both these con�gura-
tions for both the sender-initiated and receiver-initiated al-
gorithms. For reference purposes, we have also implemented

the best known sequential algorithm for the FFT on a single
node MANNA. The algorithm takes 866ms for performing
FFT on 216 data points on an i860 processor [24].

5.1 Receiver-Initiated Approach
In the receiver-initiated algorithm, we partition the N out-
put points into N

P
contiguous points and distribute them to

each of the processors. The �rst logN � log P iterations
are local computations and the last log P iterations require
remote communication realized as a multithreaded phase in
this algorithm.

Figures(4,5) show the performance results with varying prob-

lem size. The total execution time of the entire FFT al-

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
Number of Processors vs. Execution time

Number of Processors

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

N=210

N=212

N=214

Figure 4: Receiver-Initiated Algorithm: Scalabil-
ity w.r.t machine size with varying problem size on
EARTH-SPN(Total Elapsed Time)

gorithm is depicted in these �gures on EARTH-SPN and
EARTH-DUAL. This includes both log(N)-log(P) iterations
of local computation and log(P) iterations involving remote
computation/communication (multithreading). Notice that
for small number of processors the execution time is steep

but as the machine size increases the performance is sig-
ni�cantly improved. For small values of P the number of
threads to be handled is relatively large and that is the rea-
son for higher execution times in such cases. For example, if
N = 214, and P = 64, each processor contains 28 data points
per processor (N

P
data points). The number of threads gen-

erated in the system is N(P � 1) which is (63) � 214. Since
at each iteration a processor requires a mate to compute its
buttery computation, each processor sends out a thread
to its mate processor requesting data. Each processor is

either busy sending a thread requesting data or busy han-
dling the request. This is performed by each processor at
every iteration. Therefore, the processors load is equally
balanced and performing either one of the tasks, eliminat-
ing the need to be idle at any point in time. The algorithm
has overlapped computation with communication appropri-

ately, thereby, producing a near-linear speedup.

Comparing the performance on SPN and DUAL con�gura-
tions, we observe that if we ood the system with enough
parallel threads the performance of the multithreading im-

plementation is improved signi�cantly as the number of pro-
cessors is increased. One implication is that as long as there
are enough parallel threads in the system, the processors are
never idle.

The performance results with respect to varying machine

size on the processors are depicted in Figures(6,7). As the
�gures show, with the increase in the problem size the execu-
tion time decrease for varying processors size. The relative
speedup is about 50% on 64 processors.

We observe that in the above �gures, the SPN con�gura-

tion performs better than the DUAL con�guration. In the

181



0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200
Number of Processors vs. Execution time

Number of Processors

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

N=210

N=212

N=214

Figure 5: Receiver-Initiated Algorithm: Scalabil-
ity w.r.t machine size with varying problem size on
EARTH-DUAL(Total Elapsed Time)

SPN version there is a single processor that performs both

the task of the EU and SU. That is, it handles the network
communication/synchronization and computation aspect of
the algorithm. However, this does not seem to degrade the
performance of the algorithm and also its performance is
better than the DUAL con�guration which has two proces-

sors to perform the tasks of EU and SU. In SPN, the EU
performs all the EARTH operations e�ciently without the
need to send to the SU like in the dual processor which
creates an overhead and wastes CPU time unnecessarily.

5.2 Sender-Initiated Approach
Figures(8,9) show the scalability results as the input prob-
lem size increases for both the DUAL and SPN con�gura-
tions. The number of points per thread is 16 (B = 16).

Therefore for N = 212 there are 256 threads and for N =
216, there are 4096 threads in the system. The EARTH-SPN
version performs better than the EARTH-DUAL version for
small number of processors, especially. However, for large
number of processors, we observe that the execution time in
both cases is very minimal for all problem sizes. We see that

the proper overlap of communication and computation has
produced better results even with one processor performing
both tasks. In the DUAL version, the overhead involved in
sending messages to SU by EU creates a bottleneck every
time the EU needs to communicate remotely, as mentioned

earlier in the receiver-initiated approach. This, therefore, is
the reason for poor performance for very small number of
processors in the DUAL version as in the case of receiver-
initiated approach.

Figures(10,11) show the scalability results as the number of

points per thread is increased on a �xed size, N = 212. For
B = 256, the number of threads in the system is N

B
= 16

threads. We observe after 16 processors , there is no change
in the execution time. The maximum number of processors
that will be kept busy using a round-robin load balancing
fashion is 16 since there are only 16 threads in the system.

There is not enough parallelism (threads) in the system to

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

100

200

300

400

500

600
Problem Size  vs. Execution time

Problem Size

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

P = 8
P = 16
P= 32
P = 64

Figure 6: Receiver-Initiated Algorithm: Scalabil-
ity w.r.t problem size with varying machine size on
EARTH-SPN(Total Elapsed Time)

balance load on all processors. Beyond 16 processors, the
others are idle. This is the reason for the stationary ex-
ecution time after 16 processors for B = 256. However,

for B = 4 (1024 threads) and B = 16 (256 threads), there
is enough parallelism to keep all processors busy. There-
fore, we see a gradual decrease in the execution time as the
number of processors increases. The best result is obtained
when there are 16 threads and 16 processors. This leads to a
coarse-grained implementation with one thread in each pro-

cessor. If there is more than one thread in the processor (e.g.
1024/64 = 16 threads/processor), each processor executes a
thread to completion before switching to its next thread.
There are B points in a thread. So each thread executes
the FFT algorithm sequentially on its B points, then uses a
split phase transaction to send the produced results to the

consumer thread. It is after this split phase transaction op-
eration that the processor switches to the next thread. This
is the reason that the execution time for 32 processors on a
block size of 4 is slightly more than that of block size 16. If
we compare both SPN and DUAL versions, the SPN version
does better and the same reasoning as explained previously

holds.

We have noticed poor scalability in the sender-initiated ap-
proach for a �xed block size on di�erent machine sizes. The
number of threads is proportional to the number of blocks

and is independent of the number of processors. This obvi-
ously indicates that one has to choose the appropriate block
size to provide enough threads in the system for full load
balancing of the processors.

Figures(12,13) compare the performance results of the two

approaches (receiver versus sender initiated) on an input of
size 214 with two di�erent block sizes for the sender-initiated
method. The comparison is between the total elapsed time
in both cases. Note that for a block size of 1, the receiver-
initiated approach performs slightly better than the sender-
initiated approach. The reason behind this is that for N =

214 there are N

B
= 214 threads generated. Each data point

182



10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

100

200

300

400

500

600

700

800
Problem Size  vs. Execution time

Problem Size

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

P = 8
P = 16
P= 32
P = 64

Figure 7: Receiver-Initiated Algorithm: Scalabil-
ity w.r.t problem size with varying machine size on
EARTH-DUAL(Total Elapsed Time)

is now a thread. These threads are distributed in a round
robin fashion to each of the processors. For P = 64, each
processor contains, 28 threads. The synchronization primi-
tives between these threads have to be set up dynamically
at runtime. At each iteration, there are 64 synchroniza-

tion primitives that need to be coordinated. This is very
time consuming. Thus, for large number of processors, the
receiver-initiated approach performs better. When P = 2,
the number of threads per processor in the sender-initiated

approach is 214

2
= 213. For the receiver initiated approach

there are N(P � 1) threads (214). However, as the �gure
shows the execution time in both approaches for P = 2 is
approximately the same. In the sender-initiated approach,
due to the number of synchronization slots that needs to be
set up between the two processors for the threads at each

iteration during runtime creates performance degradation.
And for the receiver-initiated approach there are too few
processors to handle the huge number of threads.

However when B = 2, the number of threads is 213 for the
sender-initiated approach. There are now two points per

thread. Again for P = 64 processors there are 27 threads per
processor with two points per thread. The buttery com-
putation within the points in the thread is sequential. Note
that in Figure(13), for small number of processors, the syn-
chronization slot assignment does not a�ect the performance

of the algorithm. This is mainly because one synchroniza-
tion slot is set up for both the two points in a thread. In
general this is true when N , P and B are powers of 2. The
algorithm works such that the mate points for a particular
thread reside in the same thread of its mate processor. It is
therefore not necessary to set up a sync slot for each of the

two points in the thread, but rather assign one sync slot per
thread. This greatly reduces the synchronization slot com-
pute time. For only two processors the synchronization is
between the two processors only. However for 64 processors,
the synchronization mechanism is between all 64 processors
which changes dynamically at runtime. So, each processor

needs to set up 27 synchronization slots at runtime. This

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
# of Processors vs FFT Execution Time with Block Size = 16

Number of Processors

F
F

T
 E

xe
cu

tio
n 

T
im

e 
(m

se
c)

N=212

N=214

N=216

Figure 8: Sender-Initiated Algorithm:Scalability
w.r.t to machine size with varying problem size and
�xed block size on EARTH-SPN

is again time consuming. Thus, the execution time is no
better than the receiver-initiated approach for large number
of processors. For P = 2, there are 26 threads per processor

compared to 214 threads in the receiver-initiated method.
Therefore, the sender-initiated method performs better.

As the block size increases the number of points per thread
also increases. The computation within a thread is sequen-
tial. Since there is one synchronization slot assignment per

thread the set up greatly reduces as the block size reduces.
Also, increasing the block size makes the problem coarse-
grained in the sender-initiated approach.

In conclusion, it is safe to say that for a given problem
size and machine size, the receiver-initiated method per-

forms better than the sender-initiated approach for smaller
block sizes. In the sender initiated method, the block size
have to be properly de�ned to get good performance. The
more coarse grained the problem gets, the better the results
are. For large number of processors, the receiver-initiated
method has always performed either equally or better.

6. CONCLUSIONS
In this paper, we have presented two multithreaded algo-
rithms for the FFT problem: receiver-initiated and sender-
initiated. In the receiver-initiated approach the multithreaded

version of the algorithm due to its �ne-grain communica-
tion/computation ratio produced superb results for large
number of processors. This algorithm extracts full paral-
lelism in the FFT computation. We achieve a near linear
speedup as the number of processors increases, even when
there are large number of threads in the system. In the

sender-initiated approach the number of threads in the sys-
tem is �xed at runtime and can be independent of the num-
ber of processors. We observed that the best result is ob-
tained when there is one thread per processor which pro-
duces a coarse-grained implementation. Our implementa-
tion showed that for certain block sizes on �xed problem size

and machine size, the receiver-initiated approach performed

183



0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200
 # of Processors vs FFT Execution Time with Block Size = 16

Number of Processors

F
F

T
 E

xe
cu

tio
n 

T
im

e 
(m

se
c)

N = 212

N = 214

N = 216

Figure 9: Sender-Initiated Algorithm:Scalability
w.r.t to machine size with varying problem size and
�xed block size on EARTH-DUAL

better than the sender-initiated approach. For large num-
ber of processors, both the algorithms perform well, yielding
execution times of only 10 msec for an input of 16 K data
points on a 64 processor machine, assuming each processor

running at 140 MHz clock speed. Overall, the sender initi-
ated algorithm gave the best performance for smaller ma-
chine sizes and certain block sizes, while for large machine
sizes both the algorithms performed equally well.

7. REFERENCES
[1] Angelopoulos G. and Pitas I. Parallel implementation

of 2-d �t algorithms on a hypercube. In Proc. Parallel

Computing Action, Workshop ISPRA, Dec. 1990.

[2] Angelopoulos G., Ligdas P. and Pitas I.
Two-dimensional �t algorithms on parallel machines.
In Transputing for Numerical and Neural Network

Application, G.I. Reijns, editor, IOS Press, 1992.

[3] Cho-Chin Lin, V.K. Prasanna, and A.A Khokhar.
Scalable parallel extraction of linear features on mp-2.

In Workshop on Computer Architectures for Machine

Perception, pages 352{361, New Orleans, Louisiana,
1993. IEEE Computer Society Press.

[4] Cochran W.T and Cooley J.W et.al. What is the fast

Fourier transform? IEEE Transactions on Audio and

Electroacoustics, 15:45{55, 1967.

[5] Cooley J.W. and Lewis P.A. and Welch P.D. The Fast

Fourier transform and its application to time series

analysis. Wiley, New York, 1977. In statistical
Methods for Digital Computers.

[6] Frigo M. and Steven. Fftw. In

http://theory.lcs.mit.edu/ �tw, 1999.

[7] Gentleman W.M and Sande G. Fast Fourier
transforms for fun and pro�t. In Proc. 1966 Fall Joint

Computer Conference AFIPS 29, pages 563{578, 1966.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120
# of  Processors vs FFT Execution Time with Input Size = 212

Number of Processors

E
xe

cu
tio

n 
T

im
e 

(m
se

c)

Block Size  = 4
Block Size = 16
Block Size = 256

Figure 10: Sender-Initiated Algorithm:Scalability
w.r.t to machine size with varying block size and
�xed problem size on EARTH-SPN

[8] Hennesey J.L. and Patterson D.A. Computer

Architecture: A quantitative Approach, Second

Edition. Morgan Kaufmann,Inc., San Francisco,CA,
1996.

[9] Hum H.H.J. et. al. A study of the earth-manna
multithreaded system. In Intl. J. of Parallel

Programming, volume 24(4), pages 319{347, Aug.
1996.

[10] Hwang K. . Advanced Computer Architecture:

Parallelism,Scalability, Programmability.
McGraw-Hill,Inc., New York,NY, 1993.

[11] Jamieson L.H, Delp E.J et.al. A library based
program development environment for parallel image
processing. In Scalable Parallel Library Conference,
pages 187{194, Mississippi State University,

Mississippi, 1993.

[12] Kamin R.A. and Adams G.B. Fast fourier transform
algorithm design and tradeo�s on the cm-2. In Proc.

Workshop Comput. Arch. Pat. Anal. Mach. Intell.,
pages 184{191, Oct. 1987.

[13] Kumar V. and Grama A. et. al. Parallel Computing:
Design and Analysis of Algorithms.
Benjamin-Cummings Publishing Company, 1994.

[14] Leighton F.T. Introduction to Parallel Algorithms and

Architectures. Morgan Kaufmann, San Mateo,
California, 1992.

[15] Leiserson C. Cilk. In http://supertech.lcs.mit.edu/cilk,
1999.

[16] Loan C.L. Computational frameworks for the fast
fourier transform. SIAM Journal, Frontiers in Applied

Mathematics, 1992.

[17] Maquelin O. et. al. Costs and bene�ts of

multithreading with o�-the-shelf risc processors. In

184



0 10 20 30 40 50 60 70
0

20

40

60

80

100

120
# of Processors vs FFT Execution Time with Input Size = 212 

Number of Processors

F
F

T
 E

xe
cu

tio
n 

T
im

e 
(m

se
c)

Block Size  = 4
Block Size = 16
Block Size = 256

Figure 11: Sender-Initiated Algorithm:Scalability
w.r.t to machine size with varying block size and
�xed problem size on EARTH-DUAL

Proc. of the First Intl. EURO-PAR Conf., pages
117{128, Stockholm, Sweden, Aug. 1995.
Springer-Verlag.

[18] Oppenheim A.V. and Willsky A.S. Signals and
Systems. Prentice Hall, Englewood Cli�s, New Jersey,
1983.

[19] Pease M.C. An adaptation of the fast Fourier

transform for parallel processing. Journal of the ACM,
15:252{264, 1968.

[20] Pitas I. Parallel Algorithms for Digital Image
Processing, Computer Vision and Neural Networks.
John Wiley and Sons, New York, NY, 1993.

[21] Prasanna V.K, Cho-Li Wang and Khokhar A.A. Low
level vision processing on connection machine cm-5. In
Workshop on Computer Architectures for Machine

Perception, pages 117{126, New Orleans, Louisiana,
1993. IEEE Computer Society Press.

[22] Sohn A., Kodama Y., et.al. Fine-Grain Multithreading
with the EM-X. In Ninth ACM Symposium on

Parallel Algorithms and Architectures, pages 189{198,
Newport, Rhode Island, June 1997.

[23] Stone H.S. Parallel processing with the perfect shu�e.
In IEEE Trans. Computers, C-20, pages 153{161,
1971.

[24] Kevin Bryan Theobald. EARTH: An E�cient

Architecture for Running Threads. PhD thesis, McGill,
Montreal, May 1999.

[25] Thompson C.D. Fourier transforms in VLSI. IEEE
Transactions on Computers, 32:1047{1057, 1983.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
Number of Processors vs. Execution time on N=214

Number of Processors

E
xe

cu
tio

n 
T

im
e(

m
se

c)

Sender−Initiated Approach (Block Size = 1)
Receiver−Initiated Approach

Figure 12: Comparison between the sender-initiated
and receiver-initiated (half data size)approaches

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
Number of Processors vs. Execution time on N=214

Number of Processors

E
xe

cu
tio

n 
T

im
e(

m
se

c)

Sender−Initiated Approach (Block Size = 2)
Receiver−Initiated Approach

Figure 13: Comparison between the sender-initiated
and receiver-initiated (half data size) approaches

185


