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Abstract

Given a polynomial ideal Z by a generating set of polyno-
mials, we present an efficient parallel algorithm to express
the radical of 7 as an intersection of unmixed ideals, each
represented by a triangular set of polynomials. This trian-
gular structure is' convenient for many purposes, e.g. for
conducting symbolic computation on the common roots of
the polynomials in the ideal, or for computing the union,
the intersection or the quotient of radicals. The sequen-
tial (parallel) complexity of our algorithm is subexponential
(subpolynomial).

1 Introduction

The notion of a characteristic set of an ideal was first
introduced by J.F. Ritt in 1950 {16] in the context of
differential geometry. In 1984 Wu Wen-Tsiin [22] realized
the power of characteristic sets in commutative algebra
and in automated geometric theorem proving. In the sub-
sequent years, numerous results appeared about different
applications, and characteristic sets became one of the most
fundamental computational tools in commutative algebra.
The “triangular” structure of characteristic sets, i.e. that
each variable is introduced by one polynomial, is convenient
for example when computing the common complex roots
of polynomials or when conducting symbolic computation
on the common roots without explicitly computing them.
Although we might lose information about the original ideal
when we consider only characteristic sets, the roots of the
polynomials in the characteristic set and the roots of the
polynomials in the ideal are related: omly the degenerate
cases, when leading coefficients of the characteristic set
vanish, give superflous roots.

Qur objective is to give an efficient method for finding
a generalization of the Wu-Ritt characteristic sets in which
the computational convenience of characteristic sets is
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preserved, but no information is lost about the roots of the
polynomials in the ideal. It turns out that characteristic
sets and decomposition of algebraic varieties are closely
related: the Wu-Ritt prime decomposition algorithm, which
expresses radicals as an intersection of ideals generated (or
represented) by irreducible characteristic sets, were already
proposed by Ritt in 1950 then by Wu in 1984 [16, 22],
and modified by Kalkbrener and Wang in 1993 [13, 20].
In spite of their elegance and simplicity, these algorithms
often compute superflous components embedded in other
components, and no complexity analysis has been given
for the worst case running time. As Kalkbrener notes it:
“The complexity of computing characteristic sets has been
analyzed by Gallo and Mishra (1990) [6]. But we do not
know the complexity of the prime decomposition algorithm
of Ritt and Wu or the complexity of the method presented
in this paper [13]. We think that a complexity analysis of
algorithms of this type and a comparison with the results in
Chistov and Grigor’ev (1983) {3, 8] and Giusti and Heintz
(1990) [7] are challenging problems for future research”
[13].

In this paper we present a Wu-Ritt type decomposition
algorithm. Similarly as in {12] we express the radical of an
ideal given by a generating set as the intersection of “un-
mixed” ideals {defined later) represented by characteristic
sets. To overcome the problem of computing superflous
components, and to give a complexity analysis for the
algorithm we need to modify Kalkbrener’s algorithm using
a similar approach as in [3, 8], and to add some extra
work. We give an algorithm which is efficiently paralleliz-
able, and the sequential [parallel] complexity is (d"z)o(”
[(nlog(d))°™], where n is the number of variables and d is
the maximal degree of the polynomials in the generating set
(same bounds as in [7, 3, 8]). Note that the above bound is
optimal in the sense that there are ideals in n variables such
that the generating sets of the ideals have maximal degree d
but the maximal degree in the characteristic sets is d", thus

the size of the output is d* in the dense representation
(see the example in [6]). On the other hand, there are
indications [17] that the algorithms in the present paper can
be modified to preserve sparseness. The complexity analysis
in the sparse representation is a problem for future research.

Furthermore, given a set of “unmixed” varieties rep-
resented by characteristic sets, we give an algorithm for
finding the same representation for the intersection and
difference of the varieties in the given set. Also, our method



gives a “lazy decomposition” procedure (see (4, 5]}, which
is an efficient algorithm for conducting symbolic arithmetic
on algebraic numbers without explicitly computing them.
In the zero-dimensional subcase both of these algorithms
are in the complexity class NC (using arithmetic circuits
over Q). These results have applications for instance in
mechanical geometric theorem proving [21], in resolving
singularities of plane curves ({14, 18]) and of higher di-
mensional varieties, which is the subject of ongoing research.

2 Basics

2.1 Wu-Ritt Characteristic sets

Before defining Wu-Ritt characteristic sets, first we give
some definitions following the approach in [2].

We consider polynomials in the polynomial ring
Q[z1,...,zs]. Assume that the variables are linearly or-
dered by their subscript: 1 < 2 < :-- < Zn. Then class(p)
denotes the highest indeterminate appearing in a polyno-
mial p, and lc(p) denote the leading coefficient of p regarded
as a univariate polynomial in class(p). So, if class(p) = z&
then lc(p) € Qlzy, ..., Tk-1)-

We call a set of polynomials G {g1,-.-,9¢} an
ascendmg set if class(g;) < class(g;) for all i < j. E.g.

= {z1z3, 2323 — 1128, 2}, z1Z2 + s is an ascendmg
set because class(z1z2) = z2 < class(z}z3 — z123) = 73 <
class(z3) = z4 < class(z172 + z5) = Ts.

The procedure pseudo division generalizes the method of
division with remainder for univariate polynomials to multi-
variate polynomials. Let f,g € Q[z1,...,zn] be polynomials
with class(g) = z;. Then there exist polynomials q and r
and a number o € N such that

l(9)*f=q9+r

where deg, (r) < deg,,(g) and a < deg, (f)—deg, (9)+1.
We denote by r == prem(f, g) the pseudo remainder of f by
g, and by ¢ = pquo(f, g) the pseudo quotient of f by g. If
a is minimal, then ¢ and r are uniquely determined.

In order to generalize the pseudo remainder concept for

ascending sets, consider an ascending set G = {g1,...,9%} C
Qz1,...,za] and a polynomial f € Q(z1,...,2,]. There
exists a sequence of polynomials fi = f,..., fo such that

for each k > s > 1, f,_1 is the pseudo remainder obtained
when dividing f, by g,. Combining these pseudo divisions
for £ > 8 > 1 we get that

k
lc(g,)™" -+ 1c(91)™ f = ) au9s + fo

=1
and we denote by fo = prem(f, G) the pseudo remainder of
f by G. Note that deg_; (fo) < deg., (g,) if class(g,) = x;,

(s =1,...k). We say that f is reduced modulo the ascend-
ing set G if f = prem(f,G).

We give two definitions (and characterizations) of Wu-
Ritt characteristic sets (2, 6]:

1. [6] If G C Z is an ascending set, then it is a character-
istic set of the ideal Z if and only if for every element
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f€Z, prem(f,G)=0.

Thus, if G is a characteristic set of the ideal Z, then
(G)CIC {heQz,...,zn] | prem(h,G) = 0}.

The above inclusions are usua.lly proper.

Example: If T = (z?y? — 22 - y? + 1, zy) and z <

v, then G = {z® - z zy is a characteristic set, but

(z® — z,zy) # (=%y* -y +1, zy) because the

dlmensxons of the corrwpondxng va.netx% are not equal.

Also, {zy® - -y 41, zy) # J = {h | prem(h,G) =

0}; for mstance y is in J but not in Z.

2. In the words of [2]: Informally, if F is a finite set of
polynomials, then G is a characteristic set of the ideal
{F) if G is ascending and F and G have “almost” the
same zeros. More formally, if F is a finite set of poly-
nomials, then G is a characteristic set of the ideal (F')
if:

e G is ascending set
o any zero of F is a zero of G

e any zero of G that is not a zero of any of G’s
leading coefficients is a zero of F.

As we mentioned earlier, our objective is to find a gener-
alization of the notion of Wu-Ritt characteristic sets, where
the computational convenience of ascending sets is pre-
served, but no information is lost about the roots of the
polynomials in the ideal. Below we define unmixed ascend-
ing sets, which are ascending sets representing algebraic vari-
eties such that all the irreducible components have the same
dimension. We show that every algebraic variety can be ex-
pressed as the union of varieties represented by unmixed
ascending sets, and we give an algorithm which finds this
unmixed representation. In the next subsection we discuss
the connection between characteristic sets and decomposi-
tion of algebraic varieties. This will lead us to our main
subject, the unmixed representation of radical ideals.

2.2 Decomposition of algebraic varieties

We start this section with an example:

Exam;)le 1 In the example of the previous subsection,
V(z?y* — z? — y*> + 1, zy) C A? consist of the four points
{Q, 0) (-1,0),(0,1), (0 -1)}, while V(z* — z, zy) contains
the points {(1,0), (—1,0)} together with the whole y axis.
‘We saw in the previous subsection that all the superflous ze-
ros of the characteristic set comes from “degenerate” cases,
when leading coefficients vanish. A possible solution to
avoid superﬂous roots would be to find the subvarieties
of V(z* - z) C A b whlch leadmg coefficients of the
polynomials in {z®y? — z> — y?> + 1, zy} vanish. These
leadmg coefficients are z and z% — 1 thus we can factor
V(z® -1) = g ) UV(z? —1). After reducmg the polyno-
mials modulo z“ ~ 1 and z, we get that
V(g ~ 2 —y* +1, zy) = V(2* -1, y) UV (z,p° - 1).

Note that {z* —1, y} and {z,y*> —1} are ascending sets and
all the leading coefficients are 1. In the above example, we
were able to express Z as an intersection of two ideals which
were generated by ascending sets, even though we could not
find a generating characteristic set for Z.



More generally, suppose we are given an ideal Z C
Q[z1,...,%a]. The example above suggests that if we could

express the radical vZ as
\/f =INn

such that each Z; is generated by an ascending set, then
this decomposition would preserve the computational con-
venience of ascending sets and give all the information about
the roots of the polynomials in T.

NI

2.2.1 Zero dimensional ideals

In the case when the ideal T is zero dimensional, i.e. the
polynomials in the ideal have only finitely many common
zeros in C*, the prime decomposition of the radical will give
the desired representation of the radical as intersection of
ideals generated by ascending sets, as asserted by the fol-
lowing:

Proposition 2 Let P C Qzi,...,z.] be a zero-
dimensional prime ideal. Then there extsts an ascending set
G = {g1,...,g9n} such that G generates P, class(gi) = i,
lc(gi) = 1, and the smage of gi in

(q:cl PR ,I.‘-]]/(gl, e ,g,'_l))[ﬂ:i] 15 in‘educible. .

As a consequence, for a zero-dimensional prime ideal P

we can find a characteristic set G such that
(GY =P = {h| prem(h,G) = 0}.

Thus for zero-dimensional ideals, it is enough to find the
prime decomposition of the radical, then find an ascending
generating set for each prime ideal. The primary decom-
position of zero-dimensional ideals has been studied and
analyzed by D. Lazard in [15]. Also, D. Ierardi [11] gives
a method for solving algebraic systems using generalized
resultant methods. In fact, in both approaches, the prime
decomposition of radicals is reduced to the problem of
factoring multivariate polynomials. Unfortunately, there
is no efficient parallel algorithm known for factoring
polynomials over Q.

As the example at the beginning of this subsection
suggests, we do not necessarily need to find the complete
prime decomposmon of the ideal. The ideals (z? — 1,y)
and (z,y* — 1) are not prime ideals, but they are genera.ted
by ascending sets of monic polynomxals To compute this
decomposition, we did not need to factor polynomials
completely, but only split a polynomial when there was
a leading coefficient such that they have nontrivial ged.
Teitelbaum [18] proposes an algorithm for such “lazy
factorization” of zero-dimensional ideals. He reduces the
problem to the univariate case by applying rational coordi-
nate transformations and by finding primitive elements.

Applied to zero-dimensional ideals Z = (F), the algo-
rithms in the present paper will decompose the radical of a
zero-dimensional ideal 7 into

VI =(G)Nn

where G: are ascending sets of monic polynomials. The
sequential complexity of the algorithm is (d"z)o(”, and the
parallel arithmetic complexity is (nlog(d))°V), where d is

N{G.)

141

the maximal degree of the polynomials in F and n is the
number of variables in F.

Moreover, given an ascending set G of monic polyno-
mials, which generates a zero-dimensional radical, and also
given a polynomial f, we give an algorithm which split (G)

into . .
= (NG n (NG
=1 =1

where G and Gj are ascending sets of monic polynomials
and

1. f is zero modulo (G;).
2. f has an inverse modulo {G7).

for each 1 <t < rand 1 £ j € 5. This algorithm will
enable us to conduct symbolic computation on the complex
roots of the polynomials in a zero-dimensional ideal gener-
ated by an ascending set without computing the roots explic-
itly. Also, we give an algorithm which computes the union,
the intersection and the quotient of zero-dimensional ideals
generated by ascending sets of monic polynomials. These
two algorithms are in the complexity class NC, i.e. they
can be computed by an arithmetic circuit of polynomial size
and depth polylogarithmic in the input size, which is in this
case d", where d is the maximal degree of the input and n
is the number of variables in the input. We use the dense
representation of polynomials.

2.2.2 Higher dimensional ideals

In higher dimensions it is not true that every prime ideal is
generated by an ascending set, or even by a regular sequence,
i.e. a set of polynomials having cardinality equal to the
codimension. Consider the following example:

Example 3 Consxder the affine curve ¢ = {(z,y,2z) €

3 e =1ty =tz =15t e C) The correspond-

% ldeal I C Qlz,y,2] is generated by the polynomials

~ x4 2? —-yz zz—y} It can be proved that Z is

a prime 1deal in Q[z, y, 2] (also in Clz, y, z]), the codimen-

sion of Z is 2 in A®, and 7 cannot be generated by fewer
than 3 polynomials.

Ideals which are generated by a set of polynomials with
cardinality equal to the codimension are called complete
tntersections. A more detailed treatment of the subject can
be found e.g. in [9].

The above example suggests that if P is a prime ideal
and G is any ascending set from P, then in

(G) € P C {h| prem(h,G) = 0}

the first inclusion must be proper if P is not a complete
intersection. Our objective is to find an ascending set for
which the second inclusion is an equation. It turns out that
such an ascending set always exists [13].

Kalkbrener {13] gives a representation (described below)
of a prime ideal P by an ascending set G such that the
second inclusion above is an equality, i.e.

P = {h| prem(h,G) = 0}.



Therefore, ideal membership can be algorithmically decided,
given this ascending set. Furthermore, certain non-prime
ideals are also representable by ascending sets in the same
manner. This will lead to the notion of unmixed sets and
unmixed representations and will enable us to avoid prime
factorization. Kalkbrener’s approach is based on the follow-
ing result:

Proposition 4 (Kalkbrener) Let R be a Noetherian com-
mutative ring and I be an ideal in R[z]. Denote by K(P)
the quotient field of the integral domain R/P where P is a
prime ideal in R. Then the following are equivalent:

(a) T is a prime ideal in R[z]

(4) IO R is prime in R, J is prime in K(Z N R)|z]
and Z(R/I N R)[z] = J N (R/I N R)[z], where J
is the ideal TK(Z N R)[z].

(¢) INR ts prime in R and there erists a polynomial
q € R[z] such that the image of ¢ in K(Z N R)[z]
1s either srreducible over K(Z N R) or zero and

forevery f€R[z]: feI = e (gx

where (g)x denotes the ideal in K(Z N R)[z] gen-
erated by q and fI"F denotes the image of f in
(R/INR)[z]. A

We use the above proposition inductively for B =
Qlz:,...,Zn_1] with the trivial base case when R = Q If
P is a prime ideal, then there exist polynomials ¢1,...,¢n
such that each ¢; is in Q{z1,...,z:] and g; is either zero or
irreducible over K(ZNQz1,...,zi-1]). Moreover, for every

fFEQ=z1,...,zn],

feP & f=2piq.'

=1

for some p; € K NQz1,...,zi1])[zi, 1 i< n. It
is easy to see that the latter condition is equivalent to the
following: if G = {gi | ¢ # 0, 1 < ¢ € n} then G is an
ascending set and

P={he€Qzi,...,z.] | prem(h,G) = 0}.

Example 5 As in the previous example, let Z = (y° —
x4, 22 — yz?, x2—y*) C Q[z, y, z] be the prime ideal defin-
ing the curve C € A3. For each 1 < i < 3 we compute the
polynomials ¢; as follows:

1. Fori =1, INQfz] = {0}, so let ¢ = 0 and
P:. = {0}. Then K(P1) = Q(z).

2. Fori=2, InQ[zr,y) = (y® —z*) so let g2 = y° -
z'. Then {g2)x C K(P1)[y] obviously generates
INQ[z,y]. It is also clear that {(g)x NQzx, y] =
(y® — z%). Define P; = (y® — z*}; then K(P;) =
Q)[yl/(v® — =)

3. Since K(P:)[z] is a princigal ideal domain,
TK(P,)[2] = (z* —yz?, zz—y*)k is generated by
the ged of the images of the polynomials (2* —yz?)
and (zz — y?) in K(P2)[z]. Since

2 4
z
(Z-y) = @-")C+ 5+ -w?
4
Y-vw® = 56t-aY
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we have that gcd(z? — yz?,zz — y?) = zz2 — ¢°
over K(P;). Note that after multiplying by the
denominators in the above calculation we get the
pseudo division of (2? - yz?) by the ascending set
{y® ~z*, £z~ y?}. Let g3 = x2 — 2.

Claim: (g3)x NQz,y,2} =1.

Proof: First observe that

{(g}xNQz, y, 2] = {k € Az, y, 2] | prem(h, G) = 0}

where G = {g2,¢3} is an ascending set. We saw
in section 2.1 that prem(h,G) = 0 iff there are
numbers a, 8 such that lc(g2)%lc(gs)?h € Z. Here
lc(gz) = 1 and lc(gs) = z. Thus prem(h,G) =0
iff z°h € Tiff h € T using that z ¢ Z and Z is
prime ideal. B

To summarize the above results, let P C Qz1,...,2Zx]
be a prime ideal. Then there exists an ascending set G
{g1,-..,9m} such that

P ={h€Qz1,...,za] | prem(h,G) = 0},

and if class(g;) = z; then g; is irreducible in K(P N
Qz1,...,zj—1])[z;]. An ascending set with the latter condi-
tion is called an irreducible ascending set. We say that G rep-
resents the ideal P if P = {h € Q[z1,...,z.] | prem(k,G) =
0}, denoted by Rep(G). Thus using the prime decomposi-
tion of the radical of an ideal Z, we can express

\/f =IiNn...NnZ,.
where each Z; is represented by an irreducible ascending set.

Similarly to the zero-dimensional case, a “lazy” approach
— using only ged computations on polynomials - is sufficient
to express radicals as

\/f:I;ﬂ...nIr

where Z; is represented by an ascending set G; for each 1 <
i < r. We follow an approach similar to [12]. Again, an
ascending set G C Qfz1, ..., xn) represents the ideal Z if

Z = Rep(G) = {h € Q[z1,...,za] | prem(h,G) = 0}.

In the case of prime decomposition, we require the ascending
set to be an irreducible ascending set in order to represent a
prime ideal. In the “lazy” version we weaken this condition,
and we only require the ideal represented by the ascending
set to be radical and a proper subset of Q{z;,...,z.]. The
following result gives a sufficient condition for this:

Proposition 6 Let G = {g1,...,9m} be an ascending set
and T = Rep(G). For each 0 < i < m—~1, let GV =
{91,..-,9i} and {Pi;};L, be the prime ideals in the irre-
dundant prime decomposition of the radical of Rep(G™).
Suppose that the following conditions are satisfied for each
0<i<m—-1:

(a) lc(gi+1) € Pij for each 1 < j<r;.
(b) gi+1 15 squarefree over K(P; ;) for each 1 < j <

Ti.

Then I is radical and T # Q[z1,...,Zn]. Furthermore, all
the prime ideals in the irredundant prime decomposition of
T have the same codimension. B



A radical ideal and the corresponding variety are called
unmized if all the associated prime ideals have the same
codimension. We will call an ascending set an unmized as-
cending set, or simply unmixed set, if conditions (a) and (b)
of Proposition 6 are satisfied. The unmired representation of
an ideal is a set of unmixed ascending sets such that the in-
tersection of the radicals represented by these unmixed sets
is the radical of the ideal.

2.3 Notation

In the following sections we will use the following notation:

Let R denote a Noetherian ring with identity and let F
be a subset of R. The ideal generated by F is denoted by
(F), the radical of (F) by VF. For f € R|z], f* denotes
the image of f in (R/T)[z].

Ifz Q1 N...N Q, is the irredundant primary
decomposition of Z, then P, = V@i, ..., Pr = V@, are the
associated primes of Z, and we denote the set {P1,...,P,}
by Ap(I). For a prime ideal P C R the quotient field of the
integral domain R/P is denoted by K(P).

The codimension (height) of a prime ideal P # R
is said to be m if there exists at least ome chain
Po C Pr C ... C Pm = P, where P; are prime ide-
als, and there is no chain with more then m + 1 elements.
The codimension of an arbitrary ideal Z # R is the min-
imum of the codimensions of the prime ideals containing
Z. Note that the codimension of an ideal represented by
an unmixed ascending set C is equal to the number of
polynomials in C.

3 Outline of the algorithm

We will construct a modified version of the Wu-Ritt un-
mixed decomposition algorithm of Kalkbrener. In [12]
decomposeg[x; has a finite set of polynomials F' as input
and it computes the unmixed representation of the corre-
sponding radical /(F) by creating branches of the com-
putation and recursively calling decomposeg(x}. Unfortu-
nately, it often computes superflous components embedded
in other components computed in different branches. Be-
low we present an algorithm decompose)’ which restricts
the output to unmixed sets of codimension m such that the
union for m = 1,...,n gives an unmixed representation of
+/(F). By this restriction we are able to avoid the compu-
tation of superflous components because

e we ensure that the computed unmixed compo-
nents of codimension m have no intersection of
codimension m

e none of the components of codimension m com-
puted are embedded in a component V' of V(F)
of codimension m' < m.

After finding an unmixed representation of a radical,
we use the algorithm split]' to factor further the unmixed
components (represented by unmixed ascending sets), de-
pending on whether a given polynomial vanishes or not over
the component. The algorithm split] can be applied to
conduct symbolic computation on algebraic numbers which
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are given as roots of polynomials in unmixed ascending
sets. Also, split) is a subroutine in decompose)'. The
algorithm is a generalization of the resultant method for
finding the gcd of several univariate polynomials described
in (10, chapter 15.2].

We also present an algorithm simplify;* which might
have separate applications besides being a subroutine of the
decomposition algorithm. Given a set of ideals represented
by unmixed ascending sets, simplifyy® computes the
unmixed representation of the unions, the intersections and
the quotients of the ideals in the given set. The algorithm is
a generalization of the simple refinement method described
in [1].

In the algorithms below we assume that every polynomial
in the computation is reduced by the unmixed ascending set
given in the input or previously computed. Therefore, in
each step we must find the pseudo remainder of the poly-
nomial computed by the unmixed ascending set. We omit
the technical details of the algorithm premy® but we give
an outline of the complexity analysis in section 3.5.

3.1 The decompose algorithm

We will give an informal description of the algorithms using
geometric notions instead of algebraic. In this section R
will denote the polynomial ring Q[z1,...,Zn-1], so R[zn] =
Qz1,...,zn). Let F = {fo,..., f} C Rlzn] be a set of
polynomials, T = {fo,..., fx), V = V(Z) C A". Abusing
notation, for an unmixed ascending set C, V(C) and Ap(C)
denotes respectively the variety and the associated primes
corresponding to the radical Rep(C) and not to (C).

3.1.1 Induction for codimension m

The algorithm described below is inductive on the codimen-
sion m of the components computed. The induction hypoth-
esis for codimension m is the following:

e We have computed the set ['n(F) = {C1,...,Cr,. } of
unmixed ascending sets with the following properties:

H1 V CUgernm V()

H.2 codim(V(C:)) < m for all C; € ' (F).

H.3 Each C; € I'n(F) is one of the following two

types:

(a) first type: V(C,) C V.

(b) second type: No irreducible components of
V(C;) contained by V, but for every irre-
ducible component of V(C;) there exists a
component V' of V of codimension > m + 1
such that V' is contained in the irreducible
component.

If codim(V(C;)) < m then C; is first type, i.e.

V(Ci) CcV.

If codim(C;) < codim(C;) then no component of

V(Cj;) is completely contained in a component of

V(C:).

T'm(F) is simple: V(C;) and V(C};) do not contain

any common irreducible components, i # j.

H4

H.5

H.6



We terminate the algorithm if all the components
C1,...,Cr,, are of the first type, thus the set I',(F) =
{C1,...,Cr,.} gives the desired unmixed representation of
the radical of Z. This occurs when m reaches the maxi-
mal codimension of the irreducible components in V. If not
all the components are of the first type, we call the variety
Ucer..(r) V(C) a hull of V' of codimension m.

3.1.2 Casem+1

In this step, we distribute the computation creating a new
branch for each C € ')y (F) of second type. On each branch,
the algorithm decomposey**(C, F) computes an unmixed
representation of a hull of V(C)NV (F') of codimension m+1.

Let TV and T'? be the first and second type compo-
nents of 'y, (F), resp. Also let Anmy1(C, F) be the output of
decompose™ 1 (C, F). To see how the induction hypothe-
sis is maintained, define

D1 (F) = TR U( U Am41(C, F)).
cer®

[ny1 (F) will satisfy H.1-H.4 of the induction hypothesis
(for m = m + 1) if we adequately specify the output A4
of decompose™ !, described in the next subsection. H.5 is
satisfied because we only decompose unmixed sets of second
type. As for the sixth property H.6, a component of V(F)
with codimension > m+ 1 might be contained in more than
one component from I'n(F), so it might be computed on
more than one branch. Thus Iy, (F) is not necessary sim-
ple, so care must be taken. We will describe how to compute
the simple refinement 'y 41(F) of T4y (F) in section 3.3.

3.1.3 The input and output

We define decompose™*?! to be slightly more general than

the description above implies. We will have an extra op-
tional argument T', which will be used in the iterative calls.
This change is not essential, but it does simplify the presen-
tation. .

The input of decompose]' ™" consists of

I.1 an unmixedset C = {g1,...,9m} C R[zx) of codi-

mension m,
1.2 a set of polynomials F = {fo,..., fx} C R[zn]
1.3 an optional argument T = {q,...,¢.} C
Rlzp,Tn41,. .., x1) for some I > n.

The output of decompose™*!(C, F,T) consists of the
unmixed sets

Am+1(C,F,T) = {C1,...,Cr}
in R[z.] such that forall 1 <i<r

0.1 codim(C;) = m + 1 = codim(C) + 1

0.2 V(Ci) C V(C)

03 Ui, V(G:) 2 (V(C)NV(F))zma1 where (V(C)N
V(Fl))z,,..H denotes the union of the irreducible
components of V(C) N V(F) of codimension >
m+ 1.

0.4 Apnyi(C, F,T) is simple.

0.5 g # 0 modulo P for all P € Ap(C;) and for all
@ €T.

0.6 each V(C;) is either first or second type.

3.1.4 Description of the algorithm

First we show how to compute decompose™*(C, {h},0),
where h € R[z,) is a polynomial and all the components of
V(C) NV (h) have codimension m + 1. Then we show how
to reduce the computation of decompose™*(C, F,T) to
the computation of decomposey**(C, {h},9).

Let C = {g1,...,9m} C R[za] be an unmixed ascending
set of codimension m and k be a polynomial in R{x,] such
that V(C) n V(h) is an unmixed variety of codimension
m+1. DefineC’'=CNR, geC—R (g=0if C CR).
Note that C' is an unmixed set in R of codimension m or
m — 1 depending on whether C = C’. We will compute
decompose*(C, {h},0) by reducing the problem to the
n — 1 variable case.

Consider the subvariety V' C V(C’) € A*~! such that
9(&,zn) and h(&, z») have common roots in C for all & €
V’. Since V(C) N V(h) has codimension m + 1, V' has
codimension m, but V' is not necessary unmixed. In order
to find the unmixed representation of V', the main idea is

to express
V= U ‘/r,at

r,8,t

where 0 < r < deg,(g), 0 < s < deg,_(h),0< t =t(r,s) <
min(r, 8), V/,, is either empty or unmixed, and for “almost
all” & € V;,, the following are satisfied:

e ris the largest exponent such that the coefficient
of z}, in g(&, zn) is not zero, i.e. g(& zn) has
degree r > 1.

e s is the largest exponent such that the coefficient
of z;, in h(&,z,) is not zero, i.e. h(&,zn) has
degree s > 1.

e tis the smallest index such that the ¢** subresul-
tant ; of g(&,zn) and h(&,z.) is not zero, i.e.
ged(g(&, zn), h(&, z5)) has degree t > 1.

Here “almost all” means that the points form an open
dense subset of the variety. In the cases when r = 0 or
s = 0, we need to be more careful, but the definition is
similar.

It is easy to see that the unmixed representation of V,,
is of the form

A},; = decomposeq ,(C’,G, U H, U &, {gr, hr,0:})

where G,, H,, ®:, {9-,h+r,:} C R describe the above
properties with polynomial equations and inequations.
(The above is true only if C’ has codimension m — 1. If
C' has codimension m, we succeed similarly by calling
the subroutine split* ; described below. We omit the
technical details here.)

Let g,o¢ € R[z.] be the gcd of g and h over K(P)
for all P € Ap(C,,,) where C;,, € A},,. In fact, for
r,s,t 2 1, grst is computed by simply solving the linear
system corresponding to the t** subresultant . of the
degree r and s slices of g and h, resp. [19]. We use Cramer’s
rule without the division by the determinant ¢, thus the
leading coefficient of g,: is ..



Since C),, satisfies the above properties, we have
lc(grst) € P for all P € Ap(C},). We can also assume
that g-,¢ is squarefree, otherwise we can squarefree factor
with an algonthm similar to splity described below. Thus
C!,: U {grst} is an unmixed ascending set. For all A},, # 0,
define

A"” = {C;ct v {gr.;t} | C:‘at € Ai‘lt}

U Arat-

r,s,t

and
Apm+i1(Ch) =

It can be proved that A,41(C,h) is simple and is an
unmixed representation of V(C) N V(h).

to reduce
computation  of

how
the

Now we describe
decomposey' +1(C FT) to
decompose™+1(C, {h} 0).

Let C = {g1,...,9m} C R[z.] be an unmixed ascending
set of codimension m, F = {fo,...,fr} C R[zn] and T =
{q1,--.,9¢} C R[Zn,Zn+1,...,2i] for some ! > n.

1. We need to compute a polynomial h € R[z,] such that
(V(C)Nn V(h)) is a hull of (V(C) N V(F)) of codimen-
sion m + 1. We can assume that (V(C) N V(F)) has
codimension m + 1, otherwise we can factor out the
components of codimension m. Then there exists a lin-
ear combination h of the polynomials in F' which is in
“general position”, i.e. (V(C) N V(h)) has codimen-
sion m + 1. We compute the polynomial h by calling
general™*! described in section 3.2.

2. We need to find an unmixed representation of the
Zariski closure of (V(C)NV(h)) — V(T). Suppose we
have computed the unmixed representa.tlon of (V(C) n
V(h)) as above. We use splitT™+! (described in 3.4)
to find those components where none of the poly-
pomials qi,...,9c € T vanish identically. We call
split™*! for the polynomial ¢ = IIi_, @ Note that
the number c never exeeds 3 in the recursive calls of
decompose™*1(C, {h},0) above.

3. Last, we need to separate the first and second type
components of the hull of (V(C) NV (F)) — V(T). We
define the polynomial

f(zy,. ..

in n+ 1 variables, and by calling split™*? for f (de-
scribed in section 3.4), we find those components where
all fo,..., fr vanish (first type), and those where at
least one of them does not (second type).

yIng1) = faZrgr + ...+ fo

3.2 The algorithm general™*!

Let C = {g1,...,9m} C R[zn] be an unmixed set of codi-
mension m and F = {fo,..., fr} C R[zx] a finite set. Sup-
pose that V(C) N V(F) has codimension > m + 1. Then
there exists a polynomial h € R[z,] such that

k
h= Zajf,-
j=0

for some a € Q and h is in general position, i.e. V(P)NV(h)
has codimension m + 1 for all P € Ap(C). We compute
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the polynomial h using the algorithm general?*'(C, F) as
follows:

If m =0, then h = fo € F will satisfy the desired prop-
erties. If m > 0, then define

‘PM+1(fry) = .fkyk +fk—lyk_l +... +f0 € qxlr .. 1Iﬂ’y]

where y is a new variable. The algorithm is based on the
equivalence of the following statements:

- V(P) N V(F) has codimension > m + 1 for all

P € Ap(C).

The ged of the polynomials {gm, fo,... fe} is 1

over K(P) for all P € Ap(C') where C’

{91, -, gm-1}.

For s = ,.-.,0 define inductively ¥,

RES:,, (¥,4+1,9s) the resultant in the variable

z;, = class(g,). Here ¥,,, is the pseudoremain-

der of ¥,4; modulo g,. Then ¥o € Q%,y], where

Z ={zi]|i # 4., 0 < 8 < m} and ¥p is not

identically zero.

Let ¥o be as above. There exists a € Q such that

Uo(Z, a) is not identically zero.

— Let a be as above. Then h := ¥,4+1(Z,a) is in
general position.

Moreover,

deg,(¥o) = (deg,(¥1))- (deg,, (g1))

(deg, (¥m+1)) [] deg.,, (s.)

=1

k] deg,., (9.).

a=1

Thus, if S C Q and |S| = k(T]}. ydeg, (9s)) + 1, then
there must be a € S such that \Ilo(:z: a) is not identically
zero. If z; # class(g,) for any s = 1...m then let k; be
the maximum degree of the input in the variable z;. The
above bounds are also valid with any variable z; in place of

y and k; in place of k. Thus the dense size of ¥o(Z,a) is
(% I, deg,, (9s))™, where k' = max{k,k; | j #1i,}. B

3.3 Simple refinement

Recall that a set of unmixed ascending sets I’ is simple
if for all C # €' € T, V(C) and V(C’) do not contain
common component, i.e. Ap(C) N Ap(C’') = 0. Note that
if I' contains unmixed components of a hull of V and I is
simple, then |[| < deg(V).

Below we describe how to find a simple refinement of a
given set of unmixed sets I', i.e. a new set A of unmixed
sets which is simple and Ucer Ap(C) = Ugea AP(C). The
algorithm simplify" is a generalization of the method in
[1, section 2.1]. Besides being a subroutine of the decompo-
sition algorithm, simplify has sepatate applications as a
method to compute the union, quotient and intersection of
ideals represented by unmixed sets.

First we show how to compute a simple refinement of
the set {C,C'} consisting of two unmixed sets. Let C =



{91,.-.,9m} and C’ = {g1,..., 9}, } be unmixed ascending
sets. We can assume that C and C’ have the same type,
ie. m = m’ and class(g,) = class(g;) for all s =1,...,m,
otherwise Ap(C) N Ap(C’) = 0. Let d, = deg,, (g,), where
z;, = class(g,), and let T = {(t2,...,tm) EN""1 |0 < ¢, <
ds, 2 < s < m}. We define inductively for s = m,...,1 the
following polynomials for each £ = (t2,...,tm) € T:

RESY) (gm,gl), the j** subresultant in

ZTim

the variable z;,, = class(gm) for all 0 < j < dm.

_ o =

—Fors <m-—1let g, = gL+y,cp£(_)21+...+

yﬁ‘*‘“cpﬁt_;'l“), the combination of g and the first
ts+1 subresultants of g,+1 and g;,,. Note that g;
contains variables

{51 Ym,. .. )y-'} - {xi,l l Ti,, = class(g,;), s> 3}'

- For s < m —1let o) = RESY) (g,,93), the j**
subresultant in the variable z;, = class(g,) for all
0 < j <d,. Note that w? ) contains the variables
{&,ym,...,ys} — {zi,, | zi,, =class(gy), ' > s}.

For a given { € T, denote the polynomial g; defined above
by g{a. Informally, for a given (t2,...tm) € T the gcd of
(91,91, gp) is a univariate polynomial with roots o € C such
that the gcd of gi|z,=a and g{|z,=o has degree at least ¢; for
all 2 < i < m. After computing the simple refinement of the
set of univariate polynomials {gcd(g1, g1, gP)};U using the
method in [1, section 2.1], each polynomial d; in the simple
refinement corresponds to a vector £ € T such that di(a) =0
implies that the degree of gcd(gi|z,=a, gilz;=a) is equal to
t; for all 2 < i < m. Then it is easy to see how to compute
the unmixed ascending sets p® = {dﬁ"),dp, . ,ds,‘?} by

solving linear equation systems, where dfﬂ is the unique gcd
LA e |

of degree t; of g; and g; modulo Rep(
be shown that

Ap(C) N Ap(C") = | Ap(D®D).
teT

). It can

Also, using pseudo division we can find the unmixed sets

Dgn = {dga,...,g,-/dgn,g,-.,.h...,gm} foreachi=1,...,m.
It can be shown that

Ap(C) - Ap(C) = |J | Ar(DP).
feT i=1

Using the same method for Ap(C') — Ap(C), we get a
simple refinement of the set {C,C'}.

Now let I' = {C4,...,C.} and I = {C4,. .., C}} be two
simple sets of unmixed sets. Again, we can assume that
the unmixed sets in I' UT” all have the same type. We can

express |J/_, Ap(C:) UU‘_, Ap(C}) as
[AR(C:) = (Ugyers ARCI)] U [AP(C)) = (Ug,er AR(CH)]
U (UrioalAR(CH) N Ap(C)])

a disjoint union. An unmixed representation of the ideal
corresponding to Ap(C;) N Ap(C;) can be found as in the

146

previous paragraph.

To find [AR(C:) = (Ugyerv ARC))), let g = TTi, o5
where g¢) is the s** element in C} € I' (s = 1,.,m).
We can use the method of the previous paragraph with
C = Ci and C' = {g1,...,9:,}- Note that the fact that
C’ is not an unmixed set is not relevant here, as we only
want to compute the ideal corresponding to Ap(C)—Ap(C").

Now a straightforward divide-and-conquer yields the al-

gorithm
simplifyy (I'1,...,I)

computing the simple refinement of the set {I'y,...,I;},
where each T'; is simple and all the unmixed sets in (JI';
have the same type.

3.4 The splitting algorithm

Let C = {g1,-..,9m} C R[zn] be an unmixed ascending
set of codimension m and f € R[zn,Zn+1,-..,2i] for some
! > n. The algorithm split]'(C, f) computes the unmixed
decomposition

(T,A) = ({B1,...,Bs},{Dh,...,D:})
of C such that

e U, Ap(B:) = {P € Ap(C) | f* # 0}
o U; Ap(Di) = {P € Ap(C) | f¥ =0}

where f7 denotes the image of f in (R[zn)/P)[Zn+1,--.,71]-
We also require the set I' U A to be simple.

Note, that C, Bi,...,B, and D,,...,D; all have
the same type, ie. if C = {g1,...,9m} and B; or
D; = {gi,..-,9.}, then m = m' and class(g;) = class(g;)
foralli=1,...,m.

Also, note that f® = 0if and only if all the coefficients of
f are in P when f is considered as a multivariate polynomial
in Zn41,...,Zn4i- On the other hand, given an unmixed
ascending set C and a set of polynomials F = {fo,..., fi} C
R[z,], we can define the polynomial

f(xlw--- ,.’En+1) = fkl'ﬁ...l +... +fo.

Then it is easy to see that the output of split}’(C, f) will
separate the first and second type components of C corre-
sponding to F [10}.

3.4.1 Description of the algorithm

Again, let C = {g1,...,9m} C R[zn] be an unmixed
ascending set and f € R[Zn,Zn41,...,%i] for some [ > n.
We show how to reduce the computation of splity (C, f) to
the computation of split,_1 in one less variable. The main
idea of the algorithm is similar to the one of decompose,
only here we have fewer degenerate cases, since we do not
need to eliminate variables.

Without loss of generality we can assume that
gm € R[zn] — R, otherwise we call splity: ,(C, f). Let
C' = {g1,-..,9m—1} the first m — 1 element of C, which
is an unmixed ascending set in R of codimension m — 1.



Write f as a univariate polynomial in :c,,, so the coefficients
of f are in R[zn+1,...,z}

We split V(C”) into

V(Cl) = Uvalc

where 0 < s < deg, (f), 0 <t =1t(s) <5 Vj is an
unmixed component of V(C') with codimension m — 1, and
for all irreducible components V(P’) C V},, the following
are satisfied:

e s is the largest index such that the coefficient of
z2 in f does not vanish identically over V(P'),
ie. fP' has degree s in zn.

e ¢ is the smallest index such that the ** subresul-
tant
Pt = R.ESin(fp ,gm) € R[:l:,,.H, .., 2] is not
identically zero over V(P'), ie. gcd(f,gm) €
R|z,] has degree t.

It is easy to see that we can define polynomials F, and
&, in [ variables such that the unmixed representation of V;,
can be found by first computing

(T, A%) = splitp ' (C', Fa + ®¢)

and then finding the simple refinement of {A];},: using
the algorithm simplify"". We omit the technical details.
Denote the unmixed repr&sentatlon of V;, again by A},.
Note that we used that the leading coefficient of g,, does
not vanish over any component of V(C’).

Let ps: € R[zn] be the ged of gm and f, and let g, be
the quotlent of gm and p,; over K(P') for all P’ € Ap(C,,),
where C.; € A,,. The polynomial p,: is computed bX
simply solving the linear system corresponding to the t*
subresultant of gm and the slice of f of degree s. The
polynomial g, is computed by a simple pseudodivision
algorithm.

Since gm is squarefree, we have that p, and ¢, are
squarefree and relatively prime. Also, since C.; satisfies the
above properties, we have that lc(ps:),lc(gse) & P’ for all
P’ € Ap(C,.). Thus C;,U{pst} and C:, U {qs:} are unmixed
ascending sets. Define

(F’A) = (Urst, UAst)-

a,t s,t

where I'y: = {C;t U {q,t} ' Cg € A, g} and Agt = {C;t
{ps:} | Cs¢ € Al }. It can be proved that T'U A is simple,
it is an unmixed decomposition of Rep(C), and f identi-
cally vanish over the components in A but does not vanish
identically ofer the components in I'.

3.5 Complexity

The complexity bounds below are for arithmetic circuits over
Q. Let n be the number of variables. It can be shown
that the sizes of the circuits in the first five cases below are
polynomials in the bounds for the sizes of the polynomials
occuring in the computation. Thus, if the degree bound for
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the polynomials occuring in the computation is D, then the
size in the dense representation is D", and the size of the
arithmetic circuit is (D™)°()). Below we give the degree
bounds and the circuit depth for the algorithms described
in the paper.

1. premy'(f,C), where C = {g1,...,9m} C Qz1,..., 2z}
unmixed set, f € Q[z1,...,z:] for some | > n, and
prem computes the pseudorema.inder of f modulo C.
Denote by d the maximum degree of the polynomials in
the input. Also, if z;, = class(g,) then d, denotes the
maximum of degzi. (f) and deg., (9¢) (s =1,...,m),
and if x; # class(g,) for any s then k; denotes the
maximal degree of the input in the variable z;.

Degree bounds Any polynomial p in the computa-
tion have deg,, (p) < 2d, (s = 1,...,m) and
deg, (p) < k; IIiL,d. if j # i,. Note that the
first bound holds for all variables in the zero-
dimensional case (n = m).

Circuit depth For the pseudodivision we use similar
method as in [19] solving linear equation systems.
Thus using the definition in section 2.1, we have
that

Depth(prem(C, f)) < c1(nlog(d))?
for some constant c;.

2. simplifyy (I'1,...,I'y), where T'y,...,I', are simple
sets of unmixed ascending sets, and all unmixed set
in JT'; have the same type.

Degree bounds If z;, = class(g,) for some g, in the
input, then all the computed polynomials can
be reduced by g, € |JT'i, the maximum degree
polynomial in the variable z;,. Thus any poly-
nomial p in the computation has deg,, (p) <
2deg,, (%) 2d,. If z; # class(g,) for any
polynomial g, in the input, and k; denotes the
maximum degree of the input in the variable z;,
then any polynomial p in the computation has
deg, (p) < rk; [T, di.

Circuit depth The depth of simplifyy (I'y,...,I;)
is log(r) times the depth of simplifyy (C,C’).
The Iatter algorithm has depth
camnlog? (d' )Depth(prem), where d' rd
is the maximum degree in C’' and d is the
maximum degree of the polynomials in {JT.
Thus

Depth(simplify (I'y,...,T.)) < ca(nlog(r) log(d))*

for some constant c;.

3. split*(C, f), where C {91,--.,9m} and f €
Qz1,...,z:] for some ! > n, and d, d, and k; denotes
the same as in 1. above.

Degree bounds As above, any polynomial p in the
computation has deg,. (p) < 2d, (s =1,...,m)

and deg, (p) < k; [T, do (G # ia).



Circuit depth split™ recursively calls split] !,

simplify™"!, and conducts determinant compu-
tations. An easy computation gives that

Depth(splity' (C, f)) < ca(nlog(d))°
for some constant c3.

4. general?(C, F), where C = {¢1,...,9m} and F C
Q{z1,...,7n] and the maximal degree of the polynomi-
als in the input is d.

Degree bounds Using the bounds in section 3.2 we
get that any polynomial p in the computation has
deg, (p) <d" fori=1,...,n.

Circuit depth An easy computation gives that
Depth(generall (C, F)) < cs(nlog(d))*
for some constant cq.

5. decompose(C, F,T), where C = {g1,...,9m}, F C
Qz1,...,2za}, T C Qz1,...,zi] for some ! > n. Here
|IT| = ¢ and the maximum degree of the polynomials in
the input is d.

Degree bounds As above, we get that any polyno-
mial f in the computation has deg, (f) < d" for
i=1,...,n

Circuit depth decomposey’ calls the subroutine
general?, and the subroutine splity’ c+2 times,
and iteratively calls decompose™ ;. Using the
above bounds we get that

Depth(decompose™(C, F, T)) < csc(nlog(d))®
for some constant cs.

6. Last, we note that in the computation of the unmixed
representetion of /(F), the number of branches cre-
ated at each codimension m (corresponding to the com-
ponents) never exceeds the square of the number of ir-
reducible components in the variety of (F) (using the
simple refinement algorithm). If the maximal degree
of the polynomials in F is d then the number of irre-
ducible components is < d", so the number of branches
is always < d*".
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