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Abstract

The Bulk-Synchronous Parallel (BSP) model was proposed

by Valiant as a model for general-purpose parallel computa-

tion. The objective of the model is to allow the design of

parallel programs that can be executed efficiently on a va-

riety of architectures. While many theoretical arguments in

support of the BSP model have been presented, the degree to

which the model can be efficiently utilized on existing parallel

machines remains unclear.

To explore this question, we implemented s small library

of BSP functions, called the Green BSP library, on several

parallel platfotms. We also created a number of parallel

applications based on this library. Here, we report on the

performance of six of these applications on three different

parallel platforms. Our preliminary results suggest that the

BSP model can be used to develop efficient and portable

programs for a range of machines and applications.

1 Introduction

A fundamental obstacle to the widespread use of parallel ma-

chines for general-purpose computing is the lack of a widely

accepted standard model of parallel computation. Unlike the

world of sequential computing, where the widely accepted

von-Neumann model facilitates the development of portable

software, parallel programs developed on one machine of-

ten require major modifications before they can be efficiently

employed on other parallel machines.

The Bulk-Synchronous Parallel orBSP model [34] was pro-

posed by Valiant as a “bridging model” that provides a stan-
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dard interface between the domains of parallel architectures

and algorithms. In the BSP model, a parallel machine consists

of a set of processors, each with its own private memory, and

an interconnection network that can route packets of some

fixed size between processors. The computation is divided

into supersteps. In each superstep, a processor can perform

operations on local data, send packets, and receive packets.

A packet sent in one superstep is delivered to the destination

processor at the beginning of the next superstep. Consecutive

supersteps are separated by a global synchronization of all

processors.

The communication time of an algorithm in the BSP model

is given by a simple cost function. The two basic parameters

that model a parallel machine are(1) the gap g, which reflects

network bandwidth on a per-processor basis, and (2) the la-

tency L, which is the minimum duration of a superstep, and

which reflects the latency to send a packet through the network

as well as the overhead to perform a global synchronization.

Consider a BSP program consisting of S supersteps. Then

the execution time for superstep i is given as

W~ +gh~ + L,

where Wi is the largest amount of work (local computation)

performed, and hi the largest number of packets sent or re-

ceived by any processor during the superstep, The execution

time of the entire program is defined as

W+gH+LS, (1)

and W the work” depths of the superstep- and the program,

respectively.

Efficient programming of a BSP machine is based on a

simple objective. To minimize the execution time as given by

Equation (l), the programmer must attempt to (1) minimize

the work depth of the program, (2) minimize the maximum

number of packets sent or received by any processor in each

superstep, and (3) minimize the total number of supersteps

in the program. In practice, these objectives can conflict,

and trade-offs must be made. The correct trade-offs can be

selected by taking into account the g and L parameters of the

underlying machine.

Valiant [34, 35, 33] argues that, at least in theory, this ap-

proach is sufficient for portability and efficiency, by showing

that many other programming styles can be automatically
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and efficiently transformed into a BSP style. Furthermore,

Gerbessiotis and Valiant [13] point out that a direct imple-

mentation on the B SP model will often lead to even better

performance.

We briefly discuss two aspects of the BSP model. One is

that the BSP model views the interconnection network as a

batch-routing network that can efficiently route arbitrary bal-

anced communication patterns, The model ignores the par-

ticular network topology of the underlying machine. Hence,

the model only considers two levels of locality: local (inside

a processor) or remote (outside a processor).

Another observation is that the BSP model requires com-

plete cooperation among all processors to route even a single

message. While this may seem an unnatural restriction, we

argue that it is appropriate. As stated above, Valiant has made

numerous theoretical arguments that parallel programming

need not be optimized at the single-message level. Moreover,

in the context of interconnection networks, one can achieve

better bandwidth when routing large batches of messages.

In contrast, asynchronous models seem to encourage the

programmer to design and optimize their code with respect to

the arrival of single messages. Thus, it is contingent upon the

architect to attempt to minimize single-message latencies.

Finally, we also feel that it is fundamentally easier to rea-

son about the correctness and performance of BSP programs,

as opposed to aggressively asynchronous message-passing

programs.

1.1 Content of this Paper

We attempt to evaluate the use of the BSP model for the design

of efficient and portable parallel programs. In particular, we

are interested in exploring the range of algorithms and appli-

cations that can be efficiently implemented in the BSP model.

While there seems to be general agreement that some prob-

lems can be efficiently solved in this model, it has also been

argued that there may be other problems that require asyn-
chronous message passing or even shared memory for an effi-

cient implementation on current machines. Thus, we believe

that in order to argue for BSP as a basis of general-purpose

parallel computing, it is necessary to show that the model is

not restricted to certain classes of well-behaved problems, but

can indeed efficiently implement most parallel applications of

interest. By exploring this issue, we also wish to give a basis

for a comparison with asynchronous models such as LogP

and certain shared-memory models.

In particular, we designed several parallel applications that
use the Green BSP library [15], a small library of BSP

message-passing functions that we have implemented on a

number of parallel platforms. The applications are:

● an N-body simulation using the Barnes-Hut algorithm,

. an ocean eddy simulation program adapted from the

SPLASH application suite [31],

● a minimum spanning tree algorithm,

● a shortest paths algorithm,

● a multiple shortest paths algorithm, and

● a dense matrix multiplication algorithm.

In all of our applications, we used only the BSP cost model

in both the design and optimization stages of the program

development. That is, we made all of our design and opti-

mization choices based purely on the BSP cost function as

described by Equation (l). As stated earlier, a BSP program-

mer may use knowledge of a machine’s g and L parameters

in order to write more efficient code. Our approach, how-

ever, merely assumed that communication is somewhat more

expensive than local computation and that global synchro-

nization is considerably more expensive than communication.

This approach appears reasonable for a wide range of current

machines. In discussing our applications, we touch upon

some of our programming decisions and their relationship to

the BSP cost model.

We describe implementations of the Green BSP library

on three different machines: a shared-memory machine, a

distributed-memory machine, and a network of PCs. We then

characterize the performance of these machines in terms of

the BSP cost model, and evaluate the performance of our

applications on these machines.

Our results are encouraging, in that our BSP applications

obtain significant speed-ups on all three systems, including

nearly perfect speed-up in several instances. That is, we pro-

vide some evidence that the BSP model is useful for designing

efficient and portable parallel programs.

Another question that we investigate is the accuracy of the

BSP cost function in comparison to the actual running times.

Following [6], we provide data for our applications that can

be used to predict the execution times on each machine under

the BSP cost model.

Our results demonstrate that the model was able to predict

execution times fairly accurately, although we emphasize that

we used the BSP cost function only to model communication

and synchronization costs, and for many of our application

these overhead costs were a small component of the overall

execution time.

Even for those applications for which the communication

and synchronization costs were significant, our results suggest
the cost function is quite useful for predicting performance
trends. For example, consider the performance of the ocean

simulation with input size 130 in Figure 1.1. The cost model

accurately predicts that little will be gained by using 4 PCs

rather than 2, and that performance will severely degrade

when using 8 PCs. Similarly, the cost function accurately

predicts that the performance of the NEC Cenju on this appli-

cation will not improve much by using more than 4 processors

on this input size.
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Figure 1.1: Actual and predicted times and predicted com-

munication (including synchronization) times for Ocean (size

130)

1.2 Caveats

Before proceeding, we mention some caveats that the reader

should keep in mind when evaluating our data.

●

●

●

e

We report our speed-up numbers in terms of the ratio

of the parallel runtime and the runtime of the same pro-

gram on a single processor, Viewing this definition of

speed-up as a performance gain assumes that the single

processor code is a reasonable sequential program. For

most of our applications this is the case, even though the

sequential code may not be completely optimized. For

matrix multiplication, however, many highly optimized

sequential codes exist, and thus our speed-ups for this

application should be interpreted cautiously.

Several of our results exhibit superlinear speed-up. As

has been repeatedly observed, the total computational

work for a parallel program may actually be less than

that of a sequential version of the program, There area

variety of possible explanations for this effect (ranging

from caching to suggestions that the sequential program

is flawed.) As stated above, we provide data about the

total work for each application and problem size. We

discuss this issue in more detdl in Section 3.

Part of our objective is to examine the predictive capa-

bility of the BSP cost model. We consider BSP to model

only communication and synchronization; I/O and lo-
cal computation are not modeled. As a result, none of

our experiments include I/0, and the work depths are

measured as best as possible on our platforms.

One would like to compare results using the BSP model
with results obtained by using other models, or by pro-

gramming directly for a particular machine. While

we compare our ocean and N-body applications with

●

1.3

shared-memory implementations, we warn the reader

that detailed comparisons will not be found in this work.

We hope that our applications can be used as a basis for

future research along these lines.

‘he machines used for this paper all exhibit only a mod-

erate level of parallelism (up to 16 processors). The

extent to which our results are applicable to larger ma-

chines is an open question. Promising initial results have

been obtained for experiments on machines with 64 and

more processors, but are not included here.

Related Work

Since the introduction of the BSP model, a number of papers

have considered the design and analysis of algorithms under

the BSP model; see, for example, [4, 6, 13,25, 33].

Several groups of researchers are currently exploring the

use of the BSP model on existing parallel machines. The

Oxford BSP library, developed by Miller [27] while at Oxford

University, allows a processor to directly access the memory

of another processor. This makes the library very efficient to

implement on shared-memory machines. Moreover, it is well

suited for many static computations that arise in scientific

computing. In contrast, the Green BSP library is based on

message passing, which requires the programmer to prepare

and read messages. On the other hand, the Green BSP library

is better suited for the dynamic applications that we have

experimented with.

Also at Oxford University, W. McCOI1’S group is working

on the development of several BSP programming languages

and industrial applications [18, 20, 26].

A group at Harvard University lead by T. Cheatham and L.

Valiant is studying higher-level programming languages and

compilation techniques for the BSP model [9, 8]. R. Bisseling

at the University of Utrecht is studying the use of the BSP

model in the implementation of scientific computations [5, 6].

A recent implementation of a plasma simulation using the

Oxford BSP library is described in [28].

A number of other models for general-purpose parallel

computing have been proposed in recent years; see [24] for

an overview. An important example for a model based on

asynchronous message passing is the LogP model [11], which

models the performance of point-to-point messages with three

parameters representing software overhead, network latency,

and communication bandwidth. The LogP model has been

used as a performance model for active messages[36] and
the Split-C language [10], where it has been applied to the

analysis of several algorithms.

Other related models are the Postal Model [2], the Atomic

Model [22], and several models for end-point contention (e.g.,

see [1]) inspired by the prospect of optical communication in
parallel machines. Like BSP and LogP, these models do not

refer to the topology of the underlying machine, but assume

that the interconnection network behaves essentially like a
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completely connected network, with the only contention aris-

ing at the processor-network interface.

A somewhat different approach to portable parallel pro-

gramming is based on standardized message-passing libraries

such as PVM [12] and MPI [16]. While these libraries pro-

vide a common set of functions on a variety of parallel ma-

chines, they do not offer any cost function (in the strict sense)

that could guide the programmer in the design of efficiently

portable code. In fact, it seems that the very idea of these

libraries is to offer a fairly rich set of functions, including

various collective operations, each of which can be optimized

with respect to the underlying architecture. This rules out any

simple cost model based on just a few parameters, whereas

the BSP and LogP models assume a very small set of basic

functions and (at least in theory) require any other operations

to be implemented on top of these functions.

Finally, our choice of the application programs and presen-

tation of the results is influenced by the SPLASH application

suite for shared-memory machines [30]. Also, our BSP code

for the ocean simulation was obtained by modifying the cor-

responding SPLASH program.

The remainder of the paper is organized as follows. Section

2 describes the versions of the Green BSP library used in our

experiments and their performance. Section 3 describes the

application programs and their performance. Finally, Sec-

tions 4 and 5 offer some concluding remarks and directions

for future research,

2 BSP System: Implementation and Results

Our experiments use the Green BSP library [15], a small

library of functions that implement the BSP model. The

philosophy behind the library is to provide basic BSP func-

tionality with a minimal number of functions. Thus, Green

BSP offers only one type of communication and one type of

synchronization operation.

This minimalist approach serves two purposes. First, it

greatly simplifies the implementation of the library. A Green

BSP library can be implemented on almost any parallel plat-

form. Second, it focuses attention on the fundamental aspects

of the BSP model. Part of our objective is to demonstrate that

efficiency can be achieved even with such simple functional-

ity. A description of the functions in the Green BSP library

is given in Appendix A.

It should be noted that it is also possible to write applica-

tions in the BSP programming style using existing portable

libraries such as PVM [12] and MPI [16]. However, these

libraries provide far greater functionality than is required for

the BSP model, and were not designed with the goal of sup-

porting efficient BSP computation.

The Green BSP library has been implemented on a num-

ber of platforms, The results in this paper are based on the

following library versions and parallel machines:

●

●

●

a shared-memory version, used on an SGI Challenge

with sixteen MIPS R4400 processors,

an MPI version, used on an NEC Cenju consisting of

sixteen MIPS R4400 processors connected by a multi-

stage network, with a peak bandwidth of 20 Mbyteslsec

available for each processor, and

a TCP verison, used on a system of eight 166-MHz

Pentium PCs connected by a 100-Mbit Ethernet switch.

A short description of each of these library versions can be

found in Appendix B.

Figure 2.1 shows the values of L and g achieved by the

different versions of our library. The value for L corresponds

to the time for a superstep in which each processor sends a

single packet. The bandwidth parameter g is the time per

16-byte packet for a sufficiently large superstep with a total-

exchange communication pattern.

3 Applications: Implementation and Results

For each of our applications, we ran experiments on 4 or

5 different input sizes and numbers of processors, In this

section, we give a brief description of each application, and

summarize some of the results of our experiments. The com-

plete data for all experiments is given in Appendix C, where

we also explain how the numbers were obtained. A brief

overview of the performance results is shown in Figures 3.1

and 3.2.

Figure 3.1 shows speed-up results for large input sizes, for

each application and system. The speed-up results are usually

stated as the ratio of single-processor time and parallel time.

In two cases, we were unable to run the relevant problem size

on a single processor; here we give estimates of the speed-up.

In analyzing the performance of our algorithms we noticed

that the total work (i.e., local computation) performed by the

16-processor programs on the SGI were typically less than

the total work performed by the single-processor programs.

(A possible explanation is that the parallel codes were in fact

better sequential programs than the single processor codes

on these applications.) For this reason, we also include in

Figure 3.1 the ratios of total work and parallel time for the

16 processor SGI. (These are the values in parentheses in the

speed-up column for the SGI.)

In Figure 3.2, we provide some data about the abstract BSP
performance of our applications. We also provide the algo-

rithmic parameters, including the work depth (as measured on

the SGI), the sum over all supersteps of the maximum number

of messages sent or received by any processor, and the num-

ber of supersteps. We also include the actual running times

and predicted running times using the B SP model, where the

values for L and g are taken from Table 2.1.

We also include the total work on 16 processors for the

SGI, where the total work is defined as the sum of the local



SGI S(H Cenju Cenju Pc Pc

bandwidth cost latency cost bandwidth cow latency cost bandwidth cost latency cost

nprocs

1

2

4

8

9

16

(microseconds) (microseconds) (microseconds) (microseconds) (microseconds) (microseconds)

.77 3 2.2 130 .92 2

.82 16 2.2 260 3.3 540

.88 29 2,2 470 4.8 1556

.97 52 2.5 1470 8.6 3715

1.0 57 2.7 1680

.95 105 3.6 2880

Figure 2.1: BSP system parameters

computation done by all the processors. This specifically

does not include idle times caused by load imbalance, or any

communication time.

The work depth and the total work of the parallel programs

were computed by simulating the parallel computation on a

single processor using an IPC shared-memory implementa-

tion of our library. In some of our applications, this introduces

systematic errors that produce high predicted running times.

That is, occasionally the work depth will be more than the

actual parallel runtime. We point out the applications where

we believe these errors to occur in the discussion below.

In the following, we give a brief discussion of the applica-

tions. For each application, we describe its implementation,

and discuss the resulting performance in terms of highlights,

lowlights, algorithmic performance in the BSP cost model,

and possible implications. We also discuss some additional

experiments and analyses whose data was not included in the

main part of this paper.

3.1 Ocean Simulation

We converted an ocean eddy simulation program from the

Stanford Parallel Library for Shared Memory Applications

(SPLASH) [31] to our BSP system. The program computes

ocean eddy currents using a multigrid technique on an under-

lying grid; see [29] for details. The conversion to BSP was

fairly straightforward, due to the fact that the SPLASH code

for this application was basically already in a BSP style.

3.1.1 Discussion

The performance of the BSP ocean code on the SGI matches

that of the direct shared-memory SPLASH implementation

for problem size 258, This may be seen as somewhat sur-

prising given that we are using message passing on a shared-

memory architecture. We believe this speaks well of our

*This is an estimate on the speed-up as we were unable to run the largest

problem size on a single processor.
#value in pmntheses is the speed-up relative to the total work Perfortned

by at] 16 processors. This speed-up is smaller than the speed-up relative to

the single-processor version, thus indicating that the parallel program is in
fact performing less work than the single-processor version.

library implementation in particular and of the prospect of

efficient BSP library implementations in general.

On the NEC Cenju, the ocean code performs relatively

poorly with 16 processors, except for the largest problem

size, where it performs much better (perhaps nearly ideal; we

only give a plausible lower bound in the table, as the problem

was too large for a single processor). We suspect that this is

due to the fairly large latency of the BSP implementation on

the NEC Cenju, given that the BSP algorithmic data in Table

C. 1 shows that the number of supersteps is quite large.

A surprising aspect of the ocean program is that the number

of supersteps actually decreases with increasing problem size.

Thus, as the problem size increases, the latency overheads will

become less significant at an even faster rate than one would

normally expect in parallel computing. It can be hoped that

the high-latency systems quickly “catch up” as the problem

size grows. Our data shows that this occurs for both high-

latency systems (8 processor PC-LAN and 16 processor NEC

Cenju) at a problem size of 514.

We note that our estimates for the computational work of

the ocean program are systematically too high. In particu-

lar, the estimates obtained through the IPC single-processor

simulation are actually higher than the actual running time

of the code. Thus, our predicted times for the ocean pro-

gram are too high. We also ran additional experiments on the

PC-LAN for this application that suggested that the compu-

tational work of the parallel program goes down dramatically

for the PC-LAN, while it does not for the SGI system. Thus,

any observed speed-up for the PC-LAN may have as much to

do with this effect as with parallelism.

3.2 IV-Body Simulation Using Barnes-Hut

The N-body problem is the problem of simulating the move-

ment of a set of N bodies under the influence of a gravita-

tional, electrostatic, or other type of force. The problem has

numerous applications in astrophysics, molecular dynamics,

fluid dynamics, and even computer graphics.

The N-body code in this study is based on the Barnes-

Hut algorithm [3], which uses an irregular oct-tree structure,

called BH tree, to hierarchically group bodies into clusters

according to their distribution in three-dimensional space.



SGI ( 16 procs) Cenju ( 16 procs) PCS+LAN (8 procs)

time spdp time spdp time spdp

Ocean (size = 514) 2.23 17.0( 15.88)# 4.0 13* 6.46 7.2

N-Bodv (size= 64K) 5.04 14.8(13.9) 3.72 15.6 6.06 7.6

MST ;s;ze = 40K) ‘ 0.4 15.8’[9.8{ I 0.56 10.1 I 0.65 4.2

SP (size= 40K)’
I $ I
I 0.26 9.7 (7.23; I 0.48 5.3 I 0.59 2.6

MSP’(size = 40K) 4.71 9.4 (8.4~ 3.68 12* 4.88 7.1

MM (size= 576) 2.42 11.4 2.31 13 na na

Figure 3.1: Speed-up summaries for large problem size

SGI SGI SGI Total Work Total Work

app size pred time WHS 16 procs 1 proc

ocean 514 2.48 2.23 2.38 69946 312 35.43 38.43

nbody 64k 4.97 5.04 4.95 24661 6 70.06 74.08

mst 40k 0.34 0.4 0.32 9562 62 3.92 6.3

Sp 40k 0.28 0.26 0.26 2820 101 1.88 2.54

msp 40k 3.64 4.71 3.58 39874 138 39.57 44,36

matmult 576 2.09 2.42 1.97 124416 7 31.21 27.53

Figure 3.2: Algorithmic and model summaries for large problem size on 16 processor SGI system.

Our parallel implementation is similar to those of Warren and

Salmon [37] and Liu and Bhatt [23]. In particular, we use

the ORB partitioning scheme to partition the bodies among

the processors. Instead of repartitioning the bodies after each

iteration as in [371, we only do so if the load imbalance reaches

a certain threshold, as suggested in [23].

The positions of the bodies are updated in discrete time

steps. In each step, the BH tree is first constructed locally

inside each processor. Then appropriate subtrees, called “es-

sential trees”, are exchanged between every pair of processors,

such that afterwards every processor has a local BH tree that

contains all the data needed to compute the forces on its bod-

ies, and whose structure is consistent with that of the global

BH tree constructed by the sequential algorithm. A detailed

description of our implementation can be found in [32].

3.2.1 Discussion

As input for our experiments we used the Plummer model

generated by the SPLASH code [3 1]. The timing and speed-

up results in Figures 3.1 and C.4 show that for large enough

input sizes, the N-body code achieves nearly perfect parallel
speed-up on the SG1 and NEC Cenju. Our implementation

needs slightly larger input sizes than the SPLASH code to

achieve the same speed-up. However, even the largest input

size in Figure C.4 is not overly large, given that simulations

are currently performed with hundreds of thousands and even

millions of bodies [37].

The running time of the single-processor version of our im-

plementation is slightly faster than that of the SPLASH code.

As in the SPLASH code, we did not attempt to fully opti-

mize the computation of the interactions, which take around

97% of the total sequential running time for a problem size

of 16K on the SGI. Of course, doing this might increase the

relative weight of the parallel overhead, and thus decrease the

resulting speed-up.

Our N-body code performs only six supersteps per itera-

tion. This makes the program efficient even on fairly small

problem sizes and high-latency platforms. The application is

irregular and dynamic, due to the changing positions of the

bodies. However, the load distribution can be predicted fairly

accurately from that of the previous iteration, as the system

evolves only slowly. The bandwidth requirements are fairly

modest, as we were careful in minimizing the amount of data

sent during the transmission of the “essential trees”.

3.3 Minimum Spanning Tree

The minimum spanning tree of a weighted graph G is the

tree of minimum weight that contains all the nodes of G. In

our parallel implementation, we assume that the input graph

is initially partitioned among the processors. Each processor

contains a data structure representing the portion of the graph

for which it is responsible, and also a copy of each node in
the graph that is connected to a node in its portion. The nodes

for which a processor is responsible are called home nodes

and the other nodes are called border nodes.

The algorithm we use is conservative for the BSP model

in that the number of messages communicated by any proces-

1This concept was originally defined for the DRAM model by Leiserson
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sor is at most the number of border nodes in the processor.

The program starts out with a completely local phase that

computes the local components of the minimum spanning

tree. The program then enters a parallel phase that uses a

simplification of a conservative DRAM algorithm developed

by Leiserson and Maggs [21]. Once the number of compo-

nents becomes small, the program switches to a mixed par-

allel/sequential phase that first uses all the processors to find

subforests of the remaining components using edges that are

guaranteed to be in the minimum spanning tree, and then uses

a single processor to assemble the forests into components.

See [14] for more details.

The input graphs are generated as follows. Nodes are

assigned uniformly at random to points on the unit square.

Now construct a graph G(r) on the nodes by adding an edge

between all nodes within distance r. The graph G is G(d)

where J is the minimum value such that G(d) is a single

connected component. The weight assigned to edge (u, v) is

the distance between the points corresponding to u and v.

For this class of input graphs, the running time of the single-

processor version of our parallel MST code is within 5% of

a sequential implementation of Kruskal’s algorithm on 10K

node graphs.

3.3.1 Discussion

This application is a fast computation (less than a second

for the parallel code for the largest problem size). Thus,

even a modest number of communication steps can figure

significantly into the running time of the algorithm on high-

Iatency systems.

As a result of this, we once again obtain significantly better

results for the low-latency SGI than the high-latency systems.

Still we achieved a factor of 4 on the very-high latency 8

processor PC-LAN, and a factor of 10 on the high-latency 16

processor Cenju,

Looking at the algorithmic data, we observe that the number

of supersteps required for this computation grows quite slowly

with the problem size. Furthermore, the total volume of

communication is quite small relative to the computation costs

for even the smallest problem size. That is, even for our

worst machine the ratio between the total bandwidth cost and

running time for the smallest problem size is less than a third.

For the largest problem sizes the ratio is less than an eighth on

our worst B SP machine. This suggests that we could perform

MST computations on more highly connected graphs without

much degradation in performance.

Finally, as discussed in the introduction, the good speed-

up results for the minimum spanning tree application on large

input sizes shown in Figure 3.1 should be qualified, since the

total work (3.9 seconds) for 16 processors is significantly less

than the work (6.3) for a single processor. The parenthesized
number next to the speed-up, obtained by dividing the total

and Maggs [2 1].

work by the time required on 16 processors, is perhaps a more

reasonable measure of the performance of the algorithm.

Thus, the best we can claim is about 70% of ideal speed-

up (despite the speed-ups reported in the table for the SGI).

We argue that this is still quite good since our initial graph

partitioning is only load-balanced to within about 10Yo, and

the nature of the computation is quite dynamic.

3.4 Shortest Paths

A single source shortest paths computation on a weighted

graph labels each node with a distance label that corresponds

to the length of the shortest path from u to the source. In our

parallel implementation, we assume that the input graph is

initially partitioned in the same way as in the minimum span-

ning tree application, The class of graphs in our experiments

is also the same.

We first implemented a naive parallel version of Dijkstra’s

algorithm, where each processor contains a priority queue of

nodes whose distance labels have recently changed. Each pro-

cessor proceeds by removing nodes from the priority queue

and updating the neighbors as in Dijkstra’s algorithm, un-

til the priority queue is empty. Then each processor sends,

for each home node whose distance label has changed, a mes-

sage to any processor that contains that node as a border node,

and ends its superstep. This process repeats until no node is

entered into the priority queue during a superstep.

On noticing that this approach works poorly, we redesigned

the algorithm. We allowed a processor to communicate and

end its superstep whenever it had worked on its local piece

of the graph for some period of time called the work factor,

rather than having it continue until it had absolutely no work

left. This may lead to both better load balancing and quicker

convergence. In any case, it leads to better performance.

The appropriate way to use this algorithm is to adjust the

work factor according to the architecture (i.e., the work factor

should grow with L). In our data, we chose one work factor

to optimize performance across our platforms. That is, our

numbers are for the exact same program and input on all of

the architectures.

3.4.1 Discussion

For this application, the performance was limited by load-

balancing issues for the low-latency systems and by synchro-

nization costs for the high-latency systems.

For the single source shortest path problem, no efficient

parallel algorithms are currently known; this was the reason

for choosing a naive parallelization of the sequential algo-

rithm. While our best speed-up of 10 for a two-second long

computation is not an embarrassment, one can question the

scalability of this approach for shortest path computations in

general. Also, since the sequential work again decreases with
increasing numbers of processors, the reported speed-ups may

be considered generous.



Still, we felt that this was an interesting first step towards the

application of performing several shortest path computations

on the same graph. Indeed, this algorithm does serve as the

fine-grained inner loop of our next application.

3.5 Multiple Shortest Paths

In many situations, it is useful to perform a number of shortest

path computations simultaneously. Examples are the all-pairs

shortest paths problem (or a subset of all-pairs), the global

routing phase in VLSI layout, ?nd some graph partitioning

heuristics. Thus, we modified the code in the previous appli-

cation to allow the computation of many shortest path trees

simultaneously.

Here, one can use the same underlying (read-only) graph

and keep data structures for each computation for the read-

write data required in Dijkstra’s algorithm. We note that the

graph itself required Q( It?] + IV]) storage, while the read-
write data is 0( IV I), or more specifically, three integers and

one double per node.

3.5,1 Discussion

In our experiments, we performed 25 shortest path compu-
tations simultan~ously. We used the same work factor as in

the shortest path experiments. The total sequential work de-

creased only slightly with increasing numbers of processors.

Thus, our speed-up numbers are mostly due to parallelism

rather than computational advantage,

Our results for this experiment are particularly impressive

for the PC-LAN considering the high latency of this sys-

tem. We obtain a sp~ed-up of 7.1 on our 8-processor setup.

Moreover, its raw performance is essentially the same as the

16 processor SGI system, while its cost is a fraction of the

cost of the SGI system. This bodes well for the prospect of

distributed data applications on networks of workstations.

3.6 Matrix Multiplication

This program multiplies two dense n x n matrices A and B

using Cannon’s algorithm (e.g,, see [19]). The input matrices

are assumed to be initially partitioned inta blocks of size

n/fi x n/@, such that processor i holds thq block with

index (x, x -i-y mod W) of A, and the block with index (x -t

y mod fi, y) of 1?, where r = ~i/Jj3] and y = i mod ~.

The algorithm then proceeds in ~ iterations, In each

iteration, ~ach processor first multiplies its two local blocks
using a sequential blocked matrix multiplication algorithm,
and adds the result to the local part of the result matrix C, It

then sends the A block to the next processor on its right, and

the B block to the next processor below it (modulo @),

3.6.1 Discussion

The matrix multiplication program is the most trivial of our

applications, and the most regular one in terms of the com-

munication pattern. The number of supersteps is small (pro-

portional to ~), and the communication cost is mainly de-

termined by the size of the h-relations. Of course, as the

input size increases, this cost is itself dominated by the local

computation cost.

Note that this is the only application where the NEC Cenju

achieves significantly better speed-up than the SGI. Compar-

ing the results with the predicted times, we observe that our

predictions for the SGI are too optimistic. We suspect that this

may be due to the fact that the SGI is not a true BSP machine,

as the only private memory in the SGI are the caches.

4 Conclusions

We have described the implementation and performance

of several parallel applications that use a simple message-

passing library based on the BSP model. We believe that our

results are encouraging, and that they suggest that the BSP

model can efficiently execute a range of applications on many

current machines.

Concerning the accuracy of the BSP cost model, we be-

lieve that the cost model should not be expected to accurately

predict the precise running times on various input sizes and

machines. Such a “curve fitting” approach seems more real-

istic on fairly simple subroutines (i.e., broadcast or sorting)

than on more complex application programs, Also, note that
the degree to which computation and communication can be

overlapped depends on the particular architecture and appli-

cation. (While we have defined the cost function as the sum of
communication and computation costs, it is also sometimes

defined as the maximum of the two.)

However, we found the cost model to be very reliable in

modeling the overall behavior of an application, including the

prediction of “breakpoints” at which the performance changes

fundamentally due to the effects of latency, bandwidth, or

local computation. We believe that this should make the

BSP model a good evaluation tool for parallel architectures

and algorithms. In general, we feel that the cost model was

accurate enough to guide us towards an efficient solution.

5 Future Research

Additional work is certainly needed in order to arrive at a

more complete assessment of the strengths and limitations

of the BSP approach. In particular, all the experiments in

this paper were performed on parallel machines with a fairly

small number of processors, and we plan to extend our study

to several larger machines.

We are also currently working m the implementation of

some additional application programs, including the adaptive

Fast Multipole Method [7] and a hierarchical algorithm for

the radiosity problem in computer graphics [17],

Finally, much algorithmic and experimental work is still

needed in the implementation of optimized BSP libraries on



different parallel machines.
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A Description of the Green BSPLibrary

The basic communication and synchronisation functions in the

Green BSP library consists of the following three functions:

● void bspSynch (void) provides barrier synchronization.

When a process calls this function, it is stopped until all

other processes have called it. After a process returns from

a bspSynch ( ) call, all packets that were sent to it in the

previous superstep can be assumed to be available.

● void bsp SendPkt ( int, bspPkt * ) sends a packet to

another process. The first argument is the ID of the destination,

and the second argument is a pointer to the packet. All results

in this paper were obtained with a fixed packet size of J6 bytes2.

The data in the packet can be in any format, and it is up to the

programmer to provide sufficient labeling information.

● bsppkt *bspGet Pkt (void) returns a pointer to a packet

that was sent to the process in the previous superstep. Packets

may be returned by bspGet Pkt in any arbitrary order. The

function returns NT-JLL if there are no further packets to get.

In addition, the library contains several auxiliary functions (e.g.,

for determining the process ID or the number of unreceived pack-

ets). While the Green B SP library provides a message-passing en-

vironment, it can also be very easily and efficiently implemented on

shared-memorys ystems. In particular, this allows us to compare our

results to those of programs written specifically for shared memory.

B Library Implementations

Following we give a brief description of each of the three library

implementations used in this paper.

B.1 The Shared-Memory Version

In the shared-memory implementation, each process has two large

input buffers in shared memory, which are used in alternating

supersteps.3 Because the input buffers have many writers, they

are protected by locks. However, when a process acquires a lock it

allocates enough space for 1000 packets, so the locking cost is small

per packet. Also, because the locks are used infrequently, we were

able to use Lamport’s software locking alorithm, which is tuned for

the case of low contention. There is one case that probably would

generate lock contention: supersteps with small all-to-all communi-

cation patterns. To eliminate this case we begin each superstep by

pre-allocating p memory blocks (one for each writer) at the start of

each input buffer. With this scheme, the locks are only used when

there is actually enough communication to pay for them.

Note that, unlike the MPI and TCP implementations, which syn-

chronize implicitly via their all-to-all communication patterns, the

shared-memory version requires explicit synchronization at super-

step boundaries. We accomplish this using p variables in shared

memory that are incremented by the processors to indicate that they

are ready to proceed to the next superstep, Processor O then spins

on variables 1 through p -1, while processors 1 through p – 1 spin

on variable O.

B.2 The MPI Version

In the MPI version, each process uses a distinct input and output

buffer to communicate with each of the other processes, There is

no overlap of computation and communication: During a superstep,

messages are simply read from and written to the appropriate buffers.

When a process reaches a superstep boundary, it posts an Irecv

for each input buffer and an I send for each output buffer, and

then waits until all 2p incoming and outgoing transmissions are

completed, before starting the next superstep.

B.3 TCP Version

As in the MPI version, each process uses a distinct input and output

buffer to communicate with each of the other processes, and com-

munication only occurs at superstep boundaries. The blocking TCP

protocol that we employ requires receivers to actively empty the pipe

whenever another process sends a large amount of data, so deadlock

could occur if we are not careful in scheduling the communication.

In our setup, the processors pair off and talk according to a precom-

puted p – 1 stage total-exchange pattern. Note that while this rigid

scheduling method works well for most (i.e., random) h-relations, it

is not efficient for certain worst-case communication patterns. We

ran this version on a system of eight PCs connected by a 100-Mbit

Ethernet switch that allows the p/2 conversations in each communi-

cation stage to occur in parallel. The maximum bandwidth that we

observed between a pair of processors was 5 Mbyteslsec.

C Performance Data for the Applications

We provide performance numbers for our applications on 4 or 5

different input sizes and numbers of processors for our three systems.

We also provide algorithmic data for each application. In particular,

the tables on the next two pages contain the following data:

● Predicted execution times based on the B SP cost function,

● Runtimes and speedups on all platforms,

s W, the measured work depth on the SGI, and estimated work

depths for the Cenju and PC-LAN.

● H, the sum of the h-relation sizes.

● S’, the number of supersteps.

● The total measured sequential work for the SGI.

The work depths for the SGI are measured, while the work depths

for the Cenju and the PC-LAN are estimated.

2We we ~umently changing our system to allow the programmer to send

packets of any arbmary length. While this improves the readability and
simplicity of some of our code, we do not expect any significant changes in

performance on our current applications

3The processes themselves run in separate address spaces.
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w size NP
ocean 66 1
ocean 66 2
ocean 66 4
ocean 66 8
ocean 66 16
ocean 130 1
ocean 130 2
ocean 130 4
ocean 130 8
ocean 130 16
ocean 258 1
ocean 258 2
ocean 258 4
ocean 258 8
ocean 258 16
ocean 514 1
ocean 514 2
ocean 514 4
ocean 514 8
ocean 514 16

SGI SGI SGI
pred time spdp
0.55 0.51 1.0
0.39 0.29 1.8
0.26 0,18 2.8
0.2 0.14 3.6

0.19 0.13 3.9
2.13 2.07 1.0
1.24 1.05 2.0
0.69 0.54 3.8
0.42 0.32 6.5
0,3 0.22 9.4

9.12 8.95 1.0
4.55 4.32 2.1
2.31 2.12 4.2
1.26 1.09 8.2
0.76 0.6 14.9

38.43 37.87 1.0
18.76 18.28 2.1
9.14 8.71 4.3
4.65 4.29 8.8
2.48 2.23 17.0

Cenju Cenju Cenju
pred time spdp

0.82 0.8 1.0
0.67 0.58 1.4
0.57 0.54 1.5
0.95 0.91 0,9
1.58 1.54 0.5

3.02 2.88 1.0
1.84 1,63 1.8
1.15 1.01 2.9
1.14 1.12 2.6
1.5 1.44 2.0

12.81 12.72 1.0

6.49 5.99 2.1
3.42 3.21 4.0
2.29 2.18 5.8
2.07 1.93 6.6

53.85 - -
26,41 34.08 -
13.01 13.64 -
7.04 6.51 -
4.48 4.0 -

Pc Pc Pc
pred time spdp
0,52 0.46 1,0

0.58 0.6 0.8
0.96 0.94 0.5
1.98 3.37 0.1

1.86 1,68 1.0
1.25 1.22 1.4
1.22 1.19 1.4
1.92 2.96 0.6

7.8 7.07 1.0
4.29 3.98 1.8
2.6 2.56 2.8

2.65 3.2 2.2

46.51 46.77 1,0
24.53 24.64 1.9
8.47 7,92 5.9
5.82 6,46 7.2

Figure Cl: Data for Ocean Application

SG1 SGI SGI Cenju Ceny Cenju I PC PC PC

m pred time spdp
0.1 0.1 10
0.09 0.09 1,1
0.07 0.09 1.1
0.12 0.14 0.7

pred time spdp
0.1 0.08 1.0
0.1 0.08 1.0

0.12 0.09 0.9
0.23 0.22 0.4

mst 2.5k 16 0.07 0.18 0.6 0.24 0,25 0.4 ---
rest 10k 1 II 0.8 0.81 1.0 I 0.8 1.03 1.0 I 0.6 0.61 1.0
mst 10k 2 0.44 0.4 2.0 0.45 0.53 1.9 0.35 0.34 1.8
mst 10k 4 0.23 0.2 4.0 0.25 0.27 3.8 0.24 0.22 2.8
mst 10k 8 0.15 0.15 5.4 0.22 0.22 4.7 0.31 0.28 2.2
mst 10k 16 0.13 0.19 4.3 0.3 0.3 3.41 ---
rest 40k 1 II 6.3 6.34 1.0 I 6.3 5.63 1,0 I 2.71 2.71 1.0
mst 40k 2 3.86 3.87 1.6 3.88 3.13 1.8 1,69 1.6 1,7
mst 40k 4 1.2 1.1 5.8 1.22 1.38 4.1 0.61 0.92 2.9
mst 40k 8 0.6 0.56 11.3 0.69 0.83 6.8 0.53 0.65 4.2
mst 40k 16 0.34 0.4 15.8 0.53 0.56 lo.ll ---

Figure C.2: Data for MST Application

w-r size NP

matmult 144 1
matmult 144 4
matmult 144 9
matmult 144 16
matmult 288 1
matmult 288 4
matmult 288 9
matmult 288 16
matmult 432 1
matmult 432 4
matmult 432 9
matmult 432 16
matmult 576 1
matmult 576 4
matmult 576 9
matmrdt 576 16

SGI SGI SGI
pred time spdp

0.43 0.42 1.0
0.15 0.15 2.8
0.09 0.12 3.5
0.06 0.11 3.8
3.4 3.37 10

0.99 1.01 3.3
0.5 0.59 5.7

0.32 0.42 8.0
11.53 11.49 1.0
3.17 3.18 3.6
1.54 1.65 7.0
0.93 1.14 10.1

27.53 27.51 10
7.29 733 3.8
3.47 3.69 7.5
2.09 2.42 11.4

Cenju Cenju Cenju
pred time spdp

0.43 0.47 1.0
0.16 0.16 2.9
0.11 0,09 5.2
0.1 0.07 6.7

3.4 3.71 1.0
1.05 111 3.3
0.57 055 6.7
0.42 0.36 10.3
11.53 12.55 1.0
3.3 3.49 3.6
1.69 1.-) 7.4
1.13 1.04 12.1

27.53 29.94 1.0
752 8.09 3.7
3.72 3.84 7.8
2.43 2.31 13.0

Pc Pc Pc
pred time spdp
0.29 0.3 1.0
0.15 0.18 1.7

2.26 2.32 1.0
0.84 1.1 2.1

7,68 7.83 1.0
251 3.34 2.3

18.33 18.71 10
5.56 7.52 2.5

SGI II SGI I
W’HSllTWk

0.54 114 468 0.54
0.38 12192 468 0,73
0.23 12530 468 086
0.16 15400 468 1.11
0.13 13360 468 1.78
212 91 379 II 212
1,21
0.66
0.37
0.24
9.12
4.51
2.27
1.2

20762
21034
25700
21316

81
38170
38412
46818 +

379 2.36
379 2.46
379 2.68
379 3.28
339 9.12
339 8.95
339 8.77
339 8.88

0.68 37994 339 9.74
38.43 72 312 II 38.43

7
SGI SGI
WHS ~W’k
0.1 3 12 0.1
0.08 666 30 0.15
0.05 1276 36 0.18
0,04 2224 46 0.26
0.06 3014 60 0.41
0.8 3 12 1] 0.8
0.44 1377 30 0.85
0.22 3288 36 0.79
0.14 5302 42 0.92
0.11 5866 56 II 1,17
6.3 3 12 ]] 6.3
3.86 3163 36 7.46
1.19 6287 42 4.24
0.59 10335 52 3.91
0.32 9562 62 3.92

SGI
w HS

0.43 0 1
0.14 10368 3
0.08 9216 5
0.05 7776 7

3.4 0 1
0.95 41472 3
0.46 36864 5
0.29 31104 7
11.53 0 1
3.09 93312 3
1,46 82944 5
0.86 69984 7
27.53 0 1
7.15 165888 3
3.32 147456 5
1.97 124416 7

SGI
TWk

0.43
0.54
0.64
0.7

3.4
3.79
4.13
4.49
11.53
12.33
13.03
13.66
27.53
28.52
29.78
31.21

Figure C.3: Data for Matrix Multiplication Application
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( SGI SGI SGI

aPP size NP pred time spdp

nbody lk 1 0.46 0.46 1.0
nbody lk 2 0.24 0,24 19
nbody lk 4 0.13 0.13 35
nbody lk 8 0.08 008 5.8
nbody lk 16 0.05 005 92

nbody 4k 1 II 2.9 2.89 1.0
nbody 4k 2 1.45 143 2.0

nbody 4k 4 0.75 0.75 39
nbody 4k 8 0.41 04 7.2

+ nbody 4k 16 03 0.25 11.6

nbody 16k 1 15.38 15.42 1.0
nbod~ 16k 2 7.64 7,65 2.0
nbody 16k 4 3.86 3,86 40
nbody 16k 8 1.96 1.96 7.9

nbody 16k 16 113 112 13.8

nbody 64k 1 74.08 74.59 1,0
nbody 64k 2 36.37 36,42 2.0

nbody 64k 4 18.54 18,45 4.0
nbody 64k 8 9.27 9.23 8.1

Inbod~ 64k 16 4,97 504 14.8

nbody 256k 1 344 34559 1.0

k
SP 2.5k 2

SP 25k 4

SP 2.5k 8

5P 2.5k 16

5P 10k 1

SP 10k 2

SP 10k 4

SP 10k 8

SP 10k 16

SP 40k 1

SP 40k 2

5P 40k 4

SP 40k 8
SD 40k 16

w size NP

msp 2.5k 1
msp 2.5k 2
msp 2.5k 4
msp 2.5k 8
msp 2.5k 16
msp 10k 1
msp 10k .2
msp 10k 4
mstr 10k 8
msp 10k 16
msp 40k 1
msp 40k 2
msp 40k 4
msu 40k 8
msp 40k 16

Cenju CerrJu Cenju
pred time spdp
0.35 0.32 1.0
0.18 0,18 18
01 01 3.2
0.07 0.07 4,6
006 0.07 4,6

2.17 21 10
1.09 1.02 2.1
057 0.54 3.9
()32 0.3 7.0
0.26 (),~~ 95

11,54 i 1.64 1.0
5.74 5.56 21
2.91 2.89 40
1.5 1.44 8.1
0.9 0.86 13.5

55,56 57.96 1.0
27.3 27.52 2.1
1395 135 43
7.01 675 8.6
382 3,72 156
258
126 - -
62 6292 -
31 3166 -
17 1637 -

Pc Pc Pc
pred time spdp
0.31 0.31 1,0
017 0.17 1.8
01 0.1 31
0.09 0.08 39

1.93 1.91 1,0
0.98 0.97 2.0
0.53 0.54 3.5
0.34 0.32 6.0

10.25 9.86 10
5.11 4.89 2.0
263 2.59 3.8
1.43 1.38 7.1

49.33 4601 10
24.26 22.92 2,0
1246 11,78 3.9
6.41 6.06 76

229 212 1.0
112 111 1.9
56 57 37
28 264 8.0

Figure C.4: Data for N-body Application

SGI SGI SG1
pred time spdp

0.06 0.07 10
0.05 004 1.8
004 0.03 2.3
0.04 0.03 2.3
0,05 0.1 0.7
0,52 053 1.0
0.31 0.26 2.0
014 0.12 4.4
0.12 0.1 53
009 012 44
2.54 2.52 1.0
1.53 1.46 i ,7
0.82 0.75 3.4
0.49 041 6.1
0.28 0.26 9.7

Cenju Cerrju CenJu
pred time spdp
006 0.07 10
0.07 005 1.4
0.07 0.05 1.4
0.16 0.15 0,5
0,33 0.31 0.2
0.52 0.56 10
032 0.29 19
0,16 0.14 4.0
(3.23 0.21 2.7
032 0.3 1.9
2.54 2.56 1.0
1.54 1.49 17
085 081 3.2
0.61 0.54 4.7
056 0,48 5.3

Pc Pc Pc
pred time spdp

004 005 1.0
0.06 0.06 0.8
0.12 0.12 04
0.34 0.63 0.1

0.35 0.35 10
023 022 16
0.17 0.16 2.2
0.36 0.52 0.7

1.69 1.51 10
105 0.91 17
0.66 07 2.2
0.66 0.59 2.6

SGI SGI
w HS TWk

0.46 04 0.46
0.24 824 6 0.48
0.13 1798 6 0.5
0.08 2360 6 0,56
005 2530 6 0.68
29 04 2,9
1.45 2067 6 2,89
0.75 4353 6 2.91
0.4 5506 6 3.02
0.29 6249 6 3.34
15.38 04 15,38
7.64 5700 6 15.22
3,85 10692 6 14.79
1.95 12235 6 1495
1.12 12100 6 1537

7408 04 74.08
36.35 15046 6 72.52
18.52 25443 6 71.25
9,25 26003 6 7058
4,95 24661 6 70.06

344.43 0 4 344.43
168.07 37493 6 333.3
83.0 63321 6 322.04
41.7 59251 6 31865
22.1 53422 6 316,38

SGI SGI
WHS TWk

0.06 4 8 II 0,06
005 244 50 0.09
0.04 399 59 0.09
003 883 83 0,13
004 1382 101 0,19
0.52 4 8 II 0.52
0.31 457 50 052
0.14 806 47 0.46
012 1407 74 0,51
0.08 1954 83 064
2.54 4 8 2.54

Figure C.5: Data for Shortest Path Application

SGI SGI SGI Cenju Cenju Cenju Pc Pc Pc SGI
pred time spdp pred time spdp pred time spdp w HS
1.18 1.2 10 1.18 ]~5 10 0.79 0.88 1,0 1.18 28 9
0.81 0.74 16 0.83 074 1,7 0.58 0,62 1.4 0.8 4833 51
052 046 2.6 0,57 0.48 2.6 0,49 0,47 1,9 0.52 7569 72
0.43 045 2.7 0,57 0.48 2,6 0.68 0.67 13 042 9856 87
033 0,47 2.6 064 0.58 22 --- 0.31 10030 102
8.93 8.9 1.0 893 995 10 594 7.02 1.0 893 28 9
4,89 4,85 1.8 492 499 2.0 3.31 3.22 2.2 4,88 10265 57
2.7 2.63 34 277 2.54 39 2.02 1.93 3,6 2.68 23467 78
i 73 1.72 5.2 1,91 169 59 1,76 1.7 4.1 1,69 28938 102
1 14 136 6.5 154 1.27 7.8 - 1,1 26717 120

44.36 44.34 1.0 4436 - 29.54 34.6 10 44.36 28 9
24,21 24.43 1,8 24.27 - 16.25 179 1.9 2418 34879 60
1241 12,2 3.6 12.49 13.14 - 8.53 10.3 34 [237 35056 78
6.83 7.05 63 704 6.89 - 524 4.88 7.1 6.79 38849 105
3.64 4.71 9.4 4,12 368 - --- 3.58 39874 138

Figure C.6: Data for Multiple Shortest Paths Application

7
SGI
TWk
118
1.51
1.66
795.-

8.52
872
9.48
11.29
44,36
45.28
42,04
3796
39.57

1
2.84
8.93

12


