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Abstract. In Niederreiter’s factorization algorithm for univariate poly-
nomials over finite fields, the factorization problem is reduced to solving
a linear system over the finite field in question, and the solutions are
used to produce the complete factorization of the polynomial into irre-
ducibles. For fields of characteristic 2, a polynomial time algorithm for
extracting the factors using the solutions of the linear system was de-
veloped by Göttfert, who showed that it is sufficient to use only a basis
for the solution set. In this paper, we develop a new BSP parallel algo-
rithm based on the approach of Göttfert over the binary field, one that
improves upon the complexity and performance of the original algorithm
for polynomials over F2. We report on our implementation of the parallel
algorithm and establish how it achieves very good efficiencies for many
of the case studies.

1 Introduction

One important problem in symbolic computation is the factorization of univari-
ate polynomials over finite fields, where the Niederreiter algorithm has been
introduced [1]. A major feature of the algorithm consists in its linearization of
the factorization problem, or reducing it to solving a linear system over the fi-
nite field in question, where the solutions lead to a complete factorization in
a variety of ways. One such method was presented by Göttfert [2] for fields of
characteristic 2, and is best featured as a simple and polynomial time algorithm
for extracting the factors using only the basis elements of the solution set of the
Niederreiter system. In this paper, we develop a new BSP parallel approach to
the Göttfert algorithm over F2. Our algorithm achieves high efficiency in many
of our test cases and can thus be used efficiently to factorize very large poly-
nomials over F2, provided a basis of the solution set is given. In Section 2, we
give a brief survey of the algorithms underlying our work and some background
information describing the BSP parallel model. In Section 3 we present our par-
allel algorithm and discuss its BSP cost analysis. In Section 4 we report on our
experimental results and discuss the scalability of the algorithm.
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2 Göttfert’s Refinement of the Niederreiter Algorithm
over F2 and the BSP Model

For complete proofs and results related to the Niederreiter and Göttfert algo-
rithms we refer the reader to [1], [2], [3], [4]. Let F2 be the binary field of order
2 consisting only of the elements 0, 1; it is thus understood that all polynomi-
als described in this paper are monic. Let f be a polynomial of degree d over
F2, and f = ge1

1 ...gem
m be its canonical factorization of over the field. Let Nf

be the Niederreiter matrix of coefficients of f ([1], [2]). The Niederreiter linear
system can be expressed as (Nf − Id)hT = 0, where Id is the d× d identity ma-
trix over F2 and h = (h0, ..., hd−1) is the coefficient row vector of an unknown
polynomial h over F2 of degree less than d. A crucial result establishes that
there are 2m solutions h of the system, and that any of them can eventually
produce a complete factorization into irreducibles. In particular, the solutions
h of the linear system form a linear subspace of F2[x] of dimension m over F2.
For full details relating to the Niederreiter algorithm, we refer the reader to
[1], [3], [4]. Suppose that m > 1 so that the factorization is non-trivial. Sev-
eral methods have been suggested to achieve a factorization using solutions of
the sytem, but have the disadvantage of either requiring all 2m solutions to be
found or several linear systems to be solved before a complete factorization is
established. In a new method, Göttfert showed that it is enough to use the m
polynomials corresponding to any basis of the linear system, without having
to solve other than the original linear system associated with f . To illustrate,
let {h1, ..., hm} be a basis spanning the solution set of the linear system. For
i = 1, ..., m, the corresponding polynomials bi = f/ gcd(f, hi) are square-free
factors of f [1]. The factors are listed in a collection of rows as follows. The
first row contains only b1. The second row consists of at most three polynomi-
als, specifically, the non-constant polynomials among gcd(b2, b1), b1/ gcd(b2, b1),
and b2/ gcd(b2, b1). In general, the polynomials of row n, for n = 3, ..., m, con-
sist of the non-constant polynomials among d1, r1/d1, ..., ds, rs/ds, bn/d1...ds,
where r1, ..., rs are the polynomials in row n − 1 and dj = gcd(bn, rj) for
j = 1, ..., s. In [2], it is shown that the polynomials in any row are pairwise
relatively prime square-free factors of f , that the polynomial bn appears in row
n, either in its original form or split up into some non-constant factors, and that
every polynomial in row n− 1 also appears in row n, either in its original form
or split up into two non-constant factors. More importantly, it is shown that this
process ends successfully by setting up at most m rows, as a consequence of the
following theorems [2]:

Theorem 1. The irreducible square-free factors of f are determined once a row
containing m non-constant polynomials has been reached.

Theorem 2. A row of index at most m contains the polynomials g1, ..., gm, the
distinct irreducible factors of f .

It can also be shown that the total cost of this algorithm is at most
O(m2M(d) log d) field operations, where log d is the binary logarithm of d, and
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M(d) is the arithmetic complexity to multiply (or divide) two polynomials of
degree at most d over F2.

The bulk synchronous parallel model (BSP) [5], [6], [7], is a model for program-
ming which provides a simple framework to achieve portable parallel algorithms
independent of the architecture of the computer on which the parallel work is
carried out. A BSP computer consists of a set of p processors each with its own
private memory, and having remote access to other processors’ private memories
through a communication network. A BSP algorithm consists of a sequence of
parallel steps, denoted by supersteps. Communication supersteps are followed
by synchronization barriers, whereby all transferred data is updated. Processors
are distinguished by their own identification number, id = 0, ..., p − 1. A BSP
computer can be described by machine dependent parameters: s, the processor
speed (in flop/sec), g, the time (in flop time units) it takes to communicate
(send or receive) a data element, and �, the time (in flop time units) it takes
all processors to synchronize. The BSP cost is established using the parameters
g and � and the cost of an algorithm is simply the sum of the BSP costs of
its supersteps. The estimate of the execution time is obtained by dividing the
BSP cost in flop time units by s. The complexity of a superstep is defined as
wmax +g.hmax +�, where wmax is the maximum number of flops performed, and
hmax is the maximum number of messages sent or received, by any one processor
during that superstep. In the present paper, all field operations are considered
as flops, since we are working over F2.

3 A Parallel Approach to Göttfert’s Algorithm

Let #rn denote the maximum number of non-constant polynomials Pi, for
i = 1, ...,#rn, that can appear in any row n described in the construction above.
Each Pi can be the result of a gcd or a division operation, in which case we
denote it by a D-polynomial or an R-polynomial respectively. It is easy to see
that that there are at most (#rn − 1)/2 non-constant D-polynomials and at
most (#rn + 1)/2 non-constant R-polynomials in each row n. We denote D
and R-polynomials in row n by n; Dj and n; Rj′ respectively, where j and j′

are the polynomials’ indices along row n. For consistency throughout the text,
we can arrange the computations along rows so that all the D polynomials are
computed first, their corresponding R polynomials next, and the polynomial
bn/

∏
j n; Dj (where the product is over non-constant polynomials n; Dj) last.

With this notation, it is also easy to see that, if the polynomials in row n − 1
are written as (n− 1); Di, for some i = 1, ..., (#rn−1 − 1)/2, and (n− 1); Ri, for
some i = (#rn−1 + 1)/2, ...,#rn−1, then row n consists of

n; Di =

{
gcd(bn, (n− 1); Di), if 1 ≤ i ≤ #rn−1−1

2 (1)
gcd(bn, (n− 1); Ri−(#rn−1−1)/2), if #rn−1+1

2 ≤ i ≤ #rn−1 (2)

n; Ri =

{
(n− 1); Di/n; Di, if 1 ≤ i ≤ #rn−1−1

2 (3)
(n− 1); Ri−(#rn−1−1)/2/n; Di, if #rn−1+1

2 ≤ i ≤ #rn−1 (4)
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and n; R#rn−1+1 = bn/
∏#rn−1

i=1 n; Di for non-constant n; Di. Furthermore, we
assert the following (see [8] for proof):

Claim. #rn = 2n − 1 for n = 1, ..., m.

The first step in our parallel approach consists of studying the dependencies
between the gcd and division computations and structuring them in a paral-
lel hierarchy. Without loss of generality we may assume that the number of
threads coincides with the number of processors available. We define a parallel
queue as one which consists of a list of polynomials that can be computed in-
dependently by a number of p processors using a number of parallel supersteps,
such that the supersteps can be executed without requiring a synchronization
point throughout the queue. The first parallel queue consists of the polynomials
bi, for i = 1, ..., m. The second parallel queue consists of the polynomial 2;D1
only, since all other polynomials (in its row or in following rows) depend on it.
This constitutes the only queue where not enough distinct tasks are available
to engage all processors. In fact, the ensuing queues start filling up immediately
according to an iterative formula derived from the dependencies that we describe
in the following algorithm:

Algorithm 1 Set−Queues(queuek, queuek′)
Input: queuek = {P1, ..., Ps}, a list of non-constant polynomials from the Göttfert
setting computed in a parallel queue k ≥ 2.
Output: a list queuek′ of polynomials to be computed in the parallel queue k′ > k.
1. queuek′ ← (); for j ∈ {1, ..., s} do

if Pj = n; Di for some n = 2, ..., m and some i = 1, ...,#rn−1 do
2. queuek′ ← queuek′ ∪ n; Ri ∪ (n + 1); Di.

end;
if Pj = n; Di for some n = 2, ..., m and i = #rn−1 do

3. queuek′ ← queuek′ ∪ n; R#rn−1+1.
end;
if Pj = n; Ri for some n = 2, ..., m and some i = 1, ...,#rn−1 + 1 do

4. queuek′ ← queuek′ ∪ (n + 1); Di+((#rn−1)/2).
end;

end.

Theorem 3. The algorithm works correctly as specified, producing all the rows
in the Göttfert algorithm required to achieve a complete factorization. As a result,
the algorithm requires at most 3s steps for a list of size s.

Proof: see [8].

3.1 The Parallel Göttfert Algorithm

One major characteristic of the algorithm is that it consists mainly of task
parallelism, since distributing the data would require much more synchronization
between processors in the inner loops than would be the case in our present
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algorithm. The polynomials are represented by integer arrays whose entries are
either zero or one and where the coefficients are packed into bit-words (where
wl is the bit-size of the computer word being used). We refer the reader to
our report in [8] for a detailed description of the data structures used. Unless
otherwise stated, all arrays are global. The arrays Type, Row, and Index are
embedded within two queues queuej and queue′

j ; queuej is a sequence of triples
(Typej [i], Rowj [i], Indexj [i]), for i = 0, ...,#(queuej) − 1, and each such triple
describes a polynomial already computed in some parallel queue. On the other
hand, queuej′ consists of similar triples describing polynomials to be computed
in a forthcoming parallel queue.

Algorithm 2 Parallel−Göttfert
Input: f a polynomial of degree d over F2, m > 1 the number of irreducible factors
of f , {h0, ..., hm−1} a basis for the solution set of the linear system, {b0, ..., bm−1}
the corresponding set of squarefree factors of f defined by bi = f/ gcd(f, hi) for
i = 0, ..., m−1, p the total number of processors operating in parallel, and id the
processor identification number ranging from 0, ..., p− 1.
Output: the m irreducible factors of f .
1. P0 ← gcd(b0, b1);
if (P0 �= 1) do
2. Store−value(P0), Update(length(2));
end;
3. queuej ← {P0}, Set−Queues(queuej , queuej′);
while not all m irreducible factors have been found do
4. k ← id;

while (k < queue−length) do
5. Pk ← Compute−Polynomial(Type, row, index, k);

if (Pk �= 1) do
6. Store−value(Pk), n← row(Pk),

Update(partial−length(n)), Broadcast−value(Pk),
Broadcast(partial−length(n));

7. k ← k + p;
end;

8. BSP−synchronize();
9. for i ∈ {2, ..., m} do

Assemble(partial−lengths(i));
end;
if (not all irreducible factors have been found) do

10. queuej ← queuej′ , Sort(queuej),
Set−Queues(queuej , queuej′);

end;
end.

For elaborate details describing the algorithm we refer the reader to [8]. In
this paper, we give a brief description of the main steps comprising the process
above. The algorithm is called by all processors which implement the same copy
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of it for various data . The second parallel queue consists of the polynomial
2; D1 (see Algorithm 1) which is computed by all processors. If P0 = 2; D1 is
not trivial, it is stored permanently, and the length of row 2 is updated. We call
Algorithm 1 to set up the ensuing queuej′ of polynomials to be computed in
parallel. Thereafter, the main loop of the algorithm is iterated so long as none
of the rows has attained m non-constant polynomials. The variable k, which
loops over indices in queuej′ , is a global variable which, when first set to id and
then incremented by p, guarantees that all processors compute almost an equal
number of polynomials. The processors receive information about the polyno-
mials they should compute through the global data found in Type = Typej′ [k],
n = Rowj′ [k], and i = Indexj′ [k], and embedded within queuej′ . They then call
the sub-routine Compute−Polynomial which determines the polynomial Pk as
defined in the Göttfert setting. If Pk is non-constant, processor id stores it per-
manently and updates its own local value of length(n). When all computations
in queuej′ have been performed, a synchronization barrier is met, which updates
the values of the non-constant polynomials and the partial lengths of rows as
computed by every individual processor. We note the absence of a synchroniza-
tion point immediately after the broadcasting of the non-constant polynomials
due to the fact that they were not needed in any computation within the in-
nermost loop of the algorithm. Also, although updating the total row lengths
inside the innermost loop definitely discards any unnecessary gcd or division
computations remaining in the queue, our choice not to perform accordingly can
be justified by the fact that this will require a synchronization point within the
innermost loop, one whose repeated application could prove to be expensive.
All processors then assemble the partial lengths of all rows as computed by the
relevant processors which have contributed in non-constant polynomials. If any
row length becomes equal to m, all processors are signalled to stop. Else, queuej′

is transferred onto queuej (so that the most recent polynomials can help deter-
mine what the new parallel queue will be), and queuej is sorted through a call to
Sort. Since some processors compute constant polynomials whose index k leaves
the corresponding location in memory empty, the Sort sub-routine re-arranges
them (and their corresponding pointers in the arrays D or R) so that the non-
constant factors are stored consecutively after each other. Sort also returns the
length of the sorted list. Finally, a new queuej′ is set according to Algorithm 1.
The outermost loop can be shown to end, since we are bound to reach a row
containing all m non-constant irreducible factors.

3.2 The BSP Cost of the Algorithm

Before discussing the parallel complexity of our algorithm, we derive several
preliminary results, whose complete proofs can be found in [8].

Theorem 4. In the parallel setting described in algorithm 1, every row n has
its first element n; D1 computed in the parallel queue n and its last element
n; R#rn−1+1 computed in the parallel queue 2n− 1.
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Corollary 1. It takes at most 2m−1 parallel queues for a complete factorization
into irreducibles to be established.

Theorem 5. If n is odd, then queue n contains polynomials belonging only
to rows (n + 1)/2 + j, for j = 0, ..., (n − 1)/2, if 2 ≤ n ≤ m, and for
j = 0, ..., m − (n + 1)/2, if m < n ≤ 2m − 1. Else, if n is even, then queue
n contains polynomials belonging only to rows n/2+1+ j, for j = 0, ..., n/2− 1,
if 2 ≤ n ≤ m, and for j = 0, ..., m− (n/2 + 1), if m < n ≤ 2m− 1.

Theorem 6. Each parallel queue consists of at most 2m gcd and division oper-
ations and contributes to at most m non-constant polynomials.

Theorem 7. The BSP cost of algorithm 2 is of the order
O

(
m2

p M(d) log d + gm2
⌈

d
wl

⌉
+ m�

)
flops.

Corollary 2. Algorithm 2 has low synchronization and communication require-
ments.

4 Implementation and Run Times

For a full report on our parallel performance the reader can refer to [8]. Our
run times in table 1 of [8] suggest a speed gain in almost all cases, an outcome
that is to be expected as a result of the negligible communication and synchro-
nization requirements of our algorithm. The efficiencies demonstrate that almost
all our experiments scale very well up to 8 processors. Thereafter, the efficiency
remains very good either as d increases or as m increases. Efficiency also remains
almost constant around 1 for 256000 ≤ d ≤ 400000. We remark the absence of
a sharp fluctuation in the efficiency levels, mainly because our algorithm does
not involve data partitioning (but only task parallelism), which results in the
computation being either entirely in cache or out of cache across all processors
for the same d. This has the advantage of revealing the real scalability of the
algorithm and avoiding cache effects. We expect our algorithm to continue scal-
ing well as d increases more considerably than what is actually reported in this
paper, and experiments related to the output of the algorithm in [9] for solving
large Niederreiter linear systems for trinomials over F2 are currently under-way.

5 Conclusion

In this paper we presented and analyzed a complete BSP algorithm for extract-
ing the factors of a polynomial over F2 using the Göttfert refinement of the
Niederreiter algorithm, which, given a basis for the solution set of the Nieder-
reiter linear system, performs the last phase of the factorization algorithm in
polynomial time. Our BSP theoretical model resulted in an efficient BSP cost
requiring relatively small communication and synchronization costs. The parallel
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algorithm not only achieves considerable speed gains as the number of processors
increases up to 16, but maintains a moderate to high efficiency that is better
maintained as the degree of the polynomial or the number of its irreducible fac-
tors increases. The algorithm can be applied over fields of characteristic 2 in
general, provided an input basis is available. When combined with our work in
[9] which exploits sparsity in the Niederreiter linear system, the hybrid algorithm
provides a cheaper and more memory efficient alternative to the factorization
of trinomials over F2 than the implementation in [10], which uses dense explicit
linear algebra and a maximum of 256 nodes to achieve a polynomial record of
degree 300000. When compared with the Black Box Niederreiter algorithm of
[11], the hybrid algorithm is a simpler approach for moderately high record fac-
torizations of sparse polynomials over F2, requiring reasonable running times [9].
Apart from the significance of its experimental results, our algorithm provides a
good model of how parallelism in general, and the BSP model in particular, can
be incorporated elegantly and successfully into problems in symbolic computa-
tion.

Acknowledgements. The author is grateful to the Oxford Supercomputing
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