
pARMS: A Package for Solving General Sparse
Linear Systems on Parallel Computers�

Y. Saad1 and M. Sosonkina2

1 University of Minnesota, Minneapolis, MN 55455, USA,
saad@cs.umn.edu,

http://www.cs.umn.edu/˜saad
2 University of Minnesota, Duluth, MN 55812, USA,

masha@d.umn.edu,
http://www.d.umn.edu/˜masha

Abstract. This paper presents an overview of pARMS, a package for
solving sparse linear systems on parallel platforms. Preconditioners con-
stitute the most important ingredient in the solution of linear systems
arising from realistic scientific and engineering applications. The most
common parallel preconditioners used for sparse linear systems adapt
domain decomposition concepts to the more general framework of “dis-
tributed sparse linear systems”. The parallel Algebraic Recursive Mul-
tilevel Solver (pARMS) is a recently developed package which integrates
together variants from both Schwarz procedures and Schur complement-
type techniques. This paper discusses a few of the main ideas and design
issues of the package. A few details on the implementation of pARMS are
provided.

1 Introduction

The past decade has seen excellent progress in the use of parallel computing
technologies for dealing with real-life engineering applications. This develop-
ment is due in great part to the maturation of parallel computer hardware and
software. In particular, the emergence of standards for message passing lan-
guages such as the Message Passing Interface (MPI) [3], is probably the most
significant factor in the promotion of parallel computing methodologies. It has
become fairly inexpensive and easy to build small clusters of PC-based networks
of workstations, making large and expensive supercomputers or massively par-
allel platforms much less cost-effective. These clusters of workstations as well as
most of the current medium size machines are typically programmed in message
passing, using the MPI communication library. This trend is likely to persist
as many engineers and researchers in scientific areas are now familiar with this
mode of programming.

Among the difficulties that remain when using parallel computers to solve
industrial problems is the fact that applications are far more complicated to
� Work supported by NSF/ACI-0000443, NSF/INT-0003274, and by the Minnesota
Supercomputer Institute

R. Wyrzykowski et al. (Eds.): PPAM 2001, LNCS 2328, pp. 446–457, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

pARMS: A Package for Solving General Sparse Linear Systems 447

program on distributed memory computers than on traditional scalar computers
or shared memory computers. As a result there is a pressing need to develop
libraries for dealing with common problems in scientific computing, among which
the solution of sparse linear systems is arguably one of the most important.

In this paper, we outline the main features and the design rationale of pARMS ,
a package for solving sparse linear systems on distributed memory parallel com-
puters.

2 Distributed Sparse Linear Systems

The main paradigm used in pARMS is that of a distributed sparse linear system.
To illustrate this concept, assume we have to solve the sparse linear system

Ax = b, (1)

where A is a large and sparse nonsymmetric real matrix of size n. The simplest,
and clearly not the best, way to distribute the system to processors is to assign
blocks of approximately the same number of contiguous equations to the proces-
sors. Thus, if there are n equations and P processors, we would assign equations
1 to n/P to Processor 1, those from n/P +1 to processor 2, and so on. We refer
to this as a distributed linear system – since the equations and right-hand side
are (conformally) distributed among processors. This mapping of the equations
to processors is straightforward and there are clearly more efficient ways of par-
titioning a general sparse linear system using graph partitioners. The question
addressed here is to develop iterative techniques for solving such “distributed
sparse linear systems”.

It is typical in the case of finite element techniques to partition the finite
element mesh by a graph partitioner and assign a cluster of elements which
represent a physical subdomain to each processor. Each processor then assembles
only the local equations associated with the elements assigned to it. In other
instances, the linear system is only available in assembled form. Here also a
graph partitioner is invoked to determine a good way to map pairs of equations-
unknowns to processors. In either case, each processor will end up with a set of
equations (rows of the linear system) and a vector of the variables associated
with these rows. This natural way of distributing a sparse linear system has been
adopted by most developers of software for distributed sparse linear systems (see,
e.g., [4,1,6,2]) because it is closely tied to a physical viewpoint.

2.1 Local Representation

Figure 1 shows a ‘physical domain’ viewpoint of a distributed sparse linear sys-
tem. Each point (node) belonging to a ‘subdomain’ is actually a pair represent-
ing an equation and an associated unknown. As is often done, we distinguish
between three types of unknowns: (1) Interior variables are those that are cou-
pled only with local variables by the equations; (2) Local interface variables are

448 Y. Saad and M. Sosonkina

those coupled with non-local (external) variables as well as local variables; and
(3) External interface variables are those variables in other processors which are
coupled with local variables.

The local equations can be represented as shown in Figure 2. Note that these
local equations do not correspond to contiguous equations in the original system.
The matrix represented in the figure can be viewed as a reordered version of the
equations associated with a local numbering of the equations/unknowns pairs.

Local Interface
points

External
interface points

Internal points

Fig. 1. A local view of a dis-
tributed sparse matrix.

local
Data

External data External data

OO Ai
iU Ui

Fig. 2. Corresponding local matrix.

The rows of the matrix assigned to a given subdomain are split into two parts:
a local matrix Ai which acts on the local variables and an interface matrix Ui

which acts on remote variables. When performing a matrix-vector product, each
processor acts locally on its data. It begins by performing a local matrix-vector
product first, and then it receives the remote variables from adjacent processor(s)
before completing its part of the matrix-vector product. In most data structures
used for the parallel solution of distributed sparse linear systems, the boundary
points are separated from the interior points. In addition, it is common for a
number of reasons, to list interface nodes last after the interior nodes.

Each local vector of unknowns xi is thus split in two parts: the subvector ui

of internal nodes followed by the subvector yi of local interface variables. The
right-hand side bi is conformally split in the subvectors fi and gi,

xi =
(
ui

yi

)
; bi =

(
fi

gi

)
. (2)

The local matrix Ai residing in processor i as defined above is block-partitioned
according to this splitting, leading to

Ai =
(
Bi Fi

Ei Ci

)
. (3)

With this, the local equations can be written as follows.(
Bi Fi

Ei Ci

) (
ui

yi

)
+

(
0∑

j∈Ni
Eijyj

)
=

(
fi

gi

)
(4)

pARMS: A Package for Solving General Sparse Linear Systems 449

The submatrix Eijyj accounts for the contribution to the local equation from
the neighboring subdomain number j and Ni is the set of subdomains that are
neighbors to subdomain i. The sum of these contributions, seen on the left side
of of (4) is the result of multiplying a certain matrix by the external interface
variables. It is clear that the result of this product will affect only the local
interface variables as is indicated by the zero in the upper part of the second
term in the left-hand side of (4). For practical implementations, the subvectors
of external interface variables are grouped into one vector called yi,ext and the
notation ∑

j∈Ni

Eijyj ≡ Uiyi,ext

will denote the contributions from external variables to the local system (4).
In effect this represents a local ordering of external variables to write these
contributions in a compact matrix form. With this notation, the left-hand side
of the (4) becomes

wi = Aixi + Ui,extyi,ext (5)

Note that wi is also the local part the matrix-vector product Ax in which x
is a vector which has the local vector components xi, i = 1, . . . , s. Matrix-vector
product operations can be performed in three stages. First the xi is multiplied
by Ai. Then a communication step takes place in which the external data yi,ext

is received. In effect this is an exchange operation, since each processor needs
to receive the remote interface variables from other processors. In the third and
last stage, the external data is multiplied by the local matrix Ui and the result
is added to the current result Aixi.

Since communication is an important part of the matrix-vector product oper-
ation, it is useful in a preprocessing phase to gather the data structure represent-
ing the local part of the linear matrix as was just described. It is also important
to form any additional data structures required to prepare for the communica-
tion that will take place during the solution phase. In particular, each processor
needs to know (1) the processors with which it must communicate, (2) the list
of interface points and (3) a break-up of this list into pieces of data that must
be sent and received to/from the “neighboring processors”.

2.2 Existing Software

Several packages for solving sparse linear systems by iterative methods on paral-
lel computers were developed before. Most of these utilize a similar viewpoint of
distributed sparse matrices and exploit the domain-decomposition viewpoint. A
first version of the Parallel SPARSe LIBrary (PSPARSLIB) [15], a precursor of
pARMS , was developed in 1993-1994 using P4, the ancestor of the current MPI,
and then CMMD, the communication Library on Thinking Machine’s Connec-
tion Machine 5. Later, other packages appeared starting in the mid-1990s. Among
them we mention PETSc [1], Block-Solve [6], Aztec [4], and ParPre [2]. All these

450 Y. Saad and M. Sosonkina

packages offer most of the standard “block”, i.e., domain-based, preconditioners
based on the additive Schwarz procedure.

Recently, another package called pARMS [7] was introduced. Like earlier pack-
ages, pARMS offers the traditional local “Schwarz” type preconditioners already
available in PASPARSLIB. In addition, it also provides a truly algebraic multi-
level strategy for preconditioning. pARMS can be viewed as a combination of the
Algebraic Recursive Multilevel Solver (ARMS) presented in [14] on the one hand
and an outgrowth of the PSPARSLIB package on the other. The primary accel-
erator used in pARMS is FGMRES, the flexible variant of GMRES [9], though a
few other choices are also made available. FGMRES, is a right-preconditioned
variant of GMRES which allows variations in the preconditioner at each step.
Details on the implementations of parallel Krylov accelerators can be found in
[11,12,16,10]. This note will focus on design issues and on preconditioners.

3 Preconditioners

There are three classes of preconditioners provided in pARMS . The first, and
simplest, is the class of block preconditionings, or variants of Schwarz precon-
ditioners. The second class of preconditioners comprises various types of Schur
complement techniques. We discuss these three classes in turn.

3.1 Schwarz Preconditioners

The appeal of Schwarz preconditioners lies in their simplicity. In additive
Schwarz, for example, a preconditioning operation consists of computing the
current residual, and then performing a local solve which yields the local correc-
tion for the local part of the solution. Formally, this is described by the following
procedure.

Algorithm 31 Additive Schwarz (Block Jacobi) preconditioning step
1. Obtain external data yi

2. Compute (update) local residual ri = (b−Ax)i

3. Solve Aiδi = ri
4. Update local solution xi = xi + δi

The solves with the matrices Ai in Line 3 are all performed independently.
It is clear that a direct solution method could be used in case each subproblem
is small enough. However, it is common to use iterative solvers for these systems
since these can still be fairly large.

In domain decomposition methods, however, the accelerator for the global
iteration must take into account the fact that the preconditioner may not a con-
stant operator (i.e., that it may change at each step of the outer iteration). In
general, we found that iterating to solve each of the sub problems accurately is
not cost-effective. Often a simple forward-backward sweep, with ILU factors ob-
tained from an ILUT preconditioner yields the fastest combination. Subdomain

pARMS: A Package for Solving General Sparse Linear Systems 451

partitions may be allowed to overlap. This technique works reasonably well for
a small number of overlapping subdomains as was shown in experiments using a
purely algebraic form in [8]. The following are the basic options available in the
category of additive Schwarz procedures:

add ilut. Additive Schwarz procedure, with or without overlapping, in which
ILUT is used as a preconditioner for solving the local systems.

add iluk. Similar to add ilut but uses ILU(k) as a preconditioner instead of
ILUT.

add arms. Similar to add ilut but uses ARMS as a preconditioner for local
systems.

There are two important variations available for each of these preconditioners.
The first is that each of them can allow subdomain overlap. In addition, there are
two options for performing the approximate solve Aiδi = ri. The first is simply
to apply a forward-backward sweep combination based on the corresponding
incomplete factorizations. The second is to solve the local system iteratively using
a few steps of GMRES preconditioned with these incomplete factorizations.

3.2 Single-Level Schur Complement Techniques

The local system (4) can be written as

Aixi +Xiyi,ext = bi.

where xi is the vector of local unknowns, yi,ext is the vector of external interface
variables, and bi is the local part of the right hand side. We can eliminate ui

from the local equations (4) to obtain the local Schur complement system:

Siyi +
∑
j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′

i, (6)

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi (7)

Writing all the local Schur complement equations together results in the global
Schur complement system:

S1 E12 . . . E1p

E21 S2 . . . E2p

...
. . .

...
Ep1 Ep−1,2 . . . Sp

︸ ︷︷ ︸
S

y1
y2
...
yp

︸ ︷︷ ︸
y

=

g′
1
g′
2
...
g′

p

︸ ︷︷ ︸
g′

(8)

The important observation here is that the off-diagonal blocks Eij are the same
as those used for the additive Schwarz procedure. They are directly available

452 Y. Saad and M. Sosonkina

from the data structure used to implement any distributed sparse linear system
using a vertex-based partitioning.

The above system can be solved approximately by some procedure to be
specified, and then the ui variables can be computed from substituting yi in the
first equation in (4),

ui = B−1
i [fi − Fiyi]

which requires only a local solve. This process, which computes an approxima-
tion to the system (4) for an arbitrary right-hand side, defines one step of the
preconditioning for the global system.

The various Schur complement procedures provided in pARMS are defined from
the way in which the system (8) is solved. In the single level Schur complement
approaches, this system is solved approximately by some iterative procedure.
The simplest of these techniques solve the system (8) approximately by a block
Jacobi type procedure, i.e., the system is preconditioned with diag(Si) and solved
by a few steps of GMRES. One issue that remains, is to determine Si or its
factorization. In pARMS , the following relation exploited. Assume that the local
matrix is partitioned as shown in (3), and let its LU factorization be

Ai =
(
LBi 0
EiU

−1
Bi
LSi

) (
UBi

L−1
Bi
Fi

0 USi

)

Then,

LSi
USi

= Si .

Simple though this relation may appear, it provides a powerful way of obtaining
factorizations of the local Schur complements. From any factorization, exact or
incomplete, of the local matrix Ai a resulting factorization can be extracted for
the local Schur complement Si. Note that the factorization of Ai is required, so
this extraction involves no additional computation.

The following one-level Schur complement preconditioners are available in
pARMS .

sch ilut. The global Schur complement system is solved with a block-Jacobi
preconditioner, in which the diagonal block Si is replaced by the matrix
LSiUSi obtained from the trace of the ILUT factorization ofAi corresponding
to the interface variable yi.

sch iluk. This is the same as sch ilut except that ILU(k) is used instead of
ILUT.

sch arms. This is the same as sch ilut except that a (local) ARMS factoriza-
tion is used for Ai instead of ILUT.

The sch ilut preconditioner is the same as the one in [13].

pARMS: A Package for Solving General Sparse Linear Systems 453

3.3 Multi-level Schur Complement Techniques

Multi-level Schur complement techniques available in pARMS are based on ex-
ploiting block independent sets, see [14]. The idea is to create another level of
partitioning of each subdomain. So within each subdomain, a second level of
partitioning is provided by the block-independent set ordering. We refer to the
subdomains in this second level partitioning as sub-subdomains for lack of a
better term. An illustration is shown in Figure 3. Thus, two types of interface
points are created. Inter-domain interface points are those points that have cou-
pling with nodes outside of the current processor. These are traditionally termed
“interface nodes”. Local interface points are interface points between the sub-
subdomains. Their couplings are all local to the processor and so these points
do not require communication. Note that sub-subdomains could be obtained by
a standard partitioner. However, as was mentioned above, in the current imple-
mentation they result from a block independent set reordering strategy utilized
by ARMS [14].

Interior
points

interface
Interdomain

points

points
Local interface

Fig. 3. A two-level partitioning of a domain

In order to explain the multilevel techniques used in pARMS , it is necessary
to discuss the sequential multilevel ARMS technique. In the sequential ARMS,
the matrix coefficient at the l-th level is reordered in the from

PlAlP
T
l =

(
Bl Fl

El Cl

)
(9)

where Pl is a “block-independent-set permutation”, which can be obtained in a
number of ways, and whose goal is to produce a matrix Bl that is block-diagonal.
At the zero-th level (l = 0) the matrix Al is the original coefficient matrix of
the linear system under consideration. The above partitioned matrix is then
approximately factored as

454 Y. Saad and M. Sosonkina

PlAlP
T
l ≈

(
Ll 0

ElU
−1
l I

)
×

(
Ul L

−1
l Fl

0 Al+1

)
(10)

where I is the identity matrix, Ll and Ul form the LU (or ILU) factors of Bl,
and Al+1 is an approximation to the Schur complement with respect to Cl,

Al+1 ≈ Cl − (ElU
−1
l)(L−1

l Fl). (11)

During the factorization process, approximations to the matrices Gl ≡ ElU
−1
l

and Wl ≡ L−1
l Fl are computed for obtaining the Schur complement (11) but

these two matrices are discarded after Al+1 is computed.
To define a recursive multilevel strategy, note that all that is needed is to

define a procedure for solving the reduced system obtained by eliminating the
unknown associated with the block Bl. This leads to a certain reduced system
with the coefficient matrix Al+1. Now recursivity is invoked and this system
is partitioned again in the form (9) in which l is replaced by l + 1. At the last
level, the Schur complement system is solved using GMRES preconditioned with
ILUT [11]. In the parallel version of ARMS, the same overall strategy is used
except that now the last Schur complement system contains block-independent
sets that lie in different subdomains, as well as the inter-domain points.

Consider a one-level pARMS for simplicity. In the first level reduction, the
matrix A1 that is produced, will act on all the interface variables, whether local
or inter-domain of the zeroth-level. Thus, a one-level pARMSwould solve for the
unknowns associated with these variables – by some technique to be defined –
and then obtain the interior variables in each processor. This second substitution
phase does not involve communication. The “technique to be defined” which
was just mentioned, will solve the Schur complement system associated with
all the interface variables of the first level. These interface variables include the
inter-domain interface points as well as the local interface points found at the
zeroth level. We refer to the related Schur complement as the “expanded Schur
complement”. pARMSprovides two distinct techniques for solving the global Schur
complement system, listed next.

sch gilu0. The expanded Schur complement system is solved with GMRES
preconditioned with a parallel ILU(0), see, for example [11]. The parallel
ILU(0) preconditioning requires a global order (referred to as a schedule in
[5]) in which to process the nodes. A global multicoloring of the domains is
used for this purpose as is often done with global ILU(0).

sch sgs. Here the symmetric block Gauss-Seidel preconditioner is used to solve
the global Schur complement system.

Consider now a multilevel technique. If a second level reduction is applied
then the above can be repeated with the provision that the inter-domain interface
points will not become local, i.e., the block independent reordering should simply
bypass these points to ensure that they remain inter-domain points for the next
level. In this case there is strictly no change to the above, except for the fact that

pARMS: A Package for Solving General Sparse Linear Systems 455

there are now two levels to descend before reaching the last Schur complement
system (expanded system) to be solved by one of the above techniques.

In the above technique, the actual inter-domain points will remain that way
throughout the levels. A second method not implemented as yet, consists of
adding a different type of reduction after a few levels of reduction of the first
type have been performed. In the second type of reduction, group-independent
sets across subdomains will be sought. This third class of Schur complement
techniques will considered in the future.

4 A Few Implementation Details

The implementation of pARMSbuilds on the earlier package PSPARSLIB. How-
ever, a major difference with PSPARSLIB is that most of the code is imple-
mented in C instead of Fortran. The selection of C versus FORTRAN 90, was
motivated mostly by the desire to integrate pARMSwith existing packages (in-
cluding ARMS) which are gradually moving away from FORTRAN.

The package is articulated around several objects, represented by C structs.
We briefly discuss a few of these in order to give an idea of the overall organiza-
tion of the package.

The communication object is associated with a given distributed matrix (see
next) and comprises such things as: the number and list of neighboring pro-
cessors, their color (when required), the list of ghost nodes, the overlap array
(number of processors to which each interface variable belongs). Some of the
other variables are the processor label (myproc), the number of local variables
(nloc), and the number of internal variables (nbnd). Note that several of these
parameters and arrays were also available in PSPARSLIB.

The distributed matrix object defines the data structure for the distributed ma-
trix. It includes a communication object for the distributed matrix, a Hash
struct, and a sparse matrix storage format struct. The sparse matrix struct is de-
fined to allow the capability to handle several storage schemes, though currently
only the Compressed Sparse Row scheme is supported. It includes a number
of functions pointers required to deal with the distributed matrix. Most impor-
tant among these are the bdry and setup functions inherited from PSPARSLIB.
These two functions are called to create the communication object (bdry) and
the local matrix (setup) at the start. Another function, used in the preprocess-
ing phase, is getmap which determines the node (original labels) to processor
mappings.

The Preconditioning object contains mostly function pointers which allow to call
the selected preconditioner constructors and the associated operations. So far a
selection of 13 different basic preconditioners are available. Among these, varia-
tions can be obtained by changing parameters. Two associated structs are prepar
and ipar which define the parameters for the preconditioner construction and

456 Y. Saad and M. Sosonkina

operations. Once the preconditioning method meth is selected, the CretePrecon
function is then invoked, as for example, in

CreatePrecon(distMat, &precon, meth, prepar, ipar)
This has the effect of setting the precon struct and setting up the pre-

conditioner for the distributed matrix distMat, according to the method and
parameters selected.

The following lines are extracted from a sample main program and show the
most important function calls made to set-up a distributed sparse linear system
and to solve it with pARMS .

/*---creates the distr. mat. struct. */
1. CreateMat(&distMat, "csr");
2. ... Partition the global system. [or do parallel

... assembly]. Let (b, jb, ib) be the local matrix

... in CSR format (global labeling).
/*--- copy this partial csr matrix to dstMat structure
3. CopCsrToDm(distMat, b, jb, ib);
/*---create node to processor map */
4. getmap(distMat, maptmp,mapptr,&n);
/*---create the interface information*/
5. bdry(distMat);
/*---build the local data structures */
6. setup(distMat) ;
7. ... A few similar operations follow for ‘‘vec’’

... objects right-hand-side and solution
/*--- create preconditioner */
8. CreatePrec(distMat,&precon,meth,prepar,ipar);
/*--- call FGMRES to solve */
9. fgmresd(distMat,precon,ipar,rhs,sol);

In Line 2, the system is read by one processor then partitioned and distributed
to other processors. Alternatively, some partitioning of the physical domain is
performed and the local equations (with original global labeling) are obtained
in parallel. Also some of the parameters such as those in meth, ipar, prepar
are read or set in the main program. We have mentioned that there are 13
preconditioners available in pARMS . pARMS also includes three different accelera-
tors: fgmres, bcgstab and dgmres. The last of these is the deflated GMRES
algorithm which uses eigenvalue deflation.

The techniques described in this paper have all been tested in [7] which
reports a number of experiments on an IBM SP and Origin 3800, including com-
parisons with a direct solver, and parallel efficiency studies. The paper and soon-
to-be-released package can be obtained from http://www.cs.umn.edu/ saad.

Acknowledgment. The authors would like to acknowledge the work of Zhongze
Li and Brian Suchomel who developed the biggest parts of pARMS and the sequen-
tial ARMS respectively.

pARMS: A Package for Solving General Sparse Linear Systems 457

References

1. S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith. PETSc 2.0 users
manual. Technical Report ANL-95/11 - Revision 2.0.24, Argonne National Labo-
ratory, 1999.

2. V. Eijkhout and T. Chan. ParPre a parallel preconditioners package, reference
manual for version 2.0.17. Technical Report CAM Report 97-24, UCLA, 1997.

3. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT press, 1994.

4. Scott A. Hutchinson, John N. Shadid, and R. S. Tuminaro. Aztec user’s guide.
version 1.0. Technical Report SAND95-1559, Sandia National Laboratories, Albu-
querque, NM, 1995.

5. D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor
preconditioning. Technical Report (preprint), Old-Dominion University, Norfolk,
VA, 2000.

6. M. T. Jones and P. E. Plassmann. BlockSolve95 users manual: Scalable library
software for the solution of sparse linear systems. Technical Report ANL-95/48,
Argonne National Lab., Argonne, IL., 1995.

7. Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic recur-
sive multilevel solver. Technical Report umsi-2001-100, Minnesota Supercomputer
Institute, University of Minnesota, Minneapolis, MN, 2001.

8. G. Radicati di Brozolo and Y. Robert. Parallel conjugate gradient-like algorithms
for solving sparse non-symmetric systems on a vector multiprocessor. Parallel
Computing, 11:223–239, 1989.

9. Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. on
Sci. and Stat. Comput., 14:461–469, 1993.

10. Y. Saad. Krylov subspace methods in distributed computing environments. In
M. Hafez, editor, State of the Art in CFD, pages 741–755, 1995.

11. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York,
1996.

12. Y. Saad and A. Malevsky. PSPARSLIB: A portable library of distributed memory
sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings of Parallel
Computing Technologies (PaCT-95), 3-rd international conference, St. Petersburg,
Russia, Sept. 1995, 1995.

13. Y. Saad and M. Sosonkina. Distributed schur complement techniques for general
sparse linear systems. J. Scientific Computing, 21(4):1337–1356, 1999.

14. Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for
general sparse linear systems. Technical Report umsi-99-107-REVIS, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001. Re-
vised version of umsi-99-107.

15. Y. Saad and K. Wu. Parallel sparse matrix library (P SPARSLIB): The iterative
solvers module. Technical Report 94-008, Army High Performance Computing
Research Center, Minneapolis, MN, 1994.

16. Y. Saad and K. Wu. Design of an iterative solution module for a parallel sparse
matrix library (P SPARSLIB). In W. Schonauer, editor, Proceedings of IMACS
conference, Georgia, 1994, 1995.

	Introduction
	Distributed Sparse Linear Systems
	Local Representation
	Existing Software

	Preconditioners
	Schwarz Preconditioners
	Single-Level Schur Complement Techniques
	Multi-level Schur Complement Techniques

	A Few Implementation Details

