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Abstract

Given a polynomial ideal Z by a generating set of polyrtw
mials, we present an efficient parallel algorithm to express
the radical of Z u an intersection of unmixed ideals, each
represented by a triangular set of polynomials. This trian-
gular structure is convenient for many purposes, e.g. for
conducting symbolic computation on the common roots of
the polynomials in the ideal, or for computing the union,
the intersection or the quotient of radicals. The sequen-
tial (parallel) complexity of our algorithm is subexponential
(subpolynomial).

1 Introduction

The notion of a characteristic set of an ideal was fist
introduced by J.F. Ritt in 1950 [16] in the context of
differential geometry. In 1984 Wu Wen-Tsiin [22] realized
the power of characteristic sets in commutative algebra
and in automated geometric theorem proving. In the sub-
sequent years, numerous results appeared about different
applications, and characteristic sets became one of the most
fundamental computational tools in commutative algebra.
The “triangular” structure of characteristic sets, i.e. that
each variable is introduced by one polynomial, is convenient
for example when computing the common complex roots
of polynomials or when conducting symbolic computation
on the common roots without explicitly computing them.
Although we might lose information about the original ideal
when we consider only characteristic sets, the roots of the
polynomials in the characteristic set and the roots of the
polynomials in the ideal are related: only the degenerate
cases, when leading coefficients of the characteristic set
vanish, give supertlous roots.

Our objective is to give an efficient method for finding
a generalization of the Wu-Ritt characteristic sets in which
the computational convenience of characteristic sets is

“This research wan supported by NSF grant CCR-9317320

Permission to make digital/hard copy of all or part of this work
for personal or clawroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or
a fee. PASCO’97, Wailea, Maui, Hawaii; @1997 ACM 0-89791-
951-3/97/0007. .US$3.50

pr=erved, but no information is lost about the roots of the
polynomials in the ideal. It turns out that characteristic
sets and decomposition of algebraic varieties are closely
related: the Wu-R.itt prime decomposition algorithm, which
exprawes radicals as an intersection of ideals generated (or
represented) by irreducible characteristic sets, were already
proposed by Ritt in 1950 then by Wu in 1984 [16, 22],
and modKied by Krdkbrener and Wang in 1993 [13, 20].
In spite of their elegance and simplicity, these algorithms
often compute supertlous components embedded in other
components, and no complexity analysis has been given
for the worst case running time. As Kalkbrener notes it:
“The complexity of computing characteristic sets has been
analyzed by Gallo and Mishra (1990) [6]. But we do not
know the complexity of the prime decomposition algorithm
of Ritt and Wu or the complexity of the method presented
in this paper [13]. We think that a complexity analysis of
algorithms of this type and a comparison with the results in
Chistov and Grigor’ev (1983) [3, 8] and Giusti and Heintz
(1990) [7] are challenging problems for future research”
[13].

In this paper we present a Wu-R.itt type decomposition
algorithm. Similarly as in [12] we express the radical of an
ideal given by a generating set as the intersection of ‘un-
mixed” ideals (defined later) represented by characteristic
sets. To overcome the problem of computing superfluous
components, and to give a complexity analysis for the
algorithm we need to modify Kalkbrener’s algorithm using
a similar approach m in [3, 8], and to add some extra
work. We give an algorithm which is efficiently paralleliz-

able, and the sequential ~arallel] complexity is (d”a )0(1)
[(n Iog(d))”c’)]) where n is the number of variables and d is
the maximal degree of the polynomials in the generating set
(same bounds as in [7, 3, 8]). Note that the above bound is
optimal in the sense that there are ideals in n variables such
that the generating sets of the ideals have maximal degree d
but the maximal degree in the characteristic sets is d“, thus

the size of the output is d“= in the dense representation
(see the example in [6]). On the other hand, there are
indications [17] that the algorithms in the present paper can
be modified to preserve sparseness. The complexity analysis
in the sparse representation is a problem for future research.

Furthermore, given a set of “unmixed” varieties rep-
resented by characteristic sets, we give an algorithm for
tiding the same representation for the intersection and
ditTerence of the varieties in the given set. Also, our method
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gives a “lazy decomposition” procedure (see [4, 5]), which
is an efficient algorithm for conducting symbolic arithmetic
on algebraic numbers without explicitly computing them.
In the zero-dimensional subcase both of these algorithms
are in the complexity cl- NC (using arithmetic circuits
over Q). These results have applications for instance in
mechanical geometric theorem proving [21], in resolving
sing@ritiee of plane curves ([14, 18]) and of higher di-
mensional varieties, which is the subject of ongoing research.

2 Basics

2.1 Wu-Ritt Characteristic sets

Before defining Wu-Ritt characteristic sets, first we give
some definitions following the approach in [2].

We consider polynomials in the polynomial ring
Q(z1,.. ., z.]. Assume that the variables are linearly or-
dered by their subscript: xl < X2 <... < x.. Then C1OSS(P)
denotes the highest indeterminate appearing in a polyrm
mial p, and lc(p) denote the leading coefficient of p regarded
as a univariate polynomial in clamb). So, if class(p) = zk
then lc(p) C Q@l,... ,Zh-1].

We cdl a set Of pO1yUOmiSISG = {gl,..., gk] an
ascending set if class(gi) < dass(gj ) for all i < j. E.g.
G = {z1z2, z~z~ – zlz~, za, Z1Z2 + zs is an ascending

Jset because class(zlzz) = X2 < ckass(z~z3 – mz~) = 23 <
Clsss(zj) = Z4 < Class(zlza + Zs) = 25.

The procedure pseudo division generahzes the method of
divtilon with remainder for univariate polynomials to multi-
variate polynomials. Let ~, g c Q(ZI,. ... z-] be polynomials
with class(g) = ~j. Then there exist polynomials q and r
and a number a c N such that

lc(g)a~ = qg + r

where deg=j (r) < deg=j (g) and ~ < deg.j (~) – deg.j (9) + ~.

We denote by r = prem(~, g) the pseudo remainder of ~ by
g, and by q = pquo( j, 9) the pseudo quotient of f by g. If
a is minimal, then q and r are uniquely determined.

In order to generalize the pseudo remainder concept for
ascending sets, consider an ascending set G = {gl, ..., gk} C
qz,,..., Zn] and a polynomial ~ E ~zl, ..., z.]. There
exists a sequence of pOlpOmidS fh = f,. ... fo such that
for each k > s ~ 1, f~.1 is the pseudo remainder obtained
when divi~~g fa by g.. Combming these pseudo divisions
fork ~s~lwe get that

k

lc(gr)ar -. . lc(gl)a’ f = ~ qsgs + fo
#cl

and we denote by fo = prem( f, G) the pseudo remainder of
j by G. Note that degzi, (fo) < deg.,, (g,) if cks(g~) = m,
(s=1,... k). We say that f is reduced modulo the ascend-
ing set G if f = prem( f, G).

We give two defiltions (and characterizations) of Wu-
Ritt characteristic sets [2, 6]:

1. [6] If G c Z is an ascending set, then it is a character-
istic set of the ideal I if and only if for every element

2.

f E Z, prem(~, G) = O.
Thus, if G is a characteristic set of the ideal Z, then

(G)qZ~{hE@zI ,.. . ,z~] I prem(h, G) = O}.

The above inclusions are usually proper.
Example: If Z = (z’y’ - Z2 - y’+ 1, zy) and z <
~, then G = {zs – z, zy~ is a characteristic set, but
(Z3 – x, zg) # (S2~2 – z – y2 + 1, zy) because the
dimensions of the corresponding varieties are not equal.
Also, (z’y’ – z’ –IJ2+1, zy) # Y = {h I prem(h, G) =
0}; for instance y is in 3 but not in Z.

In the words of [2]: Informally, if F is a tide set of
polynomials, then ‘G is a char~teristic set of the ideal
(F) if G is ascending and F and G have ‘almost” the
same zeros. More formally, if F is a finite set of poly-
nomials, then G is a characteristic set of the ideal (F)
it

● G is ascending set

●anyzero of Fisazeroof G

. any zero of G that is not a zero of any of G’s
leading coefficients is a zero of F.

As we mentioned earlier, our objective is to find a gener-
alization of the notion of Wu-Ritt characteristic sets, where
the computational convenience of ascending sets is pr~
served, but no information is lost about the roots of the
polynomials in the ideal. Below we define unmixed aacend-
ing sets, which are ascending sets representing algebraic vari-
eties such that all the irreducible components have the same
dimension. We show that every algebraic variety can be ex-
pressed as the union of Varieti- represented by unmixed
ascending sets, and we give an algorithm which finds this
unmixed representation. In the next subsection we discuss
the connection between characteristic sets and decomposi-
tion of algebraic varieties. This will lead us to our main
subject, the unmixed representation of radical ideals.

2.2 Decomposition of algebraic varieties

We start this section with an example:

Exam le 1 In the example of the previous subsection,
P“V(z2~ – z – ~ + 1, zy) C A2 consist of the four points

{(1, O), (-1,0), (O, 1), (O, -l)}, while V(23 – z,zg) contains
the points {(1, O), (–1, O)} together with the whole y axis.
We saw in the previous subsection that all the superfluousze-
ros of the characteristic set comes from ‘degenerate” cases,
when leading coefficients vanish. A possible solution to
avoid superfluous roots would be to find the subvarieties
of V(Z3- z) c # ~ at whk.h leading coefficients of the
polynomials in {2 y - z’ - y’ + 1, Z~} vanish. These
leading coefficients are z and z’ – 1, thus we can factor
V(X3 -z)

\
= V z) U V(Z2 – 1). After reducing the polyn~

mials modulo z -1 and z, we get that

v(z’y’ -z’ – v’+ 1, Zy) = V(Z2 -1, y) u v(z, ~2 - 1).

Note that {Z2 – 1, ~} and {z, y’ - 1} are aacending zeta and
all the leading coefficients are 1. In the above example, we
were able to expres Z as an intersection of two ideals which
were generated by ascending sets, even though we could not
find a generating characteristic set for Z.
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More generally, suppose we are given an ideal Z c
Q(z1,. . . . z.]. The example above suggests that if we could
express the radical ~ as

such that each 1, is generated by an wcending set, then
this decomposition would preserve the computational con-
venience of ascending sets and give all the information about
the roots of the polynomials in 1.

2.2.1 Zero dimensional ideals

In the case when the ideal Z is zero dimensional, i.e. the
polynomials in the ideal have only finitely many common
zeros in C“, the prime decomposition of the radical will give
the desired representation of the radical as intersection of
ideals generated by ascending sets, as asserted by the fol-
lowing:

Proposition 2 Let P C ~zl,...,z~] be a zero-
dimensional prime ideal. Then there ezists an ascending set
G = {gl, ., ., g.} such that G generates 7, cl~(gi) = ~i,
Ic(gi) = 1, and the image of gi in
(~~1,. ,~i-1]/(gl,. . . ,gi-l))[~i] is irreducible. ■

As a consequence, for a zero-dimensional prime ideal ‘P
we can iind a characteristic set G such that

(G) = P = {h I prem(h, G) = O}

Thus for zer~dimensional ideals, it is enough to find the
prime decomposition of the ra&cal, then find an ascending
generating set for each prime ideal. The primary decom-
position of zero-dlmenaionai ideals has been studied and
analyzed by D. Lazard in [15]. Also, D. Ierardi [11] gives
a method for solving algebraic systems using generalized
resultant met hods. In fact, in both approaches, the prime
decomposition of radicals is reduced to the problem of
factoring multivariate polynomials. Unfortunately, there
is no efficient parallel algorithm known for factoring
polynomials over Q.

As the example at the beginning of this subsection
suggests, we do not necessarily need to find the complete
prime decomposition of the ideal. The ideals (Z2 – 1, ~)
and (z, vz – 1) are not prime ideals, but they are generated
by ascending sets of monic polynomials. To compute this
decomposition, we did not need to factor polynomials
completely, but only split a polynomial when there w=
a leading coefficient such that they have nontrivial gtd.
Teitelbaum [18] proposes an algorithm for such “lazy
factorization” of zero-dimensional ideals. He reduces the
problem to the univariate case by applying rational coordl-
nate transformations and by finding primitive elements.

Applied to zero-dimensional ideals Z = (F), the algo-
rithms in the present paper will decompose the radical of a
zero-dimensional ideal T into

ti=(G,)n. n(G.)

where Ga are ascending sets of monic polynomials. The

sequential complexity of the algorithm is (&’a )011), and the
parallel arithmetic complexity is (n log(d) )0(11, where d is

the maximal degree of the polynomials in F and n is the
number of variables in F.

Moreover, given an ascending set G of monic polyn~
mials, which generates a zero-dimensional radical, and also
given a polynomial ~, we give an algorithm which split (G)
into

(G) = (~(G:)) n (fi(G~))
inl j=l

where G: and G; are ascending sets of monic polynomials
and

1. ~ is zero modulo (G:).

2. ~ has an inverse modulo (G~).

for each 1 < i ~ r and 1 ~ j ~ s. This algorithm will
enable us to conduct symbohc computation on the complex
roots of the polynomials in a zero-dimensional ideal gener-
ated by an ascendkg set without computing the roots explic-
itly. Also, we give an algorithm which computes the union,
the intersection and the quotient of zer-dimensional ideals
generated by aacendlng sets of monic polynomials. These
two algorithms me in the complexity class NC, i.e. they
can be computed by an arithmetic circuit of polynomial size
and depth polylogarithmic in the input size, which is in this
c=e d“, where d is the maximal degree of the input and n
is the number of variables in the input. We use the dense
representation of polynomials.

2.2.2 Higher dimensional ideala

In higher dimensions it is not true that every prime ideal k
generated by an ascending set, or even by a regular sequence,
i.e. a set of polynomials having cardinality equal to the
codimension. Consider the following example:

Example 3 Consider the fine curve C = {(z, y, z) E
As I z = t3, y = t4, z = ts, t c C}. The correspond-

] is generated by the polynomials&q ideq ‘2 c ,“; - ,2}
-%,2 —

a prime ideal in ~, y, z] (aiaol!ncaz!j, ~X3 %%tlze$
sion of Z is 2 in A , and 1 cannot be generated by fewer
than 3 polynomials.

Ideals which are generated by a set of polynomials with
cardinality equal to the codimension are called complete
intersections. A more detailed treatment of the subject can
be found e.g. in [9].

The above example suggests that if P is a prime ideal
and G is any ascending set from P, then in

(G) ~ P ~ {h I prem(h, G) = O}

the tirst inclusion must be proper if P is not a complete
intersection. Our objective is to find an ascending set for
which the second inclusion is an equation. It turns out that
such an ascending set always exists [13].

Kalkbrener [13] gives a representation (described below)
of a prime ideal P by an ascending set G such that the
second inclusion above is an equality, i.e.

P = {h I prem(h, G) = O}.
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Therefore, ideal membership cau be algorithmically decided,
given this ascending set. Furthermore, certain non-prime
ideals are also representable by ascending sets in the same
manner. This will lead to the notion of unmixed sets and
unmixed representationa and will enable us to avoid prime
factorization. Kalkbrener’s approach is based on the follow-
ing result:

Proposition 4 (Ksdkbrener) Let R be a Noetherian wm-
mutative ring and X be an ideal in R[z]. Denote bg K(P)
the quotient jield of the integml domain RIP where P is a
prime ideal in R. Then the following are equivalent:

(a)

(b)

(c)

Z is a prime ideal in R[x]

1 n R is prime in R, J is prime in K(Z fl R)[x]
and Z(R/Z n R)[z] = S n (R/Z n R)[z], where $
is the ideal ZK(Z n R)[z].

Z n R is prime in R and the= ezists a polynomial
q E R[z] such that the image of q in K(Z n R)[z]
is either irreducible over K(Z il R) or zero and

for eue~ f E R[z] : f c X = fr”R ~ (q)~

where (q)K denotes the ideal in K(Z n R)[z] gen-
‘nR denotes the image of f incrated bg q and f

(R/Z n R)[z]. ■

We use the above proposition inductively for R =
~x~,..., z~-~] with the trivial b= case when R = Q, If
P is a prime ideal, then there exist polynomials ql, ..., q~

such that each qi is in ~zl, . . . . ~i] and qi is either zero or
irreducible over K(Z n @Tl, . . . , ~i - 1]). Moreover, for every
fE@zl,..., zn],

i=l

for some pi c K(Z tl ~zl,...,~l])[~i],], 1 < i < w It
is easy to see that the latter condition ia equivalent to the
following: if G = {qi I qi # O, 1 ~ i ~ n} then G is au
ascending set arid

P={h~~zl,.. .,z~][prem(h, G) =0}.

Example 5 As in the previous example, let Z = (V3 –
x’, z’ - ~xz, Zz - v2) c Q@, y, z] be the prime ideal defin-
ing the curve C E A3. For each 1 < i ~ 3 we compute the
polynomials q~ aa follows:

1. For i = 1, Zn Q@] = {0}, so let ql = O and
PI = {O}. Then K(P1) = Q(z).

2. Fori =2, Zn~z, y]=(y3– z4)soletqz=~3–
Z4. Then (q2)K c K(PI ) [v] obviously generates
Z il Q(z, g]. It is also clear that (q2)K rl Q(z, g] =
(V3 - z’). Define P2 = (113- Z4); then K(P2) =
Q(z)[y]/(v3 - Z4).

3. Since K(Pz)[z~ is a princi~al ideal domain,
ZIC(p2)[Z] = (z - ~z2, z%- g )K is generated by
the gcd of the images of the polynomials (Z2–yz2)
and (ZZ – V2) in K(7%.)[z]. Since

(Z2 -yzz) = (Zz+ + $)+($ -yzz)

IJ4—--yzz= J@’ - Z4)22

we have that gcd(z2 – yz2, zz - 92) = xz - g12
over K(Pz). Note that after multiplying by the
denominatorsin the above calculation we get the
pseudo divtilon of (Z2- ~z2) by the awending set
{ys -24, Xz - V2}. Let qa =2% – yz.
Chim: (q3)K n ~Z, ~, Z] = ~.
Proofi Firat observe that

(qa)K~Z, V, Z] = {h E ~Z, V, Z] I prem(h, G) = 0}

where G = {q2, q3} is an ascending set. We saw
in section 2.1 that prem(h, G) = O itT there are
numbers a, /3 such that 1c(qz)alc(q3)dh E Z. Here
lc(qz) = 1 and lc(qs) = z. Thus prem(h, G) = O
8zflhe1iff hEZwtigthatz#1 and~is
prime ideal. ■

To summarize the above results, let P c ~zl,..., z“]
be a prime ideal. Then there exists an ascending set G =
{gl,..., g~} suchthat

P={h~~zl,..., z=] I prem(h, G) = O},

and if claas(gi) = Zj then gi is irreducible in K(P fl
Qz,,..., zj – I]) [Zj]. An ascending set with the latter condi-
tion is called an irreducible ascending set. We say that G rep-
resents the ideal P if P = {h E ~zl, ..., z.] I prem(h, G) =
O}, denoted by Rep(G). Thus using the prime decomposi-
tion of the radical of an ideal Z, we can express

&= Zn... nz

where each z is represented by an irreducible ascending set.

Similarly to the zero-dimensional case, a ‘lazy” approach
—using only gcd computations on polynomials - ia sufficient
to express radicals as

/Z= Zln... nz

where Z is represented by an ascending set Gi for each 1 s
i < r. We follow an approach similar to [12]. Again, an
ascending set G C ~zl, . . . . z.] represents the ideal Z if

Z = Rep(G) = {h c Q@l ,... ,Zn] I prem(h, G) = O}.

In the case of prime decomposition, we require the ascending
set to be an irreducible ascending set in order to represent a
prime ideal. In the “lazy” veraion we weaken this condition,
and we only require the ideal represented by the ascending
set to be radical and a proper subset of ~zl, ..., z.]. The
following result giva a sufficient condition for this:

Proposition 6 Let G = {gl,. . . . g~} be an ascending set
and Z = Rep(G). For each O ~ i < m -1, let G(i) =
{f?l,..., $li} and {Pi,j }~~1 ~ the prime ideals in the in-e-
dundant prime decomposition of the mdicnl of Rep(G(i)).
Suppose that the following wnditions am satisfied for each
OSi<m–1:

(a) lc(g;+l) @ Pi,j for ~ch 1 S ~ < ri.

(b) gi+l ti squamfree over K(Pi,j) for ~ch 1< j <
ri.

Then I is radical and 1 # ~zl,.,., z.]. FMhermom, all
the prime idenls in the irredundant prime decomposition of
Z have the same codimension. ■
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A radical ideal and the corresponding variety are called
unmixed if all the associated prime ideals have the same
codimension. We will call an ascending set an unmized as-
cending set, or simply unmixed set, if conditions (a) and (b)
of Proposition 6 are satisfied. The unmixed representation of
an ideal is a set of unmixed ascending sets such that the in-
tersection of the radicals represented by these unmixed sets
is the ra&cal of the ideal.

2.3 Notation

In the following sections we will use the following notation:

Let R denote a Noetherian ring with identity and let F
be a subset of R. The ideal generated by F is denoted by
(F), the radical of (F) by m. For ~ E R[z], ~z denotes
the image of ~ in (R/Z)[z].

If T = Q1 n . . n 42, is the irredundant rimary
decomposition of Z, then 73 = m,.. ., P, = d ~ are the
associated primes of Z, and we denote the set {Pi, ..., P. }

by Ap(Z). For a prime ideaI P C R the quotient field of the
integral domain R/P is denoted by K(P).

The codimension (height) of a prime ideal P # R
is said to be m if there exists at least one chain
PO c PI c c Pm = P, where pi are prime jde-
als, and there is no chain with more then m + 1 elements.
The codimension of an wbitrary ideal Z # R is the min-
imum of the codlmensions of the prime ideals containing
Z. Note that the codimension of an ideal represented by
an unmixed ascending set C is equal to the number of
polynomials in C.

3 Outline of the algorithm

We will construct a modified version of the Wu-Ritt un-
mixed decomposition algorithm of Kalkbrener. In [12]
decomposeRIX1 has a finite set of polynomials F as input
and it computes the unmixed representation of the corre-
sponding radcal ~ by creating branches of the com-
putation and recursively calling decomposeR[xl. Unfortu-
nately, it often computes superfluouscomponents embedded
in other components computed in different branches. Be-
low we present an algorithm decompose; which restricts
the output to unmixed sets of codimension m such that the
union for m = 1, ..., n gives an unmixed representation of

~ BY this restriction we are able to avoid the compu-
tation of superfluouscomponents because

●

●

we ensure that the computed unmixed compo-
nents of codimension m have no intersection of
codimension m

none of the components of codimension m com-
puted are embe~ded in a component V’ of V(F)
of codimension m’ < m.

After finding an unmixed representation of a radical,
we use the algorithm split: to factor further the unmixed
components (represented by unmixed aacendlng sets), de-
pending on whether a given polynomial vanishes or not over
the component. The algorithm split ~ can be applied to
conduct symbolic computation on algebraic numbers which

are given as roots of polynomials in unmixed ascending
sets. Also, split ~ is a subroutine in decompose~. The
algorithm is a generalization of the resultant method for
tiding the gcd of several univariate polynomials described
in [10, chapter 15.2].

We also present an algorithm simplia? which might
have separate applications besides being a subroutine of the
decomposition algorithm. Given a set of ideals represented
by unmixed ascending sets, simplifi? computes the
unmixed representation of the unions, the intersections and
the quotients of the ideals in the given set. The algorithm is
a generalization of the simple refinement method described
in [1].

In the algorithms below we assume that every polynomial
in the computation is reduced by the unmixed ascending set
given in the input or previously computed.. Therefore, in
each step we must find the pseudo remainder of the poly-
nomial computed by the unmixed ascending set. We omit
the technical details of the algorithm prem~ but we give
an outline of the complexity analysis in section 3.5.

3.1 The decompose algorithm

We will give an informal description of the algorithms using
geometric notions instead of algebraic. In this section R
will denote the polynomial ring ~zl, . . . . z~– I], so R[z~] =
~zl,..., z~]. Let F= {fo,..., fk} c R[z~]bea set of
polynomials, Z = (~0,. . . ,~k), v = v(~ C A“. Abusing
notation, for an unmixed ascending set C, V(C) and Ap(C)
denotes respectively the v-miety and the associated primes
corresponding to the radical Rep(C) and not to (C).

3.1.1 Induct ion for codimension m

The algorithm described below is inductive on the codimen-
sion m of the components computed. The induction hypoth-
esis for codlmension m is the following:

● We have computed the set 17m(F) = {Cl,. . . . C,-} of
unmixed ascending sets with the following properties:

H.1

H.2

H.3

H.4

H.5

H.6

v c uci6rm(F) V(C:)

codim(V(Ci)) ~ m for all Ci E r~(F).

Each Ci E r~ (F) is one of the following two
types:

(a) first type:V(C,) S V.
(b) second type: No irreducible components of

V(Ci ) contained by V, but for every irre-
ducible component of V(Ci ) there exists a
component V’ of V of codimension ~ m + 1
such that V’ is contained in the irreducible
component.

If codim(V(C, )) < m then Ci is first type, i.e.
V(Ci) G V.

If codim(Ci) < codim(Cj ) then no component of
V(Cj ) is completely contained in a component of
V(Ci).

r~ (F) is simple: V(Ci) and V(Cj ) do not contain
any common irreducible components, i # j.
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We terminate the algorithm if all the components
cl,... , C,m are of the first type, thus the set r*(F) =
{cl, . . .~C,m } giVSS the desired unmixed representation of
the rwhcal of Z. This occurs when m reaches the maxi-
mal codimension of the irreducible components in V. If not
all the components are of the first type, we call the variety

Ucer- (F) V(c) a hull of V of codimension m.

3.1.2 Case m + 1

In thm step, we distribute the computation creating a new
branch for each C E r~ (F) of second type. On each branch,
the algorithm decompose:+’ (C, F) computes an unmixed
representation of a hull of V(C) flV(F) of codimension m+l.

Let 1’:) and 1’:) be the tirat and second type compm
nents of I’~(F), reap. Also let A~+l (C, F) be the output of
clecompoae~+’ (C, F). To see how the induction hypothe-
sis is maintained, deiine

r~+l(~) = r:) u ( U Am+l(c, F)).
~Erg)

I’L+l (F) will satisfy H.1-H.4 of the induction hypothesis
(for m = m + 1) if we adequately specify the output Am+l
of decompoae~+l, described in the next subsection. H.5 is
satisfied because we only decompose unmixed sets of second
type. As for the sixth property H.6, a component of V(F)
with codimension z m + 1 might be contained in more than
one component from l?- (F), so it might be computed on
more than one branch. Thus 1“~+ 1(F) is not necessary sim-
ple, so care must be taken. We will describe how to compute
the simple refinement r~+l (F) of I’L+l (F) in section 3.3.

3.1.3 The input and output

We detine decomposeY+l to be slightly more general than
the description above impliee. We will have au extra op-
tional argument T, which will be used in the iterative cidls.
This change is not essential, but it does simplify the presen-
tation.

The input of decompose~+l consists of

1.1 an unmixed set C = {gl,. . . . g~} C R[z~] of codi-
mension m,

1.2 a set of polynomisk F = {fo,... ,~k} C R[ztt]
1.3 an optional argument 2’

‘z’] for sOme z; ~{ql’”’”’qc} CR[zn, zn+l, . . . —.

The output of decompose~+’ (C, F, T) consists of the
unmixed sets

A~+l(C, F’,Z’) = {Cl,. ... C,}

in R[zm] such that for all 1< i ~ r

0.1

0.2
0.3

0.4
0.5

0.6

codim(C~ ) = m + 1 = codlm(C) + 1
V(C~) C V(C)

U;= V(Ci) ~ (V(C)flV(F))>~+~ where (v(c)n
V(F\)2~+1 denotes the uni;n of the irreducible
components of V(C) n V(F) of codimension ~
rn+l.
A~+l (C, F, T) is simple.

qk ~ O modulo P for all P E Ap(Ci) and for all
qk ET.
each V (Ci) is either first or second type.

3.1.4 Description of the algorithm

First we show how to compute decompose= ‘+1 (cl {~1) 0)>
where h c R[zn] is a polynomial and all the components of
V(C) n V(h) have codimension m + 1. Then we show how
to reduce the computation of decompose. ‘+’(C, F, T) to

“’’+1(C, {h}, 0).the computation of decompose.

Let C={gl,... , g-} C R[zn] bean unmixed ascending
set of codimension m and h be a polynomial in l?[zn] such
that V(C) n V(h) is an unmixed variety of codimension
m+l. Deiine C’=Cn R, gEC– R (g= Oif CC R).
Note that C’ is an unmixed set in R of codimension m or
m – 1 depending on whether C = C’. We will compute
decompose~+l(C, {h}, O) by reducing the problem to the
n -1 variable case.

Consider the subvariety V’ C V(C’) ~ An-l such that
g(d, z.) and h(d, z.) have common roots in C for all c1 G
V’. Since V(C) n V(h) has codimension m + 1, V’ has
codimension m, but V’ is not necessary unmixed. In order
to find the unmixed representation of V’, the main idea is
to express

v’ = u V;.t
r,a, t

where O ~ r ~ deg=m(g), O ~ s ~ deg=~(h), O < t = t(r, s) ~
min(r, s), V~~tis either empty or unmixed, and for “almost
all” & G V~~tthe following are satisfied:

. r is the largest exponent such that the coefficient
of z; in g(d, z~) is not zero, i.e. g(d, zn) has
degree r z 1.

. s is the largest exponent such that the coefficient
of x: in h(ti, z=) is not zero, i.e. h(d, z~) has
degree s z 1.

● t is the smallest index such that the tthsubresul-
tant pt of g(d, z.) and h(cl, z~) is not zero, i.e.
gcd(g(cl, z.), h(d, s.)) has degree tz 1.

Here “almost all” means that the points form au open
dense subset of the variety. In the cases when r = O or
s = (), we need to be more careful, but the definition is
similar.

It is easy to see that the unmixed repr~ntation of V~,t
is of the form

A~~t = decompoae~-l(c’, G. U ~, U ‘%,{g.,h.,$%})

where G,, Ha, ‘%, {g., h,, Y?:} C R describe the above
properties with polynomial equations and inequations.
(The above is true only if C’ has codimension m – 1. If
C’ has codimension m, we succeed similarly by calling
the subroutine split~_ ~ described below. We omit the
technical details here.)

Let g,,t c R[zm] be the gcd of g and h over K(P)
for all P E Ap(C~~t) where C~at E A~,t. In fact, for
r,s, t ~ 1, g,.t is computed by simply solving the linear
system corresponding to the tthsubresultant p: of the
degree r ands slices of g and h, resp. [19]. We use Cramer’s
rule without the divtilon by the determinant p:, thus the
leading coefficient of gr.t is q:.

144



Since C~,t satisfies the above properties, we have
Ic(g,,t) @ P for all P E Ap(C~~t). We can also aasume
that g,.t is squarefree, otherwise we can squarefree factor
with an algorithm similar to split% described below. Thus
Cl,, u {g,~t} is an unmixed ascending set. For all AJs~ #0,
define

A,sf = {C;,t U {grst} I C:~L E A:,t}

and
A~+l(C, h) = U A,st.

r,d, t

It Cm be proved that A*+l (C, h) is simple and is an
unmixed representation of V(C) n V(h).

Now describe how to
decompose~~’(C, F, T) to

reduce
the computation of

decompose~+l(C, {h}, 0).

Let C = {gl,. . . . g~ } C R[zn] be an unmixed sscending
set of codlmension m, F = {fo,. . . . fk} C R[zn] and T =
{ql,..., qC}CR[zn, zm+l, zl]forsome some l~n.

1.

2.

3.

3.2

We need to compute a polynomial h E R[zn] such that
(V(C) n V(h)) is a hull of (V(C) il V(F)) of codimen-
sion m + 1. We can assume that (V(C) fl V(F)) has
codimension m + 1, otherwise we can factor out the
components of codimension m. Then there exists a lin-
ear combination h of the polynomials in F which is in
“general position”, i.e. (V(C) n V(h)) has codimen-
sion m + 1. We compute the polynomial h by calling
general~ + 1 described in section 3.2.

We need to find art unmixed representation of the
Zariski closure of (V(C) (1 V(h)) – V(T). Suppose we
have computed the unmixed representation of (V(C) fl
V(h)) as above. We use split~+l (described in 3.4)
to find those components where none of the poly-
nomials ql, . . ., q. E T vanish ider$ically. We call, tII+l for the po]ynomid q = ~i=l ‘i”
Splltn Note that
the number c never exeeds 3 in the recursive calls of
decompose:+’ (C, {h}, 0) above.

Lint, we need to separate the fist and second type
components of the hull of (V(C) il V(F)) – V(T). We
define the polynomial

f(Zl,..., Zn+l)=fkz:+, +jO+j O

in n + 1 variables, and by calling split~+l for f (de-
scribed in section 3.4), we find those components where
all fo,, ., ~k vanish (first type), and those where at
least one of them does not (second type).

The algorithm general#+l

Let C = {gl,. . . . g~ } C R[zn] be art unmixed set of codi-
mension m and F = {fo, . . . . fk } C R[zn] a finite set. Sup-
pose that V(C) n V(F) has codimension ~ m + 1. Then
there exists a polynomial h E R[zn] such that

k

h = ~a3fj
j=O

for some a c Q and h is in general position, i.e. V(P) n V(h)
has codimension m + 1 for all T 6 Ap(C). We compute

the polynomial h using the algorithm general~+l (C, F) as
follows:

If m = O, then h = fo G F will satisfy the desired prop
erties. If m >0, then define

~m+l(~,~) := fk~k+fk-l~k-l +... +fO E~Zl,...,Z~,Y]

where ~ is a new variable. The algorithm is based on the
equivalence of the following statements:

V(P) fl V(F) has codimension z m + 1 for all
P E Ap(C).

The gcd of the polynomials {g-, fo,. . . fk } is 1
over K(P) for all P E Ap(C’) where C’ =
{gl,..., g1}l}.

For s = m,.. .,0 define inductively ~, :=
RES.,, (SI:+l, g, ) the resultant in the variable
Zi, = class(g~ ). Here ~~+1 is the pseudoremain-
der of W.+l modulo ga. Then VO E @, y], where
Z={~~li#ia,O<s~m}and Wo is not
identically zero.

Let *O be as above. There exists a G Q such that
Vo(it, a) is not identically zero.

Let a be aa above. Then h := ~~+1(~, a) is in
general position.

Moreover,

degg(wo) = (degy(wl)) (deg,i, (gl))

= (degY(V*+l)) fi deg.,, (g,)
#=1

m
= ~ ~ deg.,, (9.).

a=l

Thus, if S c Q and ISI = k(~~=l deg.,, (g.)) + 1, then

there must be a E S such that ‘Jo(E, a) is not identically
zero. If Zj # class(gs) for any s = 1 . . . m then let kj be
the maximum degree of the input in the variable Zj. The
above bounds are also valid with any variable Zj in place of
y and kj in place of k. Thus the dense size of *o(z, a) is
(k’ n~=, deg.,, (g#))n, where k’ = rmuc{k, k, I j # is}. ■

3.3 Simple refinement

Recall that a set of unmixed ascending sets I’ is simple
if for all C # C’ E r, V(C) and V(C’) do not contain
common component, i.e. Ap(C) n Ap(C’) = 0. Note that
if r contains unmixed components of a hull of V and r is
simple, then 11’Is deg(V).

Below we describe how to find a simple refinement of a
given set of unmixed sets I’, i.e. a new set A of unmixed
sets which is simple and Uc=r Ap(C) = UOCA Ap(C). The
algorithm simpli~~ is a generahzation of the method in
[1, section 2.1]. Besides being a subroutine of the decomp~
sition algorithm, simplifi has sepatate applications as a
method to compute the union, quotient and intersection of
ideals represented by unmixed sets.

First we show how to compute a simple refinement of
the set {C, C’} consisting of two unmixed sets. Let C =
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{91,... ,g~}and C’= {g:,... , g~, } be unmixed ascending
sets. We can =ume that C and C! have the same tvDe.
i.e. m = m’ and class(gs) = class(g~) for all s = 1,. . .-,-m;
otherwise Ap(C’) n AP(C’) = $. Let da = deg=i, (g.), where

Xie = class(ga), and let T = {(tz, . . . ,t~) E IW-l I O S t.<
ds, 2 ~ s ~ m}. We define inductively for s = m,. . .,1 the
following polynomials for each I?= (tz,....k) c ‘1’:

– V#)= RES!’/m (g~, A), the jthsubreault~t in
the variable ~i~ = class(g~) for all O s j < d~.

–Fors<m–lletg~=g~+ IIS’p~’?l+.-.+

“+1 +1 ‘t’+ 1) the combination of g: and the firstg, Pa+l ~
t.+lsubresultants of g~+l and g~+l. Note that g:
contains variablm
{E, yin,. ... y.} – {Xi,, I Xi,, ‘ClaSS(gsJ), 5’> 9}.

‘i) = RES~~ (g,, gl), the jth–Fors~m–lletps
subresultant in the variable ~i, = class (g, ) for all

O s j s d.. Note that 99) contains the variables
{Z, yin,... , !/s} – {~i,, I zi,, ‘class(gs~), S’ ~ 5}.

For a given ~ c T, denote the polynomial g; defined above
‘0 Informally, for a given (tz,...by gl . t-) E T the gcd of

(gl, gj, gr7) is a univariate polynomial with roots a E C such
that the gcd of gi I.l e= and g: l.l=~ has degree at least ti for
all 2 s a’s m. After computing the simple refinement of the

set of univariate polynomials {gcd(gl, g;, g:> )}~~~ using the
method in [1, section 2.1], each polynomial dl in the simple
refinement corresponds to a vector ~E T such that dl (a) = O
implies that the degree of gcd(gi Iml=n, g: Iw =a ) is equal to
ti for all 2< i < m. Then it is easy to see how to compute

the unmixed ascending sets D(O = {d~>, d:),.. ., d%>} by

‘0 is the unique gcdsolving linear equation systems, where d,

of degree tiof g, ad g: modulo Rep(d~3, . . . . d~~l). It Cm
be shown that

Ap(C) n Ap(C’) = U Ap(D(0).
~eT

Also, using pseudo division we can find the unmixed sets

D(O = {d~7,. . .,gi /d~O,gi+~, -.., gna}foreachi=l,..., m.
It ‘can be shown that

Ap(C) – Ap(C’) = U ~ Ap(D~O).
~~Ti=l

Using the same method for Ap(C’) – Ap(C), we get a
simple refinement of the set {C, C’}.

Nowletr= {Cl,..., C.}andr’’ ={ Hi,..., C;} be two
simple sets of unmixed sets. Again, we can assume that
the unmixed sets in r U I“ all have the same type. We can
expr= (JL Ap(ci) u U~.1 AP(C~ ) ~

a disjoint union. An unmixed representation of
corresponding to Ap(Ci) n Ap(C~ ) can be found

the ideal
as in the

previous paragraph.

TO fmd [Ap(C,) – (UC; gr~ AP(C~))l, let g: = 11~=1g:)
(~)where ga is the Sth element in C; E I“ (s = 1, ... m).

We can use the method of the previous paragraph with
C = C, and C’ = {gj, . . . . g:}. Note that the fact that
C’ is not an unmixed set is not relevant here, as we only
want to compute the ideal corresponding to Ap(C) – Ap(C’).

Now a straightforward divide-and-conquer yields the al-
gorithm

simplify~(l’1, ..., r,)

computing the simple refinement of the set {l’1, ..., I’,},
where each ri is simple and all the unmixed sets in U r,
have the same type.

3.4 The splitting algorithm

Let C = {gl ,..., g~} C l?[z~] be an unmixed ascending
set of codimension m and f E lt[z~, z~+l, . . . , zi] for some
1 ~ n. The algorithm split? (C, f) computes the unmixed
decomposition

(f’, A)=({Bl,..., Ba}, {Dl, Dt})Dt})

of C such that

● Ui Ap(~i) = {P E AP(C) I~P + 0}

● Ui ‘P(Di) = {p E ‘P(c) I fp - 0}

where ~p denotes the image of ~ in (R[z~]/P)[z~+l, ..., 21].
We also require the set 17U A to be simple.

Note, that C, Bl,.. .,l?s and Dl,..., Dti all have
the same type, i.e. ifC= {91,... ,g~} ad Bj or
Dj = {g; ,..., g%,}, then m = m’ ad cl=(gi) = claaa(g~)
foralli=l,..., m.

Also, note that /P s Oif and only if all the coefficients of
f are in P when ~ is considered as a multivariate polynomial
in Zn+l, . . ..zn+l. On the other hand, given an unmixed
ascending set C and a set of polynomials F’ = {to,. ... ~~} c
R[zn], we can define the polynomial

~(ZI,... ,Z~+l) = ~kz;+~ + . . . +~o.

Then it is easy to see that the output of split~ (C, ~) will
separate the first and second type components of C corr~
spending to F [10].

3.4.1 Description of the algorithm

Again, let C = {gI,... , 9~} C R[z~] be an unmixed
ascending set and f E R[z~, z~+l, . . . , z,] for some 1 ~ n.
We show how to reduce the computation of split: (C, ~) to
the computation of splitm _ 1 in one less variable. The main
idea of the algorithm is similar to the one of decompose,
only here we have fewer degenerate cases, since we do not
need to eliminate variables.

Without loss of generality we can assume that
grn E R[zn] – R, otherwise we cdl split~-l(C, ~). Let
C’={gl,... , g~- 1} the first m – 1 element of C, which
is an unmixed ascending set in R of codimension m – 1.
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Write f as a univariate polynomial in z., so the coefficients the Dolvnomials occuriwr in the comrmtation is D. then the
of f axein R[x~+l, ..., xl].

We split V(C’) into

V(c’) = Uv;t
S,t

where O ~ s s degzn (f), O ~ t = t(s) < s, V~t is an
unmixed component of V(C’ ) with codlmension m – 1, and
for all irreducible components V(P’) ~ V~,t the following
are satisfied:

●

●

s is the largest index such that the coefficient of
z: in ~ does not vanish identically over V(P’),

i.e. fp’ has degree s in x~.

t is the smallest index such that the tihsubresul-
tant
~t = RJ3%.m(fp’,gm) E RIZn+I, . . . ,zI] is not
identically zero over V(’P’), i.e. gcd( f, gm ) G
R[z.] has degree t.

It is easy to see that we can define polynomials Fs and
Of in 1variables such that the unmixed representation of V~t
can be found by first computing

(1’~,, A:,) = split~_-~ (C’, Fa + @i)

and then finding the simple refinement of {Aji }S,t using
the algorithm simplify~_-~. We omit the teclmical details.
Denote the unmixed representation of V~t again by Ajt.
Note that we used that the leading coefficient of g- does
not vanish over any component of V(C’ ).

Let p,i 6 R[zn] be the gcd of gmand f, and let q,t be
the quotient of g~ and p.~ over K(P’) for all P’ ~ Ap(Cjt),
where C:* 6 Ajt. The polynomial p.~ is computed b
simply solving the linear system corresponding to the ttl

subresultant of g~ and the slice of f of degree s. The
polynomial qst is computed by a simple pseudodivision
algorithm.

Since g~ is square free, we have that p,t and qst are
squarefree and relatively prime. Also, since C~ksatisfies the
above properties, we have that lc(p,t), lc(q,t) # P’ for all
P’ E Ap(C~~). Thus Cj~ U {p~~} and Cjt U {q~t} are unmixed
ascending sets. Define

(r)A)= (Ur.t, UA,t).
S,t S,t

where I’~t = {Cjt u {q~t} I C~t ● Ajt} and Asi = {C~t U

{Pst} I Cjt E Ah}. h can be proved that r u A is simple,
it is an unmixed decomposition of Rep(C), and f identi-
cally vanish over the components in A but does not vanish
identically ofer the components in r.

3.5 Complexity

The complexity bounds below are for arithmetic circuits over
Q. Let n be the number of variables. It can be shown
that the sizes of the circuits in the first five cases below are
polynomials in the bounds for the sizes of the polynomials
occuring in the computation. Thus, if the degree bound for

size “in “the dense repres~ntation is Dn, and the s~e of the
arithmetic circuit is (D” )0(1). Below we give the degree
bounds and the circuit depth for the algorithms described
in the paper.

1

2.

3.

premV(f, C), where C= {gl, . . ..g~} C Q(zl, . . ..z~]
unmixed set, f E ~zl,. . .,zt] for some 1 ~ n, and
prem computes the pseudoremainder of ~ modulo C.
Denote by d the maximum degree of the polynomials in
the input. Also, if xi, = class(g. ) then d. denotes the
maximum of degzi, (f) and deg=i, (g, ) (S = 1,. ... m),

and if ~j # clasa(g~) for any s then kj denotes the
maximal degree of the input in the variable c,.

Degree bounds Any polynomial p in the computa-
tion have deg=,, (p) ~ 2ds (s = 1, ..., m) and

deg.i (P) < kj ~V=l d. if j # i,. Note that the
first bound holds for all variables in the zero-
dimensional case (n = m).

Circuit depth For the pseudodhision we use similar
method as in [19] solving linear equation systems.
Thus using the definition in section 2.1, we have
that

Depth(prem~(C, f )) < CI(n Iog(d))z

for some constant c1.

simpli&:(I’1, ..., r,), where rl, . . . , r, are simple
sets of unmixed ascending sets, and all unmixed set
in U r~ have the same type.

Degree bounds If xi, = class(gs) for some g, in the
input, then all the computed polynomials can
be reduced by g: E U ra, the maximum degree
polynomial in the variable ~i,. Thus any poly-
nomial p in the computation h= deg.i= (P) <

2deg=i, (g:) = 2d.. If ~j # claas(g~) for any
polynomial gs in the input, and kj denotes the
maximum degree of the input in the variable Zj,
then any polynomial p in the computation has

deg.j (P) S rk~ ~~=1 ds.

Circuit depth The depth of simplify: (rl, . . . . I’,)
is log(r) times the depth of simplifi~ (C, C’).
The latter algorithm has depth
C2mn logz (d’ )Depth(prem), where d’ = rd
is the m~imum degree in C’ and d is the
maximum degree of the polynomials in U r;.
Thus

Depth(simplify~ (I’l,.. ,, r,)) ~ cz(n log(r) log(d))’

for some constant cz.

split~(C, f), where C = {gl, . . ,g~} and f E
~zI,.. ,ZI] for some 1 ~ n, and d, ds and kj denotes
the same as in 1. above.

Degree bounds As above, any polynomial p in the
computation has deg=i, (p) s 2ds (s = 1, . . . . m)

~d deg.j 0) < kj I_l~=l dn (~ # i.).
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4.

5.

6.

Circuit depth split~ recursively calls split~_-ll,
simP@~_-ll, and conducts determinant compu-
tations. An easy computation gives that

Depth(split~(C, ~)) ~ cs(n log(d))e

for some constant C3.

general? (C, F), where C = {91,...,%} and ~ c
qz,,... , z~] and the mtimal degree of the polynomi-
als in the input is d.

Degree bounds Using the bounds in section 3.2 we
get that any polynomial pin the computation haa
deg=iti) <d’’ fori=l,..., n.

Circuit depth An easy computation gives that

Depth(general~(C, F)) S c4(nlog(d))4

for some constant c4.

decompose~ (C, F, T), where C = {91,..., g~ }, F C
qz,,..., zfi], T c Q@l, . . . ,ZI] for some 1 Z n. Here
[2’[ = c and the maximum degree of the polynomials in
the input is d.

Degree bounds As above, we get that any polyno-
mial ~ in the computation has deg=i (~) < d“ for
i=l, . . ..n.

Circuit depth decompose? calls the subroutine
general:, and the subroutine split ~ c+2 times,
and iteratively calls decompose~_-ll. Using the
above bounds we get that

Depth(decompose~ (C, F, 2’)) s csc(n log(d))a

for some constant cs.

Last, we note that in the computation of the unmixed
representetion of ~, the number of branches cre-
ated at each codimenaion m (corresponding to the com-
ponents) never exceeds the square of the number of ir-
reducible components in the variety of (F) (using the
simple refinement algorithm). If the mwrimal degree
of the polynomials in F is d then the number of irre-
ducible components is S d“, so the number of branches
is always < dzn.
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