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Abstract

We prove a number of negative results about practical (i.e.,
numerically accurate) algorithms for certain matrix factor-
izations. In particular, we prove that the popular Civens’
method for computing the QR decomposition is imherently
sequential over the realistic model of floating point arith-
metic. We also prove a number of additional results con-
cerning Gaussian Elimination for computing the LU decom-
position. Altogether, the results of this paper support the
widespread belief that there is a tradeofl between parallelism
and accuracy in numnerical algorithms.

1 Introduction

Matrix factorization algorithms form the backbone of state-
of-the-art numerical libraries and packages, such as LA-
PACK and MATLAB [9. 12]. Indeed, factoring a matrix
s almost always the first step of many scientific computa-
tions, and usually the one which places the heaviest demand
in terms of computing resources. Among the computations
that involve matrix factorizations of some sort we recall hin-
ear system solution. eigenvalue and least squares approxi-
mation. and rank revealing transformations. In view of this,
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some authors have investigated the parallel complexity of

the most popular matrix factorizations. namely the (P}LU
and QR{I1) decompositions {see Appendix A for definitions
and simple properties). A list of positive known resuits fol-
lows.

o LU decomposition is in arithmetic NC'. whenever it
exists, 1.e., provided that the leading principal mmors
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of the input matrix are nonsingular® [13, 15].

o QR decomposition is in arithmetic NC for matrices
with full column rank, since it easily reduces to LU
decomposition of strongly nonsingular matrices [13].

e PLU decomposition is in arithmetic NC for nonsin-
gular matrices [3]. A permutation matrix P such that
PT 4 is strongly nonsingular can be found with the al-
gorithm for solving the Lexicographically First Maxi-
mal Independent Subset (LFMIS) problem [2].

o QRII factorization of an arbitrary matrix A isin arith-
metic NC' [5]. A permutation II such that the left-
most. n X » submatrix of A has full column rank, for

rank(.4), can be found by computing LFMIS of

sets of (columnn) vectors.

ro=

Unfortunately, none of the above algorithms has proved
to be numerically accurate with respect to a realistic model
of arithmetic (say, double precision floating point). The
widespread belief in numerical analysis circles is that these
methods (as well as other fast parallel solvers, not based on
factorizations [3]) are highly unstable, and in fact that there
is a tradeoff between accuracy and the degree of achievable
parallelism [4]. The results of this paper, which apply to the
classical. mumerically stable algorithms for matrix factoriza-
tion. confirm this state of affairs.

Already in 1989 Vavasis proved that Gaussian Elimina-
tion with Partial pivoting (GEP), which is the standard
method for computing the PLU decomposition in practice,
is inherently sequential?. [17, 10]. This was only a start-
g point, however. For instance, to solve systems of linear
equations there were other algorithms that were as stable as
GEP and that appeared more advantageous from the view-
point of parallehsm. We refer, in particular, to the classi-
cal Householder’s and Givens’ QR decomposition methods
{HQR and GQR. for short [7]). Actually, GQR is to date the
best choice for solving dense systems of linear equations ef-
ficiently and stably in parallel [16]. Also. GQR is especially
suitable for solving large sparse systems, given its ability to
annihilate selected entries of the input matrix at very low
cost. Recently, we proved that HQR is inherently secuential
on input general matrices [11].

'In this case we will say that the matrix is strongly nonsingular.

“As is well known, P-complete problems are the hardest ones to
parallehize 1n a precise technical sense. For this reason they are some-
tines called “presumably imherently sequential” or just “inherently
sequential” {sec, eg [14])




In this paper we prove a number of new results that give
a more complete picture of the pervasiveness of the tradeofl
phenomenon mentioned above.

1. We prove that GQR is inherently sequential. We ex-
hibit a reduction from NAND Circuit Value Problem
{NANDCVP) with fanout < 2. The main technical dif-
ficulty of our proof stems in the arithmetic model. For
HQR it was possible to exhibit a reduction in which
the matrix had rational entries and prove that the ex-
ecution of HQR on a rational model of arithmetic re-
turned the exact result {to be interpreted as the output
of the circuit) {11]. We have been unable to prove that
this nice state of affairs holds for GQR as well. This
made it necessary a more involved analysis of the be-
havior of the algorithin under finite arithmetic. Our
facing this obstacle eventually had a positive byprod-
uct, since the present result holds for the very realistic
model of floating point arithmetic (indeed, it applies to
the implementations of GQR actually available m both
LAPACK and MATLAB). This result shows that all

the practical options for solving linear systems share -

the same status of inherent sequentiality.

1<

. We extend Vavasis’ result by proving that GEP s in-
herently sequential on strongly nonsingular matrices.
This class includes matrices which are important in
practical applications. namely the diagoually domi-
nant and symmetric positive definite ones. Note that
plain GE {which admits NC implementations) does not
fail on mput these matrices, but it is often unstable.
Hence our result shows once more that there is a price
to pay for accuracy.

3. We study weaker forms of pivoting for Gaussian Elim-
ination. Our goal is to investigate whether any PLU
decomposition could be computed fast in parallel. We
define GE with Minhinal pivoting (CGIEN). in which the
selected pivot at step & is the lowest indexed nonzero
element in column A of the submatrix being triangular-
ized. We prove that. independently of the row permu-
tation strategy adopted. GEM is inherently sequential,
thus suggesting that we pay a price for the algorithm
nondegeneracy. We prove, however. that a nonstan-
dard permutation strategy allows NC' implementation
of GE on mput nonsingular matrices. We call GISMS
(for GEM with crcular Shift) this last version of Min-
imal pivoting.

Table 1 provides a summary of the known results for
the three pivoting strategies investigated in this paper for
Gaussian Elimination. The results proved in this paper are
in boldface.

The rest of this paper is organized as follows. In Sce-
tion 7 we describe the key ideas that are common to the P-
completeness proofs for all the factorization methods consid-
ered in the paper. In Section 3 we address Gaussian Flim-
mation and in Section 4 we take QR decomposition into
account. We present some basic linear algchra material in
Appendix A,

2 A framework for reductions to matrix computations

The P-completeness results we will prove in the following
sections are all based on reductions from the NANDCVDP, a
restricted version of C'VP which we now briefly recall:
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Input: the encoding of a A-input boolean circuit ¢ com-
posed entirely of fanin 2 NAND gates, and boolean
values ry.. .., 2.

Output: the value C(ay,..., ) that would be computed
by (" on input xy,. .., Zk.

NANDCVP is log-space complete for P (P-complete for
short), as reported in [8]. In order to simplify the proofs, we
assume that each gate has fanout at most two. This is not
a loss of generality; in fact, for any vertex v whose fanout
exceeds two, we may replace the edges from v with a binary
tree with v as the root and v’s sons as the leaves. Let S
be the size of the original circuit (possibly with unbounded
fanout); then it can be easily proved that the size of the
modified circuit is O(S?). Moreover, the transformation is
clearly log-space computable.

Hence, to prove that a given factorization algorithm A is
P-complete, we will show that, given an instance of (fanout
2) NANDCVP, we can efficiently build a matrix A¢ such
that the execution of A on input A¢ “simulates” the com-
putation of C' on input xy,...,rx. More precisely, we will
show that there is a log-space computable function f such
that, given a pair (C, x) where C is the encoding of a fanout
2 NAND circuit €' with & inputs and r gates, and x is the
encoding of a k—ary boolean vector x, the following holds:

1. fl{C,x)) = (Ac,v), where A¢ is an v x v matrix, for
o(1)

some ¥ = n ;
2. Aoninput Ac leaves the encoding of C(x) in the entry
A, ).

The reductions share a common structure, based on the
definition of certain submatrices, or blocks (corresponding
to circuit components), and the rules according to which
the blocks are pieced together to form the matrix A¢ (cor-
responding to the assembly rules of the circuit components).
The description of this general framework is the goal of the
rest. of this section.

2.1 Functional blocks

Let a denote the encoding of the logical value a €
{True,False}.

NAND block (N) An N block computes the encoding of
the NAND of two logical values whose encodings are
a and b. That is, if N;; = a and Noo = b, then
executing A on input N leaves in the bottom right
entry the encoding of NAND(«, b).

Duplicator block (D) A block of type D duplicates the
encoding a of a logical value. That is, if Dy; = a,
executing A on input D leaves in the bottom right

a 0
0 a )
Wire block (W) A block of type W simply copies the en-

coding of one or two logical values to different diagonal
entries.

corner the 2 x 2 block (

2.2 Block assembly

The simple idea behind the siimulation of a NAND circuit
(' consists essentially of having an N block for any NAND
gate of (". A fanout 2 NAND gate is simulated by plac-
ing a D block just after the corresponding N block, and
a connection between a NAND gate (either fanout 1 or 2)



general
matrices

nonsingular
matrices

strongly nonsingular
imatrices

GEP Inherently Seq. Inherently Seq. Inherently Seq.
GEM Inherently Seq. | Inherently Seq. NC
GEMS | Inherently Seq. NC NC

Table 1: Parallel complexity of GE with different pivoting stratcgies and for different classes of input matrices. The results

proved in this paper are in boldface.

and the next NAND gate(s) is represented by placing a W
block after the N (or D) block. Altogether, any pair of two
consecutive diagonal blocks of A is of one of the following
kinds: (N, W), (N, D}, (D, W), and (W . N).

Of course, the above scheme cannot work in that simple
way. The blocks must be partially overlapped, for otherwise
no value could be passed around. Also, ¥ blocks will be in
general split apart in the matrix Ac, to make it possible to
copy values to arbitrarily distant entries. Fig. 1 illustrates
the basic composition rules to form a fanout 2 NAND gate
and to route the output of fanout 1 and 2 NAND gates to
subsequent NAND gates. [n particular, note that the W
block is a principal minor of the matrix but not one formed
by contiguous rows and columns.

To illustrate the implications of these assembly rules on
the block definition, consider the factorization algorithm
working on a given diagonal block. When wmanaging to send
to zero the entries in the last row(s) of some block (marked
with % in Fig. 1), the algorithm will in general affcet the
entries of the first row{s) of the next block. This is ex-
actly what we want for the first such entries {(denoted by
o}, which are the places where results are passed hetween
blocks. However, this is unwanted for the remaining entries
{marked with x}. Hence, when specifving a given block we
will have to show that the factorization algorithm leaves, in
the entries marked with x in Fig. 1, the appropriate values
required for the elimination of the next block.

3 Gaussian Elimination with Pivoting

In this section we consider three pivoting strategies for Gaus-
sian elimination, namely Partial Pivoting. Miimal Pivol-
ing, and Minimal Pivoting with circular Shift. The resulting
algorithms will be veferred to as GEP, GEM. and GEMS,
respectively. GEP is well-known (see also the Appendix A).
According to Minimal Pivoting and Minimal Pivoting with
circular Shift, the pivot row is the lowest indexed one having
a nonzero value in column £. Once the pivot row is found,
GEM swaps it with row A& (like GEP): on the other hand,
GEMS brings it to position k., without altering the order of
the other rows (this amounts to performing a civcular shilt
of the rows with indices between & and the index of the pivot
row).

We prove here that (1) GEMS is inherently sequential,
unless the nput matrix is nonsingular: (2) GEM is inher-
ently sequential, unless applied to strongly nonsingular ma-
trices: (3) GEP ix inherently sequential even on strongly
nousingular matrices.

3.1 Minimal Pivoting

Minimal Pivoting is intended to be a weak form ol pivot-
ing. with the only aim at making the rvesulting Gaussian
Elimination algorithm nondegenerate. bhut with ahsolutely
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no guarantee of numerical accuracy. However, the nonde-
generacy guarantee is sufficient to make the resulting GE
algorithm presumably very hard to parallelize.

Theorem 3.1 The algorithms GEMS and GEM are inher-

ently sequential on general matrices.

Proof. According to the general framework discussed in
Section 2, we show the specific functional blocks for GEMS
and GEM. The reductions use the encodings 0 and 1 for the
hoolean values False and True, respectively.

e D blocks for GEMS and GEM are depicted in Fig-
ure 2. Note that the only difference is in the addi-
tional (rightmost) column, the diagonal blocks being
the same. After 9 steps of either algorithm (on the
appropriate matrix) we have Digio = D = a,
Diiio =Dioar =0, Doy = e, and D2 = w.

e An N block is represented by the matrix depicted in
[Figure 3.
Recall that, in view of the rules given in Section 2,
we must prove that the execution of the factoriza-
tion algorithms leaves the appropriate values in the
last. row, i.e.. the ones required by the next (partially
overlapped) block. For this reason we always add one
cohunn to the description of the blocks. In case of
N blocks it is easy to see that after 4 steps of ei-
ther GEMS or GEM Ny contains the encoding of
NAND(«1.b) while N g still contains v.

o The 1V block, which applies to both GEMS and GEM,
is depicted in Figure 3. 1t “connects” the {one) output
of a NAND gate to another NAND gate. After 2 steps
of cither GEMS or GEM we obtain Wa: = a and
W.g = v,

The matrix A¢ can be built using O(logn) space.
(learly, the only difficulty in generating each block stems
in the determination of its position in the matrix A¢. To
generate a W7 block it is required to know the positions of
the two blocks it connects (either two N blocks or a D and
an N block). In turn. to generate a D block it is required
to know the position of the preceding N block. Overall, the
prablem is the efficient (i.e. log-space) computation of the
position of all the N blocks. Now, referring to Fig. 1, it
is casy to see that the top left entry of the N block corre-
sponding to the jth NAND gate of the circuit is placed at
position (p,,p,). where

Py = (s(N)+ DS} + (s(N)+ S(D) + 1)f},

s(-) is the order of the referred block, and f]l and f} de-
note the humber of fanout 1 and fanout 2 NAND gates with
indices smaller than j. This computation can be clearly per-
forined in O(log n) space. Assuming, that the output of the
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D

Figare 1. Block assembly: fanout 2 NAND gate (left). wiring for a fanout 1 NAND gate (right). and wiring for a fanout 2

NAND gate (top).

circuit is always taken from the output of the nth NAND
gate, the order of A¢ is simply given by py, 4. G

The matrix A¢ of Theorem 3.1 is clearly singular (having
a number of zero columns). Interestingly, however, when
restricted to nonsimgular matrices the two algorithms appear
to have quite different properties with respect to pavallelism.

Corollary 3.2 GEM is inherently scquential when ve-
stricted to nonsingular matrices.

Proof. Given (the encoding) of (' we apply the same veduc-

tion as in Theorem 3.1, obtaming a singular matvix A of

order v. We then consider the following matrix A} of order

21,
r _f Ae E

where O is the zero matrix of order v and /7 is the matrix
{of order 1) with 1 on the antidiagonal and 0 clsewhere. "T'he
determinant of (- can be casily proven to be 1. Morcover,

(1)

the execution of GEM on input A4} lcaves the encoding of

the output of €' in the entry (1. 1#). This can he seen by oh-
serving that the first 7 — | steps of GEM modifies A~ (the
interesting portion of A} for what concerns the simulation)
in the same way as in the reduction of Theorem 3.1, To
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this end. consider step A of GEM. If column k contains a
nonzero clement with index not greater than v, then clearly
the kth climination step modifies A exactly as in the pre-
vious reduction. Otherwise the pivot is taken from the row
with index v + &, and the elimination step has no effect on
A¢ since the pivot is the only nonzero element in row v+ k.
Then, as the sole consequence of this step, row k is brought
to position  + k., where it cannot affect the simulation any
more {due to the structure of Al). Again this is exactly
what happens in the previous reduction. O

Theorem 3.3 Computing the PLU factorization returned
by GEMS on input a nonsingular matrir is in arithmetic
N2,

Proof. An N7 algorithin to compute the PLU factoriza-
tion of nonsingular matrices has been given by Eberly [5].
Given A, nonsingular of order n. let A4; denote the n x 1
matrix formed from the first 7 columns of A, ¢t = 1,... n.
IT 5, denotes the set of indices of the lexicographically
first maximal independent. subset of the rows of A;. then
[5.] = 4. since A, has full column rank. Moreover, S, C Sipr.
r=4..... n — 1. Note that the computation of all the S; is
in N7 (sce [2]). Now, let ) = {7}, and. fori =2,...,n,
St = S, = {ji+1}. Then a permutation P such that PT 4
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a 0 0 0 0

O b 0 0 0
N=}1 1 0 0 -1
0 1 0 0 -1

It 0 0 0

Figure 3: The V and 1V hlocks for GIENS

has LI’ factorization is sinply
P={e, el ey

where ¢, 1s the ith unit (cohunn) vector. Clearly, once P2 has
been determined, computing the LI factorization of PV A
can be done in polylogarithmic parallel time using known
algorithms. We now show by induction on the colunnt index
& that P is the same permutation determmecd by GENS.
The basis is trivial, since jj 15 the index of the first nouzero
element in column 1 of 4. Now, for k& > 1, let

By

Ay

be the (partial) factorization computed by GIMS. where 124
i1s upper triangular with nonzero diagonal elements (stnce A

Ry,

CIN P |€Jk;€'k+l [ en, }T-‘{ =Ly ( O

is nonsingular) and the unit vectors oy .. ... g, oxtend
€4y €y, to form a permutation matrix. Clearly, Minimal
Pivoting ensures that {4 < ... < 1,. Now. the next pivot

row selected by GEMS is the one corresponding to the hirst
nonzero element in the first colummn of Agx. let b+ 1 <
¢ < n denote the imdex of the pivot row. Since Gaussian
EBlimination does nothing but hncar combinations between
rows, it follows that the initial matrix Vg satisfics

det (("11] toor |(:JL |' Lo )].-'hHH) = 0.
for any m € {k +1.....1 -1}, and
det ((e, 1t o) Aupr) #0.

that
a

This in turn implies that 5.4 = {n L

li = Jrs4a-

Clearly GEMS and GEM behave the same when fed
with strongly nonsingular matrices. Actually they, compute
the (unique) LU factorization. which isx gnarantecd to exist,
without performing any row exchange. Henee, both GENIS
and GEM, as well as plain G, can he placed in NC under
the assumption of strong nonsingularity.
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and GIEM.

3.2 Partial Pivoting

We now prove that GEP is inherently sequential on strongly
nonsingular matrices. Our proof builds on the original proof
in [17]. and hence does not share the common structure of
the other reductions in this paper. Essentially we show that,
with little additional effort with respect to Vavasis' proof,
we can exhibit a reduction in which the matrix obtained is
strongly nonsingular. From the numerical point of view this
is important, since, as already remarked in the introduction,
for strongly nonsingular matrices plain GE (no pivoting) is
known not ro fail.

Theorem 3.4 The set L = {(¢.J,4) : On input 4, GEP
usexs row 1 to eliminate column j.}, where A is strongly non-
singudar. 1s log-space complete for P.

While we postpone the technical proof of Theorem 3.4
to the full paper, we give an example which shows the way
the matrix given in [17) is modified. Figure 4 depicts a
circuit for computing the Exclusive Or of two boolean values
and the corresponding matrix M obtained according to
the reduction in [17]. The matrix is nonsingular; however,
i can be seen that the leading principal minor of order 2 is
sigular. The matrix we obtain, according to Theorem 3.4,
is shown in Figure 5. 1. can be easily seen that our matrix is
strongly diagonally dominant. hence strongly nonsingular.

4 QR decomposition through Givens’ rotations

We backtrack to our general framework of Section 2 and
prove that GQR is inherently sequential under the most re-
alistic model of arithmetic.

Theovem 4.1 QR is inherently sequential under a fived
size floating point model of arvithmetic,

Proof. GQR is clearly in P under the model considered.
We prove that the output of a fanout 2 NANDCVP instance
can be read off the encry in position (n, n) of the triangular
factor computed by GQR on iput a given matrix A of order
n {determined according to the rules of Section 2). The
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Figure 4: Circuit for computing XOR(«.b) (left) and the corresponding matrix M according to Vavasis’ reduction (right).

The symbol - denotes a zero entry.

-39
a 10.0 } |
—3.9
b 0.0 ! ]
. —3.4
1 1 G0 100 I |
-39 .
1 1 400100
. -3.0
1 I 1.0
t 1
200
200
20.0
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1

1.0 1

-3

4.0 toa

30.0
30.0
30.0 -
30.0
200 30.0
200 30.U

Figure 5: The matrix A for the computation of X0R(a, b).

reduction uses the encodings —1 and 1 for the boolean values
False and True. vespectively. We first define the functional
blocks for the real number modcl, then study the behavior
of the algorithm in floating point arithmetic.

o A D block is represented by the matrix of Figure 6.
If ais either 1 or -1. after 4 steps of cxact GQR we
g(’t D-‘]A [)5.', = a. ]).1‘5 = I)V,‘,] = 0. ,),1_(, = .r, andl
])5_(, =Y.

After 2 steps of GQR applied o the block of IMigure 7
we get W0 = aand W2

= .

The N block is depicted in Figure & Performing 10
steps of GQR on the matrix of Figure & leaves with
Nio 1o = NAND(«a, b) and Njg 1 = r.

Applving a floating point implementation of GQR to any
of the above blocks™ leads 1o approximated results. For in-
stance, the relative error affecting the sign ol the result of
an N block ranges from a minimum ol « to a maximum of

“More precisely, to the exact up to machine precision approxima-
tions of the blacks
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13¢ on a PC' version of MATLAB (with ¢, the roundofT unit,
equal to 2.2204-107'%), Clearly, for matrices simulating cir-
cuits with many gates, the error will in general amplify to
make it impossible to recover the exact {i.e., 1 or —1) re-
sult. Clearly, classical ervor analysis cannot help in general,
since it should be performed for all the possible matrices
representing NANDCVP instances.

Our solntion is to slightly modify the exact blocks given
above so that they always return the exact results when the
ehmination is performed under machine arithmetic. We take
advantage of the following crucial properties of the floating
point. arithmetic:

loa+b=aif|b <e€lal;
2. Jol < w = 7 is a "machine zero”.

Here ¢ is the roundoff ymit. while w is the smallest magnitude
representable number. The other crucial fact that helps in
onr analysis is that only the values 1 and —1 need to be
passed from one block to another during the elimination
(this can be seen by considering the first row in each of the
exact blocks).
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We show our solution for the 117 block {the same tech-
nique applies to the other blocks as well). Let m' be the
number of bits of the mantissa for the particular arithmetic

under consideration and set m = m' + 10 . Consider the
following modified ¥ block:

a 1 1 0 0 1
. —34y65 152M 65 2™
2 3 3 0 0 3- 1™ _ WfER2n
W= B -3 © A7 0 0 4—g2z™ _ JERz™
0 g a-lm/z 1 0 gm
0 0 0 a=fmi2l am=Im/2
where we have set x = 2™. After columns 1 and I have
been eliminated we get
- x t . «
0 = * = * *
W,=10 0 a(t+y) 0 0 2L+ )
0 g 2-im/ 1 0 o
o 0 n=fm/2l | gm={m/2]

where * denotes an arbitrary nonzero entry and |1|. || < ce,

for somme small constant ¢. Using property 1 above. after one
more step of GQR we obtain

- * - x = *
0 = = * = *
vV, = [ I = 4] *
i} Do oG a 0 ar™ e amom2 4
0 0 o o-fm/a gm—[n/2]

where = denotes the machine version of the — operation.

The crucial fact is that a2™ = ‘lm_l’"/?-'(l + () = a2™ —
am=1m/2] which is a consequence of the choice of m and
the fact the error ¢ is of the order of ¢. But then. after one
more step of GQR we get the exact values, 1e.,

£k Kk k  k
0 * * x *x %

W = 0 0 * *x 0 =
h 0 0 = « 0 +«

0 0 0 * * =

0 0 0 0 a 1

We conclude our proof by addressing the uniformity of the
matrix generation process. Using arguments similar to those
in Theorem 3.1, we can prove that the generation of the
matrix A, corresponding to a circuit/input pair can be per-
formed in Oflog n} space. where n is the number of gates in
the circuit C. 0

5 Open problems

The matrices arising from the reduction in Section < and the
one in [11] are singular, and all the attempts we made to ex-
tend the proofs to nonsingular matrices failed. While the
deep reasons of this state of aflairs could he an mteresting
subject per se {with possible relationships with the results
in {1]), it cleatly leaves us with an open problem. For gen-
eral matrices. it would be interesting to know the status
of HQR with column pivoting. the algorithm of choice for
determining the rank of a matrix in practice.

As already mentioned. the resulis of this paper support
the belief that there is a tradeoff between parvallelism, on the
one hand, and nondegeneracy and accuracy. on the other. in
munerical algorithms [4]. We suspect that far deeper work is
needed to either prove such a tradeoff on a solid theoretical
ground or to exhibit stable algorithms substantially more
eflicient than the ones adopted by numerical analysts for
decades.

YThe constant 10 is rarher arbitrary
ag=m . i
2T e and that m — /2] < m

What as important s that
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A Gaussian elimination and Givens rotations

Let 4 be an n x n matrix and let a be a column vector.
i.e., an n x 1 matrix. The elements of A are denoted by a;;,
i,j = 1,...,n, while the elements of a are denoted by a;,
t=1,...,n.

- The transpose of A is the matrix B such that b;; = a;;. B
is usually denoted by A”.

- The transpose of the column vector a is the row vector
(ie., an 1 x n matrix) a” with the same components as a.
- A matrix ( is orthogonal when Q7@ = I, where I is the
identity matrix.

- A permutation matrix P is a matrix which is zero every-
where except for just one 1 in each row and column. Any
permutation matrix is orthogonal.

- The LU decomposition of A is a pair of matrices, L and
U, such that L is lower triangular (i.e., {;; = 0 for j > i)
with unit diagonal elements, U is upper triangular, and 4 =
LU. For an arbitrary (even nonsingular) matrix A the LU
decomposition might not be defined. A sufficient condition
for its existence (and unicity) is that all the leading principal
minors of 4 be nonsingular.

- The PLU decomposition of A is a triple of matrices P, L,
and U such that L and U are as above, P is a permutation
matrix, and PTA = LU. The PLU decomposition is always
defined (even for singular matrices), but not unique.

- The QR decomposition of A is a pair of matrices Q and
R, such that @ is orthogonal, R is upper triangular, and
A = QR. The QR decomposition always exists.

Gaussian Elimination (GE). GE computes the LU de-
composition of A (whenever it exists) by determining a se-
quence of n — 1 elementary transformations M ) with the
following properties (in which the aﬁf)s are the elements of

Alhy:

A® =4

AR Z R 46D gy a1,
aff’ =0fori>jandj<k,
U - A(n—l)'

L= (MCt-DMe=D )T

In other words, the transformation A®’ = M® 4% 1) gends

to zero the elements in column k of A*~Y below the main
diagonal, leaving the already introduced zeros unchanged.

The (k + 1)th transformation M**1) is a matrix defined as
I - 7el, where

7= 0,...,0,Tkt1,.- ., Tn)
and 77 =a!}’/aly), i=k+1,...,n I, for some k, aly =0
the algorithm fails. However, it can be proved that, if 4 is
strongly nonsingular, ag;c) #0, k=1,...,n

GE with Partial pivoting (GEP). GEP computes a
PLU decomposition of A. GEP never fails. As in GE, the
matrices L and U are built using a sequence of elementary
transformations. However, before applying M (k+1) g5 400
GEP determines the index h such that

k)

(k)y _ (k)
lape | = kfgfg‘n lagx I

and swaps the rows k and h of A%®). If the maximum above
is 0, the algorithm sets A¥+1 = A(*) The rule used for
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choosing the index I is an example of preoting strateqy. and
the row & itself is called pivot row.

QR factorization via Givens rotations (GQR). GOQR
applies to general real matrices. [t computes a sequence
of ™22 transformations (called rotations). such that cach
transformation annihilates one element below the main di-
agonal. leaving all the already introduced zeros unchanged.
GQR annihilates the subdiagonal part of the matrix in the
natural order (left to right and top to bottom).

The rotation used to annihilate a selected entryv «;,; of a
matrix A is the orthogonal matrix G;; defined as follows:

I o+ 0 - 0 - 0
0 ¢ $ 0 —
Gij=|: : - :
0 -+ =5 - ¢ -0 — )
0 -« 0 - 0 .- 1
where ¢ = i and s = w-i‘il—f One can easily
a;l+a QT AuT

3i LT
verify that G,; is indeed orthogonal and that the entrv j.i
of Gj; - A is zero.



