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Abstract

One important process in oil refining is to separate the

crude oil into various oil products. This process is called

distillation. In designing a complex distillation column, a

large computer simulation is conducted. This paper presents

our experience with parallelizing an oil refining simulation

application that computes the composition of the various

oil products in designed refining columns operated under a

given set of conditions. Mathematical models for the sim-

ulation form large sparse nonlinear systems of equations.

Triangular decompositions of sparse nonlinear systems are

fundamental numerical methods in this simulation comput-

ing. Different approaches have been applied to carry out

this simulation in parallel. Parallelisms of the simulation

are exploited at three levels — direct parallelization, struc-

tured para.llelization and asynchronous parallelization of the

problem. The approaches of this practical research provide

insight into some important issues of parallel computing for

real-world applications. The parallel programs were imple-

mented and run on the Intel iPSC/860. Parallel computing

results are presented with comparisons and discussions.

1 Introduction

One important process in oil refining is to separate the crude

oil into various oil products. This process is called distilla-

tion, which is a thermal separation method that separates a

mixture of liquids according to the differences in their vapor

pressures or their boiling point ranges. It is done by let-

ting the liquid mixture flow through a distillation column.

Researchers usually carry out computer aided design and

simulation of complex multicomponent separation processes

of distillation using the weti-known equilibrium stage model

[12]. Briefly, this model includes the assumption that the

streams leaving a particular stage are in equihbrium with

one another. The computation involves solving very large
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sparse nonlinear systems of equations which are generated

by equilibrium relationships, component-material balances,

total-material balances and energy balance. The numerical

problem in the simulation is to solve a large-scale nonlinear

system of equations of the form

J?(z) = o, (1)

where F : Rn + R“ and the Jacobian J(x) is sparse. Sizes of

the sparse nonlinear systems for a normal distillation column

model range from 1,000 to 5,000 variables. A modern refin-

ery has a number of distillation columns connected in series,

and their simulation generate a multi-level large sparse non-

linear system. The computation is very time-consuming,

and some import ant real-time inst antes can not be solved

on time with current sequential methods and machines. In

addition to making the algorithms parallel, the methods for

handling the sparsity of the system must be very efficient.

Therefore this application, with its sparse nonlinear systems

makes a good candidate for research into algorithms and im-

plementations on parallel computers.

The approach of this practical research is to start with

a complete and real-world sequential application program,

and parallelize it in different ways in order to gain experience

in developing efficient parallel programs on a distributed

memory multicomputer. We exploited parallelism in this

application at three levels:

1. Direct paraile!ization Parallelizing the sequential pro-

gram without changing the basic algorithm structure.

This is done by directly applying existing parallel algo-

rithms to the sequential program.

2. Structured parallelizatiotx Restructuring the program

and transforming the application problem into special

structures so that the computation can be effectively

decomposed for parallel computing.

3. Asynchronous parallelization Not waiting for predeter-

mined data to become available, but trying to solve the

problem with whatever data happen to be available at

the time under certain conditions. The purpose of this

approach is to overlap communications with computa-

tions.

The next section describes oil refining simulation problems

and introduces a nonlinear system that comes from such a

271



real-world application. Section 3 briefly discusses the prob-

lems of the direct Darallefization armroach, namely the di-

rect application of Newton’s meth;~ to the probiem, but

the emphasis is on the structured parallelization approach.

Specifically, we apply the triangular decomposition methods

proposed by Dennis, Mart;nez and Zhang [5] [6] to this refin-

ing simulation. The asynchronous parallelization approach

is described in section 4. Section 5 contains computation

results for the simulation using both structured and asyn-

chronous approaches on the Intel iPSC/860, a distributed

memory multicomputer. The results show the advantage

of the both approaches. Section 6 gives a discussion and

summary of the work.

2 Distillation column modeling

2.1 Overview of the oil distillation process

A phase is defined as that part of a system that is chemi-

cally and physically uniform throughout. In practice, there

are three phases — vapor, liquid and solid. At a certain

pressure and a certain temperature, two phases can exist in

equilibrium, which means that the tendency to escape from

one phase to another is equal to the tendency to escape in

the opposite direction. There are three equilibrium lines:

solid-vapor equilibrium, liquid-vapor equilibrium, and solid

equilibrium. Moreover, three phases can exist t oget her, and

this occurs at the point called the triple point or the three-

phase equilibrium point. The phase equilibrium principle is

the fundamentals of oil refining.

One important oil refining process conducted in an oil

distillation column uses a cylindrical column fitted out in-

terally with trays. Each tray is a horizontal circular plate

above which a layer of condensed liquid can be collected. In

the process of distillation, a certain pressure and tempera-

ture are provided to separate the crude oil into various oil

products. Vapor flows from the bottom to the top and gives

up energy to the liquid phase, which in turn flows down-

ward. This movement results in vaporization of the lower

boiling components of the liquid phase and condensation of

the higher boiling components of the vapor phase. After the

column has been running for some time, the temperature

through the entire column stabilizes. The highest tempera-

tures are found at the inlet of the column. Under ideal con-

ditions, an equilibrium between liquid and vapor is present

on each tray, depending on the temperature of the tray. A

conventional distillation column is defined as one that has

one feed and two product streams, the distillate D and the

bottom product B, as shown in Figure 1.

There are two types of distillation: atmospheric distillation,

which is conducted in a normal atmospheric environment,

and vacuum distillation, which is conducted in a special vac-

uum environment. On the other hand, there are two kinds

of simulation for distillation column design: rnzdtico rnpo nent

simulation, which computes multiple compositions of a dis-

tillation, and binary component simulation which computes

only two compositions, for liquid products and for vapor

products respectively in each tray of a distillation column.
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Figure 1: Sketch of a conventional column

2.2 Computer simulation for a distillation col-

umn

The simulation we conducted came from a real-world design

of a distillation column in a major oil company in Houston,

Texas. The simulation consists of two major computations:

a single column simulation and a multiple distillation col-

umn series simulation. The single column model carries out

a simulation of a binary component atmospheric distillation

column using 155 trays. The multiple distillation column

series simulation is to compute oil distillation components

under a refining model which has a number of identical dis-

tillation columns connected in series, where the liquid flow

goes in one direction. Besides the initial feed, top product

and bottom product, each column links to the next column

in one direction by certain liquid outputs in the middle part

of the column, which serve as the connection feed to the next

column. The multiple column series model is simplified in

Figure 2.

The mathematical model for simulating the single/multiple

distillation column simulation operated at a given set of

conditions is determined by the following phase-equiLibrium

equations:

1. Equilibrium relationships,

2. Component-mass balance,

3. Total mass balance, and

4. Energy balance (Enthalpy balance).

For detailed information about these equations and their

physical meanings, the readers may refer to [12].

In a distillation column designed this way, the ith tray (i =
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Figure 2: Multiple distillation column series.

1, . ..155) has 9 variables:

LCi,l — Liquid Component flow data for component 1,

LC,,2 — Liquid Component flow data for component 2,

VCc,] — Vapor Component flow data for component 1,

VC,,2 — Vapor Component flow data for component 2,

TL~ — Total Liquid flow data,

TV — Total Vapor flow data,

Ti — Temperature,

LE, — Liquid Enthalpy, and

VEj — Vapor Enthalpy.

Besides the 155 x 9 = 1395 tray variables, there are another

19 variables for feed, reflux, reboil etc:

SLCPI and SLCP2 — Two Side Liquid Component Prod-

ucts,

SLTF — Side Liquid Total Product Flow,

SLPT — Side Liquid Product Temperature,

SLPP — Side Liquid Product Presure,

SLPE — Side Liquid Product Enthalpy,

SLPV — Side Liquid Product Vapor Fraction,

FCI and FCZ — Feed Components,

TFF — TotaJ Feed Flow,

FT — Feed Temperature,

FP — Feed Presure,

FE — Feed Enthalpy,

FVF — Feed Vapor Fraction,

DDI, DD2 and DDs — Duty Data,

RF4 — Reflux Ratio, and

BU — Boil Up Ratio,

The system has a total of 1414 variables and 1414 equations

and forms a sparse nonlinear system of equations in the form

of (1). The system structure of the single column simulation

is briefly described in Table 1.

Number of variables lm

Number of parameters 52

Percentage of non-zeros in Jacobian 0.35%

Table 1: The system structure of the single column simula-

tion.

Number of columns

‘+

8

Number of variables in each connection I 4

Total number of variables 11,376

Number of parameters 416

Percentage of non-zeros in Jacobian 0.04%

Table 2: The system structure of the multiple column sim-

ulation.

The multiple distillation column series simulation connects

a number of identical single columns together i m one direc-

tion. The simulation naturally generates a block triangular

system. The block triangular structure is well balanced be-

cause each diagonal block is the sparse system of the single

column simulation. The connections of these columns are

additional equations that set some liquid outputs of a col-

umn to the inputs of its forward neighbor column. These

equations are placed in the bottom of the triangular system.

The system structure of the multiple column simulation is

briefly described in Table 2.

3 Triangular decompositions for the

sparse nonlinear system

3.1 Basic idea

For k = 0,1,..., the standard Newton’s method for (1)

generates successive estimates Zk E Rn of a solution Z* c Rn
of (1) as:

Solve J(m~)sN = –F(zk) and set z~+l = z~ +SN. (1)

The simplest approach to solve the simulation problem is

to directly apply this standard Newton’s method. The ma-

jor part of the computation is to solve the linear Jacobian

system at each iteration. A standard version of a linear sys-

tem solver (see e.g. [11] and [13]) may be applied to the

implement ation of Newton’s method to solve the simulation

problem. There are two major problems with applying thk

straightforward approach. First, the parallel operations are

performed by row and column distributions. However, a dis-

tributed memory multicomputer favors block distributions,

or large grain size. The major part of the performance degra-

dation would be in the LU decomposition of the Jacobian

matrix at each iteration because non-trivial communications

are involved. Second, direct parallelization treats the sparse

system as a dense system, which wastes a large amount of

computing cycles and memory bandwidth to deal with 0’s.

In the case of large sparse nonlinear problems, a single stan-

dard method, such as Newton’s method, may not handle all
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the instances of (1) efficiently, but rather the algorithm must

take into account the sparsity structure and other special

characteristics of the problem. In addition, the randomly

sparse and irregular Jacobian matrix structure makes the

computation difficult to vectorize and parallelize.

Dennis, Martinez and Zhang [5] [6] suggest one way to use

existing technology automatically to tailor methods for par-

ticular sparsity patterns. This approach is motivated by

using a graph coloring method to compute .T(zk ) efficiently

(see [3] [4], and [7]). After that, one might apply the Har-

well code MA28 [8] [9] to solve the linear system (l). (The

MA28 program decomposes a sparse linear system into a

block triangular form). If so, then permutation matrices P

and Q would be found such that

PJ($~)Q(Q~s~) = –PF(.’) (2)

is a block lower triangular system. If this block lower trian-

gular system exists, the original system is called a reducible

system.

In summary, this process of nonlinear triangular decompo-

sition reorders the equations and variables before starting

the nonlinear solution process, rather than after starting it.

If Newton’s method is implemented as outlined above, then

reordering information is computed and used in the inner

linear loop, but it is not used by the nonlinear outer loop.

A straightforward approach without any complex graph

transformation programs would apply the Harwell code

MA28 to the Jacobian matrix to generate a structure ma-

trix filled with O’s and 1 ‘s, where 1‘s represent the non-zero

elements of the Jacobian matrix. Using the information of

the structure matrix, we can manually reorder the nonlin-

ear system into a lower block triangular form. This simple

method may only apply to a system of moderate size for

experimental studies.

3.2 Newton-Gauss-Seidel versus Gauss-Seidel-

Newton

If we apply Newton’s method to solve the block triangular

transformation of (1) given by

[

FI(ZI)

F2(Z1, X2)

F(z) = :

Fm(zI, x2, . . . . z~)

where

z = (Zl, Z2, . . . . xm)T E Rn= x Rn2 x . . .

= o, (3)

x R“m = R“.

F; z Rn’ X Rn2 x . . . x Rn’ + R’”, i = 1,2, ,..., m

and
m

i=]

then

I

(4)

and set z i~+l=z$+ s~fori=l, . . ..m andk = 0,1,2,... .

We should use forward block substitution, which is the same

as the block Gauss- Seidel linear it erat ion, to compute the

Newton step by:

(5)

and for i = 2, . ..lm , s? comes from the n; x n, linear

system

(6)

But now the key observation is that the function on the

right side of (6) are just the first order Taylor approxima-

tions to –Fi(~f +S~,iTj +s~, ..., z~_l + s~l, z!). Thus, if

we can compute values of Fi independently, it must surely

be better to do so than to build a Taylor approximation to

it at the expense of computing the strict lower triangular

part of the Jacobian. This suggests using the block version

of the Gauss-Seidel-Newton method given by

where z i~+l=z$+ s~, i=l, . . ..m and k = 0,1,2,... .

3.3 The Gauss-Seidel-Newton Method and its

parallel version

The Gauss-Seidel principle uses new information as soon as

it is available in order to achieve fast convergence, and this

should be especially advantageous for block lower triangular

systems. For i = 1, . . . . m,

~k+l k
* = z, – [J,(Z~’:)]-lF,( Z: Ii) , (8)

‘Ji = (Z?+’, . . . .where z i ~~~~, z!), .Ji(.) = ~. Below,

k,:
we will use z i and .Ji without further definition.

This method should converge in less time than Newton’s

method because only diagonaJ Jacobian blocks are evaluated

rather than the whole matrix. Experiments demonstrating

this advantage are described in Section 5.

In practice, applying more than one inner iteration to each

block can reduce the totaJ number of outer sweeps and the
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total computing time. Of course, if there are too many in-

ner iterations, one is doing nonlinear Gauss- Seidel, which is

slower.

We found it best to implement the inner iterations in the

cheapest way: we use a stationary Newton method with a

new block function evaluation at each inner iteration, but

only one Jacobian evaluation and factorization per block and

per outer sweep.

Obviously little parallelism can be exploited from the Gauss-

Seidel-Newton because most operations are sequential. A

variation well suited to parallel computation evaluates and

factor the diagonal blocks concurrently at z~. Dennis,

Martinez and Zhang [6] show that this modified method

and its variations are quadratically convergent. The aJgo-

rithm for q inner stationary Newton steps on each block for

1 = 1, . ..g. is as follows:

k,l
x;

k,l-1 _ [ji(z:,o)]-l~i( z:+l>~-l, .z:j;,~-l, ,#-1),
= xl

(9)

and
~k+l k,l
t =Z1, (lo)

where

3.4 Block Jacobi-Newton.

Finally, we include the well-known Jacobi-Newton method.

Each iteration of this method independently solves m blocks

of nonlinear equations by Newton’s method:

~k+l
: = z! – [J, (z!)] -’l’,(zl, . . ..z!). 2 = 1, . . . . m, (11)

where

J~(x~) =

are the diagonal

~F:(Zf, .... Z~_~, Zi)
~Xi Xi = X!

blocks of the Jacobian matrix, for i =

1 , . . . . m. Besides the simple structure permitting easy im-

plement ation, the Jacobi method also exhibits a high degree

of parallelism. Its main drawback is its slow rate of conver-

gence.

3.5 Advantages of the Triangular Decomposi-

tion Methods

In comparison with Newton’s method, there are four ad-

vantages to applying the nonlinear triangular decomposition

methods to solve a reducible sparse nonlinear system: 1) The

evaluations and fact orizations of the Jacobian are performed

only on diagonal blocks; 2) Each sub-nonLinear system can

be solved by different methods; 3) The condition numbers

for diagonal blocks often are considerably smaller than the

condition number for the whole Jacobian matrix; and finally,

4) The operations can be decomposed for parallel processing

at the nonlinear level.

4

4.1

On

Asynchronous parallelization of the

simulation

Communication issues on a multicomputer

a modern multicomputer system such as the Intel

iPSC/860, the computational subsystems of the nodes have

been shown to have high speed. Our experimental stud-

ies also indicate that the iPSC/860 displays a basic dispar-

ity between computational speed on each node and intern-

ode communication speed. This disparity tends to favor a

very large grain-size for computation, with minimaJ intern-

ode communication. Such an arrangement may be possible

for problems which can be scaled in relation to the num-

ber of nodes available; however, in the case of fixed problem

sizes the internode communication can become a major bot-

tleneck as the number of processors is increased, resulting

in poor parallel efficiency.

Improving the efficiency of solving various numerical prob-

lems in applications requires a careful study of communi-

cation overhead. Although low channel bandwidth is the

largest factor, other factors also contribute to the problem,

such as non-neighbor communication, the effects of ch an-

nel contention, the proxy message overhead associated with

long messages and others. All of these factors contribute

to slow message transfer rates. Although they can be con-

trolled to a limited extent, better results can be obtained

by attempting to overlap useful computation with ongoing

communication. This requires a design for asynchronous al-

gorithms with concern for effectiveness and the correctness,

and also requires efficient data structures implementing the

asynchronous concepts on a distributed memory multicom-

puter. The basic concepts and several numericsJ applica-

tions of asynchronous parallel computing are well addressed

in [I]. Other asynchronous methods for nonlinear optimiza-

tion are in [2], [10], and [14].

The term asynchronous computing can be used for a scheme

in which individual processors do useful work during the

time normally spent waiting for a synchronized operation to

complete. This concept has been implemented on a shared

memory multiprocessor for the solution of several large and

artificial block triangular nonlinear systems [5]. The algo-

rithm refers to the case in which a processor is given a locally

useful computation to perform while waiting for other pro-

cessors to arrive at a barrier. In this section, we present

a way that this concept can be “simulated” and extended

on a distributed memory multicomputer. In such a case,

instead of blocking for receipt of a message, the processor

should recognize that no message has yet become available,

and thus can turn its attention to another task which is not

dependent upon the contents of the incoming message. In

this way, the globaJ computation can be advanced and cycles

are not wasted.

4.2 Asynchronous methods for the simulation

4.2.1 Asynchronous Gauss-Seidel-Newton method

The objective of asynchronous approaches is to further ex-

ploit parallelism by overlapping communications with local
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Figure 3: Data flow of the synchronous parallel Gauss-

Seidel-Newton method.

computations. Of course certain algorithms may fail to con-

verge when implement ed asynchronously. However, a large

number of positive and effective results are available for non-

linear block triangular systems. Recall that the synchronous

parallel Gauss-Seidel-Newton method may be simplified in

the data flow in Figure 1.

To simplify the description, we assume each processor is as-

signed a diagonal block. At each iteration, the Jacobian

evaluations and the LU decompositions, represented by J:

(i = 1, . . ..m. k = O, I, 2...) are performed in parallel. Then

the function evaluations and solutions of the ~i variables,

represented by s~(i = 1, . . ..m. k = O, 1, 2, . ..). are performed

sequentially because of the dependent relationship. Idle gaps

in each iteration degrade the overall parallel performance.

Minimizing these gaps will significantly improve the per-

formance. The sequential processes are important, because

there is a danger that iterations performed on the basis of

outdated information will not be effective and may even be

ccmnterproductive. A good asynchronous method must not

hiive the problem of using outdated information.

The basic idea of our asynchronous Gauss-Seidel-Newton

method is that each processor “steals” free computing cy-

cles for extra inner iterations while waiting for the updated

variables. Dennis, Martinez and Zhang [6] show analytically

and experimentally that the inner iterations may achieve a

better convergence rate. Therefore using inner iterations to

asynchronously control the computing order of the Gauss-

Seidel-Newton method should improve convergence and par-

allel performance. We call this method a controlled asyn-

chronous method. Although local computation is overlapped

with communication, the order of computing processes in

each processor is controlled by the inner iterations. Data
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Figure 4: Data flow of the controlled asynchronous parallel

Gauss-Seidel-Newton method.

flow for the controlled asynchronous Gauss-Seidel-Newton

method is shown in Figure 2.

In the

controlled asynchronous Gauss-Seidel-Newton method, se-

quential operations for the solutions of block variables are

performed only in the first iteration (k = O). No more wait-

ing cycles are spent in each processor during the remaining

iterations. The iterations in each processor are performed

using updated variable values from the related blocks. This

is guaranteed by dynamically inserting inner iterations to fill

the idle gaps. Figure 2 shows an example of such an inner

iteration(s) in block 2 on processor 2 of the second iteration.

4.2.2 Asynchronous Jacobi-Newton method

Although each Jacobi-Newton iteration solves m blocks of

nonlinear equations by Newton’s method independently,

each process has to wait at the barrier until all processes

arrive. When the block sizes are reasonably close, the bar-

rier overhead is small. However, when the block sizes widely

differ, the barrier overhead may be considerable. Data flow

for a standard Jacobi-Newton method is shown in Figure 3.

One variation of the parallel Jacobi-Newton implementa-

tion would eliminate the synchronization barrier at the end

of each iteration, and let the Newton steps be solved asyn-

chronously. The best choice is to implement this version of

Jacobi-Newton on a shared memory multiprocessor, since

there will be no extra overhead involved. The convergence

rate of this asynchronous Jacobi-Newton method is depen-

dent on the size and computation time of each block. The

best case occurs when the size of block i is always smaller

than the size of block i + 1, because the updated values

from the block of ith and < ithare always used for solving
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the i + lth block. The slow case occurs when the method

is equivalent to the standard Jacobi method where no up-

di~ted values from the blocks of ith or < ith are used for

sc,lving block i + 1. The worst case occurs when the size of

block i is always larger than the size of block i + 1, so the

updated values from the block of ith and < ith may never

be used for solving block i + 1; for all the cases, i = 1, ..., m.

We expect, on the average, that the performance would be

slightly improved. One example of the data flow of such a

asynchronous Jacobi-Newton method is shown in Figure 4.

4.3 Nonblocking implementation of the asyn-

chronous methods

A modern distributed memory multicomputer, such as the

Intel iPSC/860 and the Intel Paragon, provides at least two

basic types of message-passing primitives: blocking and non-

bl.ocking protocols. A blocking protocol will cause the sender

tc] block until the message is received. A nonblocking pro-

tc)col will continue other work after sending a message. In

addition, the nonblocking protocol on the Intel machines

allows for a special message type to be used that delivers

m,essages directly to a user’s buffer, rather than to a system

buffer. The time for copying the content from the system

buffer to the user buffer is eliminated. This effective non-

b[ocking message delivery can be guaranteed only when the

user buffer and the nonblocking receive instruction are avail-

able prior to the arriving message.

The nonblocking protocol (isendo/irecvo)” provided by the

Intel iPSC/860 multicomputer is used to implementing these

asynchronous methods. To simplify the explanation of the

implement ation, we assume that each processor computes

one block, i.e. the number of processors is equal to the

number of blocks. Therefore, the user’s buffer in processor

NODENO

1

2

3

m

Figure 6:

method.

.................

Jo so J’ s’
m m m m

> TIME

Data flow of the asynchronous Jacobi-Newton

i contains the variables of blocks 1 to i — 1. The blocks in

a user’s buffer for a processor must be updated at the time

when the processor does the function evaluation for the so-

lution of the local block variables. For example, processor

1 does not have a user buffer because it does not receive

any new updated values. Processor 2‘s user buffer cent ains

variable blocks 1 which will be updated by processor 1. Pro-

cessor 3’s user buffer contains variable block 1 and 2 which

will be updated by processor 2. (Processor 2 will pass the

updated block 1 and its own updated block to the user’s

buffer in processor 3. Message-passing of large size in a sin-

gle packet is more effective than one of small size in multiple

packets.) Each processor will not stop inner iterations until

the user’s buffer is filled. The number of inner iterations in

each processor is dynamical y changed.

5 Computing results on the Intel

iPSC/860

The single column simulation problem, written as 88 FOR-

TRAN subroutines (66oo lines of code), generates a sparse

nonlinear system of 1414 variables, including computation

of initial values and of many parameters. In order to dis-

cover the available parallelism, the Unix gprof utility on a

Sun SPARC workstation was used to obtain an execution

profile of the sequential program. Figure 7 gives the execu-

tion distribution structure of the program. If the 21.4% of

data initialization and input time is not counted, 96% of the

total computing time will contribute on solving the sparse

nonlinear system.

The problem was transformed into a lower block triangular

system with the aid of the MA28 routines. However, the
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Figure 7: Profile of the sequential simulation

block structure is not well balanced for a parallel distribu-

tion, where many on the diagonal are small. Based on the

original output of the MA28, we defined 31 square blocks

on the diagonal with roughly equal sizes. Some of them

are still very sparse, and some of them have only diagonal

variables/blocks.

The multiple distillation column series simulation connects 8

identical single columns together in one direction. The block

triangular structure is well balanced because each diagonal

block represents the sparse system of each single column in

the series simulation. The connections of these columns are

additional equations that set the outputs of a column to the

inputs of its forward neighbor column. These equations are

placed in the bottom of the triangular system.

The distributed memory multicomputer we used for solving

the problem is the Intel iPSC/860 hypercube. The system

has up to 128 nodes, comprised of the i860 40 MHz pro-

cessor, 8 MB of memory, an 8 KB data cache and a 4 KB

instruction cache. The processor speed is extremely fast

compared with the bandwidth of the network.

In the synchronous Gauss-Seidel-Newton method, each pro-

cessor first evaluates one or more Jacobian blocks and fac-

tors these Jacobian blocks using LU decomposition. This

process is perfectly parallel. After the parallel computing

part, the function evaluation and one, or more than one

solution blocks are computed in sequential. Inter-processor

communications are involved for processor i+ 1 to receive the

updated block variable values from processor i (i = 1, . . . . m).

uMethods Number 01 iterations

Svn. Jacobi-Newton II 25

IIA“syn. Jacobi-Newton II 23

Syn. Gauss-Seidel-Newton 13 IuA-syn. Gauss-Seidel-Newton 10 I

Table 3: Number of iterations of the different synchronous

and asynchronous met hods for the single column simulation.

The controlled asynchronous Gauss-Seidel-Newton method

described in the last section was implemented on the Intel

iPSC/860 machine. Dynamic inner iterations were applied

in each processor to control the correct order of the asyn-

chronous computing.

The Jacobi-Newton method for solving the problem was also

implemented. The asynchronous Jacobi-Newton method

was implemented by simply deleting the barrier at the end

of each iteration of the Jacobi-Newton method.

The original simulation routines provide a set of reasonably

good initial values. In all cases, the stopping criterion was

to reduce the total function /2 norm below 10–5. Table

3 gives the number of iterations needed by each method

to satisfy the stopping criterion. Figure 8 reports the two

groups of performance results and comparisons between the

synchronous and asynchronous approaches. The top two

curves are the timing results for the Jacobi-Newton method.

The bottom two curves are the timing results for the Gauss-

Seidel-Newton method. The asynchronous approach applied

to each method is effective and improves parallel perfor-

mance. Figure 3 also indicates that the single column sim-

ulation problem is not big enough for effective executions

on the iPSC/860 with more than 16 processors where little

speedup could be gained.

The multiple distillation column series simulation was

mapped to 8 processors. Each diagonal block represents

an individual distillation column. We compare the paral-

lel computing results with the sequential simulation com-

puted by Gauss-Seidal-Newton’s method on a Sun SPARC

10 workstation. Table 4 lists the numbers of iterations of 4

different methods for computing the simulation. The com-

parative performance results are plotted in Figure 9. Sig-

nificant computing time is reduced on the parallel machine.

The asynchronous approach is again more effective than the

synchronous approach for this simulation.

In both single and multiple column simulations, the con-

trolled asynchronous Gauss-Seidel-Newton method spent 3

times less iterations than the synchronous Gauss-Seidel-

Newton method for the same stopping criterion. The results

confirm that the inner iterations in Gauss-Seidel-Newton

method for solving nonlinear block triangular systems are

faster in convergence, which has been theoretically proved

in [6].
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Figure 8: Performance results and comparisons between the

synchronous and asynchronous Gauss-Seidel-Newton meth-

ods for computing the single column simulation.

Methods Number of iterations

Syn. Jacobi-Newton 26

Asyn. Jacobi-Newton 25

Syn. Gauss-Seidel-Newton 18

Asvn. Gauss-Seidel-Newton 15

Table 4: Number of iterations of the different synchronous

and asynchronous methods for the multiple column simula-

tion.

T(w)
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Figure 9: Performance results and comparisons between the

synchronous and asynchronous Gauss-Seidel-Newton meth-

ods for computing the multiple column simulation.

6 Summary

Efficiently parallelizing large application programs for exe-

cution on multiprocessor architectures is a key issue for the

development of high-performance computing. We believe

that a structured approach that decomposes an application

system into certain forms is an effective tool for develop-

ing parallel methods in various scientific computing appli-

cations. The triangular decomposition method is an exam-

ple for transforming a large sparse nonlinear system into

efficient forms for parallel processing. Our experience with

the oil refining simulation indicates that algorithm designers

should have a better understanding of how a computation

can be carried out in a cost-effective manner on a multipro-

cessor architectures. For example they may need to over-

lap communication and computation using a nonblocking

message-passing scheme. On the other hand, the architec-

ture designer should also have a better understanding of the

true nature of scientific computations so as to build more

efficient multiprocessor architectures.

We have shown experimentally that the parallel iterative

methods presented here are efficient. There appear to be

effective ways to parallelize the solution of sparse nonlinear

systems of this type. Our experimental results also demon-

strate that asynchronous computing on the Intel iPSC/860

can improve the performance by overlapping communication

and computations. The c,urrent work involves applying the

triangular decomposition method to solve large scale sparse

nonlinear systems from different applications on different

multiprocessor architectures.
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