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Abstract

ll;eprove allulllberof negaLive resultsahout practicaf (i.e.,
numerically accurate) algorithms for certain matrix factor-
ization. In particular. we prow that the popular (;iwns’
method for computing the QR decomposition is inherentl}
sequential over the realistic model of floating point arith-
metic. We also prove a number of additional results con-
cerning Gaussian Elimination for computing the LIT decon]-

positiou. .iltogether, the results of this paper sllpport the
widespread belief that there is a tradeotlbetween palallclism
and accuracy in numerical algorithms.

1 Introduction

Matrix factorization algorithms form the hackhone ofstate-
of-the-ar[ numerical libraries and packages, such as L.\-
PACK and hfATL.%f3 [9. 1~]. indeed, factoring ii matrix
is almost always the first. step of mall: scient,ifir collll~ut.a-
tions, ancl usually the one which places the heaviest demand

in terms of computing resolwces. Among the rompl]t.ations
that involve matrix factoriza( ions of sonle sort ~ve I.ccall lin-
ear system solution, eigenva]ue and least scll]ares alJproxi-
mirtion, and rank revealing 11.ansforlllikti{jlls. in Iicfv of this,
some authors have invest j~. +t.e[]the parallel conlldcxity of
the most popular matrix f&torizat.ion>. ]M]IIVI) tlw (} ’)L[”
and QR(II) clecompositions (see .Appell~lix .1 for {ldinit,ions
and simple properties). .4 list of positive known resIIlt.s fol-

Io\vs.

● LL” clecolnposit,ion is in arithmetic ,1”(’. }vlw]lef.er it
exists, i.e., pro}”ided that tlw leaditl~ Iwil]ripal minors
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of theinput rnatrixa renonsingular-1 [13, 15].

QR decomposition is in arithmetic NC for matrices
with full column rank, since it easily reduces to LU
decomposition of strongly uonsingular matrices [13].

PL[- decomposition is in arithmetic NC for nonsin-
gular matrices [5]. .4 permutation matrix F’wch that

P7.4 is strongly nonsingular can be found with the al-
gorithm for solving the Lexicographically First hfaxi-
mal Independent, Subset (LFMIS) problem [~].

C?R~ factorization of an arbitrarv matrix .4 is in arith-
~;letic .VC [5]. A permutation “~ such that the left-
most t! x r suhmatrix of .4 h~s full column rank, for
r = rank(l), can be found by computing LFhllS of
sets of (column) vectors,

LTnfortunately, none of the above algorithms lEM proved
to he numerically accurate with respect, to arealist.ic model
of arithn~etic (say, double precision floating point.). The
!videspread belief in numerical analysis circles is that, these
mcthocls (as well as other f~<t parallel solvers, not based on
factorizat.ious [3]) are highly unstable, and in fact that there
is a tradeoff lx.t.~veen accuracy and the degree of achievable
parallelism [I]. ‘I’lleres~iltso ftllisl>al>er, whichappl~ tothe
classical. lmnlerically stable algorithms for matrix factrrriza-
tioo. confnm this state of affairs.

:ilread} in 1989 \’avasis proved that Gaussian Elimina-
tion with Partial pivoting (CIEP), which is the standard
method for computing the PLII’ decomposition in practice,
is illherentl! sequent. ia12. [17, 10]. This was only a start-
ing point, however. For instance. to solve systems of linear
equatious there \vere other algorithms that were as st.able as
C;EP and that appearecl more advantageous from the view-
point of parallelism, M;e refer, in particular, to the classi-
cal T{ou~eholder’s and Givens’ QR decomposition methocls

(IIQRand (iQR, forshort[ 7]). .Actually.G QRisto( latethe
best choice folsol~ing dense systenls of linear eql]ations ef-
ficiently and>tahly ill parallel [16]. .Wo. C;QR is especially
s(lit,ahle for ,d~,il)g large sp<arse .s~st,ems. givenitsahilit~t,o
annihilate selec[ed entries of the iupL]t matrix at J,ery low
cost. Recent]y. weproved that HQRisinherently seclrlential

on input general nratrices [11].

‘ 111IIlls case \Y..\vlII say that III? matrix }s stwngfy nOnstngti/a7
‘.%s ISwell )OIOWII,P-complete problems are the hardest ones to

p:il’allellm IIIa]>,r(:lse re171,,)lcals~,,~*, For this reason thq, ak smr]e-
fll>lvs call’d ))1’.:sullld>ly lllllW@ly Srquelltlal” “1’ JIISI ‘,,,, hvrv,,(.ly

W!., (I( Iltlal” (s.. 5’ ~ [1.1])
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JII thi~ paper )ve prol’c ,~ UUU11K9of tieir resufts 1Iktt gift
a more complete picture of the pervasiveness of the t latleoff

phenomenon mentioned al)o[e.

1. We prove that GQR is inherentf~’ sequential. \\e ex-
hibit a reduction from NAND Circuit Vahw Problem
(NANDCVP) with fauout <2. The main technical dif-
ficulty of our proof st ems in the arithmetic model. For
HQR it was possibld to exhibit a reduction in \vhirll
the matrix had rational entries and prove that, tfle ex-
ecution of HQR on a rational model of arithmetic re-
turned the exact result (to be int,erpret.ecl as the output,
of the circuit, ) [1I]. We have been unable to pro~~e that
this nice state of affairs holds for GQR as well, This
made it necessar~” a more involved anal?sis of the be-
havior of the algorithm under finite arithmetic. Our
facing this obstacle eventually hacl a positive byprodu-
ct, since the present result, holds for the I’ery realistic
model of floating point arithmetic (incleed. it applies to
the implementations of C+QR actual]!’ available ill both
L.APACK and MATLAB ). l’his result shows that idf
the practical options for solving linear systems share
the same status of inherent seque]lt ialil.}.

2, We extemf VaYasis’ tesuit 1>}, prwlillg that ( Jl?l> is in-

herently sequential on strongly nonsinglilar matrices.
‘f’his class includes lnatrices which are important. in
practical applications, llamcl~, t Iw diagmmll~ (Ioli] i-
nant and symmetric positi~e definite ones. ,Note that.
plain GE (which admits NC implelnent ations ) does not
fail on inpllt these IIlatrices. but it is often lmst able.
Hence our result shows once more that t.hrre is a prier
t 0 pay for accuracy.

:3, \$;e st.u<ly weaker forms of’ pivoti]lg for ( i:utssian lZlim-

ination. Our goal is to investigate whet lwr an,r/ r)l, t’
decomposition could be compute(l fasl. ill parallel. \f”e
define GE with Miniloal pi~oting (( ;l;hi). ill Ivhirh the
selected pivot at. stelj k is the lolvest itl(lexc(f Ilorlzero

element in column k of the submatrix Iwillg t rianSllim-
ized. We prove that, illclej>c,llcletlt.1) of [he row permu-
t ation st rateg~ adopt ed, (+12M is inhere rltf~,se{luent ial,
thus suggest ing that we pay a pric( for the algorithm
nondegeneracy. W;e prove< Ilo!vef,er. LIm[ a nnustalk
cfard permutation stlat.eg) idlo~Y>N(’ il~}l)lell~cl~t.tltiot~
of GE on input. nomsillglifar matri{m. \t;e cafl (;ljklS
(for GEhl lvithcircxdar Shift) this last ~ersion ofhli[l-
imal pivoting.

Table 1 pro!ides a s(im]nary of [he l<llo\vll I’(wlft.s 101’
the three pivoting st. rategles ir]vest.igittcd ill I.flis l)al)et, 101

(.+aussia]i Eli]ninat. ion. T1)*I rrs~lltsl)rofy,(l irl tlli+ pal,(,ral(,
in boldface,

me rest of this paper is organize(l as follows, In Sec-
tion 2 wedescrihe the key ideas that iil.( cotnmolI (0 the P-
compkteness proofs for all the factorizatiolj nlct.llmls consi(l-
ered in the paper. IU Section 3 JVCad(lr{+s {Jallssian l:;lirr]-
iuatiol] and in Section -1 !ve take (JR (fecollll~ositioll into
account. V1’epresent solu(, basic lineal. afgchca Illat.erial ir)

.+ppendix .\.

2 A framework for reductions to matrix computations

The P-completeness results IVCIvill pro~,e ill th( follnlvil]g
sections are all based on rwfuctions flo]il tilt N/\ ND(”’\’P. a
restricted fwsion of (’VP wliicl] !Vf no\v l)ricfl~. recall:

IIII)UI: tllc ellcoditlg of a k-input boolean circuit C’ com-
I)o.+ed entirely of fanin 2 NAND gates, ancl boolean
valtlcs .rj. ,.z~,

olltl>ul: [he Ialue (’(.r], . ..zh)h) that would be computed
by ~’ou input .r,, ,.. ,z~.

N.AND(-’VP is log-space complete for P (P-complete for
short,), as reported in [8]. In order to simplify the proofs, we
assume that each gate has fanout at most two. This is not
a loss of generality; in fact, for any vertex v whose fanout
exceeds two, we may replace the edges from u with a binary
tree with v as the root and u’s sons as the leaves. Let S
bethesizeo ft heoriginal circuit. (possibly with unbounded
fanout. ): then it can be easily proved that the size of the
modifiecl circuit is 0( S2). Moreover, the transformation is
clearly log-space computable.

Hence, toprovet hatagivenfa ctorizational gorithrndis
P-complete, we will show that, given an instance of (fanout
2) N.4NDCVP. we can efficiently build a matrix .4C such
that the execution of A on input A ~- “simulates” the com-
putation of C on input xi, . . . . .r~. More precisely, we wilf
SI1OJVthat there is a log-space computable function ~ such
t hat, gi~.en a pair (C, x) where C is the encoding of a fanout
2 :N<\N[) circuit. C’ with k inputs and n gates, and x is the
encoding of a k–at-y boolean vector .r, the following holds:

1. ~((C, x)) = (.4(., v), where .4c is an v x v matrix, for

sorer v = no(’);

?. .4 on input .4c leaves the encoding of C(x) in the entry
.-!c(r,,r,).

The reductions share a common structure, bzwed on the
definition of certain submatrices, or blocks (corresponding
to circuit conlpouent.s ), and the rules according to which
the l>locks are piececl together to form the matrix .4c (cor-

respoucl ing to the asembly rules of the circuit components).

‘1’bc {Iescript.iou of this general framework is the goal of the

rest. of t IIis sect ion.

2.1 Functional blocks

Let. a denote the encoding of the logicaf vafue a ~
{True, False}.

NAND block (N) An N block computes the encoding of
t}w N.LND of two logical values whose encodings are
a itn(l b. TM is, if .V11 = a ancl .VZ = b, then
cx(,((!t ing A 011 input, ,\~ leaves in the bottom right
(ml r~ t hc encoding of NAND((J, b).

Dllplicator block (D) .+ block of type D duplicates the
el]roding a of a logical ~~alue. That is, if Dll = a,
cxec(l( ing A on input D leaves in the bottom right

()
corner the 2 x 2 block n [1

Oa”

Wire block (W) A block of type It: simply copies the en-
co(lil)g of ollc~or two logical values to different diagonaf
erll ries.

2.2 Block assembly

‘1’fw simple idea behind the simulation of a NAND circuit
C‘ consists essentially of having an .N block for any NAND
gate of C’. .A fanon(. 2 N.AND gate is simulated by plac-
ing a D block just. after the corresponding .N block, and
a connecl.iorj bet weeu a N.4NL) gate (either fanout 1 or 2)
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I matrices mat rim+ Inat. rices I
(;EP lnhereutly %(1. Illll(w’llt]l’ seq. “Inherentl IV Sea. I. .
(;EA1 Inherently Seq. I Inllorelltly Seq. NC

(;EMS Inherently Seq. NC ~r~,

Table 1: Parallel comdexit~ of C;Ewith different pivoting s(li~[[giesandforcliflerellt classes of input matrices. The results
proved in this paper ire inj~olcfface.

and the next, NAND gate(s) is represented hy placing a tl:
block after the .V (or D) block. Altogether. any pairof two
consecutive diagonal blocks of ~i~ is of one of the following
kinds: (N,lV), (lV.D), (D,ll<), Md(I’l’.A’).

Of course, theahoves chemec annot ~vorkiu that simple
way. The blocks must be partially overlapped, for otherwise
no value could be passed aronncl. Also. IT; hloclw will be in
general split, apart, in the miit.rix Ac. to make it possible to
copy values to arbitrarily distant entries. Fig. 1 illustrates
the basic composition rules to form a fauou[ 2 N.L\ND gate
and to route the output of fanout 1 aml 2 NAND giltes to
subsequent N.4ND gates. In l)articular, not( that. t]w 11’
l]lockisal~rillcil>al minoroj the matrix Imt ]Iotone fnrmml
IJYcontiguous rows and columus.

To illustrate the implications of thcso assemldy rtIkSS on

the block definition, consider the factorizat.iml algori[llm
working on a given cliagona] block. ~\;hel] managi]lg to semi
tozero the entries in the l(u~t row(s) uf sunle Idock (marlwl
with * in Fig. 1), the algorithm will in general iilf~ct (IN,
entries of the first row(s) of the next blork. ‘1’his is ex-

actly what we want for th(, first. such entries (drnoled hy
o), Which are theplaces where results are passed hc,t,ween
blocks. However, this is umvanted for tile remainin~ el]t.ries
(marked with x). Hence, when specif’yil]g agivcn block )ve
will have to show that the factorization algorit.hill kIaJes. ill
the entries marked with x in Fig. 1, the appropria[r ~ill(](,~

required for the elimination of the next Idoc-k.

3 Gaussian Elimination with Pivoting

In this section we consicler tlnm pivot.iug strategies Ior ( ;aIIs-
sian elimination, namely Parti[(l Piuolinfl. Alin?rn[t[ )’i/’Ol-
ing. and Minintal F’iuoting with c~vctliar ,Shi,//. ‘llw rcsltltillg
algorithms will he refcmed to as G -EP. ~.~/?:1/. a) Id (~J;,tl,$.
respectively GEP is well-lo ~owtl (see also tfw ~~pt)(lldi~ :1).

.iccorcliug to Minima] Pivoting ancl hlinimai Pivoting wit II
circular Shift.. the pivot ro~v is the lowest indcwed one lmvillg
il nonzero valLle in column k. Once the piWJl I’O!Vis follll(l,

GEM SWilpS it with row k (like C;EP ): 011 t 11( 0( Ilcl Ilall (l,
GEMS brings it to position A, witlmut altcril)g 1II(, ortlor (If

the other rows ( this amounts to pd’orlnillg il (“ii’(’l]li]l’shifl
of the rows fvith indices between k and tile i])(l(,x of ( II( I]ivot
low’)

\\:e lxove here that (1 ) GENIS is itll)ermlll~ se(tlwlll ial.
ludess (he input Lnatrix is nmwiugular: (2 ) { ;H!Ll is illlwr-
cntly sequential, unless appliml to strongi~” lmlwill~lllar ma-
trices: (:3) GEP is inhere ntl~.sequential eve]] 011 st.ron~iy

nousingular matrices.

3.1 Minimal Pivoting

11’linimid Pivoting is intended to be ii wdi form of l~ivot-
ing. with the only aim at making tllr rcwlll iug ( ;iulss iall
Elimination algorithm llollflcgc,llett~tc. lNll \vil.11 ahsoln[ (dy

no guarantee of numericaf accuracy. However, the nonde-
generac!’ guarantee is sufficient to make the resulting GE
algorithm presumably very hard to parallelize.

Thersrem 3.1 The algorithms GEMS and GEM are inher-
mtly sequential on general matrices.

Proof. .According to the general framework discussed in
Section 2, we show the specific functional blocks for GEMS
ancl GEM. The reductions use the encodings O and 1 for the
boolean vahws False and True, respectively.

●

●

●

D blocks for GEMS and GEM are depicted in Fig-
ure 2. Note that the only difference is in the addi-
tional (rightmost ) column. the diagonaf blocks being
(fl~ SiUIIL’. .After 9 steps of either algorithm (on the
al~propriate matrix) we have DIO, IO = DI I, I I = a,
]] IL,1o = Dlo,ll = 0, D]o,lz = t>, ancl DII,12 = w.

A]1 .Y Mock is represented by the matrix depicted in
Figlne 3.

ll~cidl that,, in view of the rules given in Section 2,
we nlust prove that the execution of the factoriza-
t ion algorithms leaves the appropriate vafues in the
Iiist. rolv. i.e.. the ones required by the next (partially
overlapped ) block. For this reason we always add one
cohuuti to the description of the blocks. In case of
JV blocks it is easy to see that after 4 steps of ei-

ther GENIS or C+EM N5,5 contains the encoding of
NAND({(.b) while ,h’s,s still contains t!.

“1’Iw11: Mock, which applies to both GEMS and GEM,. .
is fk,l)ictcxl in Figure .3. It “connects” the (one) OUtpLlt
of a NY\ND gate to another N.kND gate. After 2 steps
of either (; EMS or GEhf wc obtain W?,? = a and
11’’.,,4= (~.

‘]’he nliltli~ .4c can be built, using O(log n ) space.
( ‘lady, t IIe ouly difficulty in generating each block stems
in the dctcrminat.ion of its position in the matrix AC. To
gcmerat c a H‘ block it is required to know the positions of
the IJVOIdocks it connects (either two :V blocks or a D and
an .V Iiock ). In t.urll. to generate a D block it is recluired
to know t.lw lmsition of the preceding .V block. Overall, the
]wol)len) is t hc efficient (i.e. log-space) computation of the
posil iotl of all the :V blocks. Now, referring to Fig. 1, it
is (,il~~, Io we tl)iit the top left entry of the IV block corre-
sl~otl(l’illX m tlw ~th N.lNf) gate of the circuit is placed at
positiml (p,, p, ). wlwre

1,, = (.s(,Y)+ l)fj +(s(il” )+ S(D) +l).f; ,

.s(. ) k t.lleorder of the referred block, and ~] and ~~ de-
tmtc tlw Ilumlm of fauont 1 and fanout 2 N.AND gates with
ill(lices wII:L]kr tlmn j. This computation can be clearly per-
fcnlliul ill O(log n) space. .issuming, that the outpld. of the
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Figure 1: Block assembly: fauout 2 h’AND ,qa(.e (MI ). ~virillg for a fanoiit 1 NAND gate (right). and wiring for a fanout 2
NAND gate (top ).

circuit, is always taken from the output of t Iw t~(h N:\ N I)
gate. the order of .4c is simply gi~en hy p,,+, ❑

The matrix .4c of Theorenl 3.1 is ck,arl~ si]lg~]li]r (hal,inx
a number of zero columns). ]ntrwsr ingl~., IIONYAW, WIICII
restricted to nonsingular matrices t lIe tJvo algoril IIIIIS il[>J)Cill.

to have quite clifTerent pro]wrt ies tvit h rw]wct Io ])illiillelislll,

Proof’. C,ivfm (the encodi[lg) of C we apply the saitI( IX YIIIG
tion as in Theorem 3.1. ol>tainil]g a singular Itlat.rix t< of

order u, We then consicler the followiug Il]atr.ix .1j. of ot(lcr

(1)

where O is tile zero matrix of order 1) a[l[l /,; is t lit, lnat rix

(of order r,) ,vith 1 on the antidia~mlal aII(l () rlsc\rlIfr[. ‘1’11[

determinant of .-1~. can he [,tL<ily prolcn (.0 IM,* 1. NloI.(v\.L,r.

the execution of GELI on i]lpul .4; lL’it\’(S tll(, (Jtl(mlitlg of
tile outpl)t of C’ in (he el]t.]j (//, //). ‘1’his (.aII l~t, S(YII I)\. (Jlk
serl, ing that the first // — I stclw of [;ljhl IIlo(lifl(w .1, (t h{

interesting I)or(ion of .4; . for \Vlli\l cormw]s ( II(I sitt](llaliotl)
in Ihc same Jva} as in th(, rwh]rtiorl of ‘I’hcore III:1. I. ‘1’0

this (-ml. (omsider step k of GEM. If column k contains a
lmnzmo rhmen( with index not, greater than v, then clearly
tile kth (linlina~.ion step modifies .4 C-exactly as in the pre-
Violis re{lilct.ion, Otherwise the pivot is taken from the row
ivirh index v + k, and the elimination steo has no effect on
.1, sinr( the piJot is the only nonzero element in row u + k,
‘1’lmn. as t IIC sole consequence of this step, row k is brought
to posit. iml v + k, tvhere it cannot affect the simulation any
Inrm ( d uc to (he structure of .4:. ). .Again this is exactly
{vlm~ happens in the prel.ious reclnction. ❑

Tl]eore]]] 3.3 f ‘ontputirig the PL [T factorization returned

Proof. :111 :Y(’2 algorithm to compute the PLU factoriza-
tion of IIolwit]gular matrices has been given by Eherlv [5],
( ;il,ct] .1, Ilollsil]glllat of order )1, let .4, denote the n x i

nlatrix l“O1.III(>cI frolll the first i columns of .4, i = 1, . , n,
If ,5’, (I(llutr’s (1](, set of indices of the lexicographically
first ttla~illli~l in(lepen(lellt subset of the rows of .4,, then
1,S,I = I, si]l(c \, Ilas fllll colum], rank. hforeover, S, ~ S,+, ,
I = 1, . . . . )1 — ] Not(, t.f]ii( the computation of all the S, is

irl .l”~’~ (SM [2]). blow. let .91 = {jl}, and, for ~.= ?, ,ra.
S,+, – .s, = {~,+ ~}. ‘Then a permutation P sudl that PT.4
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D=

a[)ll 11111(1( 11111, — 1<
1 [) () [) () (1 () (1 1) II [) ([
–1 o () {) (1 [1 (1 () () –1 u –7

–1 O (J O (J (J () () o u u ( – ,,,
–10(JUOOI)OCIU [1(1
001 0 u 1 u o 0 (1 (1 (1
o Ooloul(loo(l (1
o 0 0 0 10[)1(1(1 [1(1
o Oloooou(l(lll 11
0 oolool)l) o_]) [)
o (l Ool(llluull[l II

D=

;(,)JI 1(1[1(1[ 10 0 u
I ‘1 [1 () o () (1 u (1 0 [1 ()

–1 1 II (1 o () u (1 [1 –1 o u
–1 ~~ [1 o 0 Oouuoot
–1 ii [1 O [)00000 o 11

() (, 1 G [u 1000000

( ,) () 1 [J U1OOOOO
(1 1! () u 10010000
(1 (, 10 [)000000 u
() t] (J 1000 OU-11O
() ,) [1 o 10000000

has L(: factorization issilllpl}

P=(ti,,lfi,,l . .. l{.,,).

!vhere(. l is the it.11unit (colul ItIl) vwtot. (’learlj. OII(Y, /) lIaS

1.xw31 delermi]]ed. compllt.i]lg tlw 1.1’ far[oriza[ioll of /“”.1
can lW done in polylogarithmir parallel time Iwing knmvil
algorithms. We nolv show hy illclllct ion 01}tile rwlllnllt illtlcx
k that P is the same permutation delcrmine(l I)y (;l;\lS.
Thehasisis trivial. since~l is the index 01111( []rst IIOIIZCC(I

element in column 1 of .-i. Nlo}v, for k > 1, Irt

hethe(part,ial) factorization cotnpllted lJ\C;llhlS !Vlwlc /{A
is upper triangular with nonzero (Iiiigollitl Cl(,rl)el]ts (hincr .\

is nonsin@ar) an[t the iinit Jc,c[ols (IA+] .( I,, (,xl(MrItl

c, ],.,., ~JA to fot’111 ii Ilelliilit.tit.ic)ll Iilati. ix. (Slcar},, Jliliill)al

Pivoting ensures that lK+I < < l,,. Non. ~lt[ II(,X( I)ifw(
rolv selected by GEMS is the cnw corr(mj>oll(lin~ 10 tll( llrsl
Imnzeco element in the first collllnn of AL [Jet A’+ I <

/ $ )j ~leno(e tile i]ldex of the pilot lotv. Sincf (;altwi;il]
Ehmination does nothing l.)~lt Iill($ill” (’(lflll)illiilioll~ Il(,llvt{lt
ion+. it follol~’~ that the it)itial Illatrix .\ A+, sali~ll(,~

dc.t ((. ),l . ..\*j Llf/.,c)’ .1/+1) = ().

forau.v ,/1 E{k+l . . ..l}.all(lll(l

det (((,l{. ..![, {cl,),\ A+l)A+l) #().

‘J%is i]] turl] implies thal .>”l+I = {J I., . . ..jk.l, }. it. l.lliil

/, =]A-+,. ❑

(.’learl~. GEMS N](I (.;EAI I>ellil!,(, 111( >?1111( \Vll(l] (ml

\rith strongl! nonsingular matrirm. :Icl(lally (I)(,j. coltIplll(,
t.hc (uuiqur) J,(T fi~ctorizati on. Ivllidl is ~ltii]i]i]l(((l ({) (xis(.
fvithout l)erforlni]]< at]) ro!r ex(.lIatIg(. ll(,tIc(, l)otl I (;lU\l~

and (+ELI, as WY-II as ptail] C+IE, call II( I)la(.(tl ill K’(’ 1111{1(1
the assllmption of strong l]<~t].+itl~lll;ttily.

3.2 Partial Pivoting

il:(, Il{)\Yl)lOV(,t lliit (; EPisinherent lysequenti al onstrongly
11011.Sill&Ulill’ Illi\tl. ices. OurproofhuiMs on theoriginalp roof
ill [17]. atl(l I]cl)cc does not share the common structure of
tll((~tll(,llc[l~lctiolls in thisl>aper. Essentially we show that,
!vilh little additional effort with respect to Vavasis’ proof,
\ve call (,xhil)it. a reduction in which the matrix obtained is
S(rongi,f. IIonsing(dar. From thenumericalp oiutof view this
is ilnporlallt . since. as already relnarked in the introdllction,
forstrollgly Imnsing[dar mairices plain GE (no pivoting) is
kI]oJvn J1OI to fail.

Thm}rcIn 3.4 ‘h .s(t L = {(/, ],.4) : On input .4, GEP
tlw.s IOW i Iocli]]lillate colunln ].}, uhere A i.s strongly non-
9/)lf/tl/fl!. /$ k)<g-.~pm(o))tpktf,for P.

\\ ’llil( ire l,o>tlwt)c the technical proof of Theorem 3.4
to II]c ftlll I)iil)er, tve give an exirmple lvhich shows the way
tll{ Illi\tl’ix gifen ill [17] is nloflifid. Figure 4 depicts a
rilc(ti( f(~l.(ollll>llt.it]g the Exclllsive Or of tivo boolean values
ii]l[l III(, (()]lesl~o]lclil]~ matrix M,. obtained according to
ttle r((l{ic(io]l ill [] 7], ‘~hc matrix is nonsingular; however,
il (’illl 1)( W(JII ilIal 111(, leading Iwincil]al minor of order 2 is
>i])g(llii]. ‘l-he )lliitli~ \vt, ohtain, according toTheoren~ 3.-I,
is ,shmvl) ill I’igtlw .5. 11.call he easily seen thatourmat.rix is
stl.ollxly (lia~ol]ally (Iomiuant. hence strongly nonsingular.

4 QR decomposition through Givens’ rotations

\\[ I)ark(lack [0 0111 general franleN’ork of Section ~ and
l>I()\( t.llat (;QI{ is it]lierclltlj se(luent,ial under the most, re-
alistic nto(l(l ofali[llnletic.

Thcorolll 4.1 (~(~ti /.s !~tl)c,er~tly.~tqi,e,~trc{l onder a jimd
,/:(jl(,c//i,,r//>(,(/// rtt(,(l(-l(>fctritht~?ttic,

Pr(mf. (;01<is clearl~ ill P Imder the model considered.
\\ ’(l)lo\t(lli~( tl](o~]tl)(lt of’a fallout 2 N..lNDCVP instance

(aII I)(, r(a(l o(I (11( cIIII.j ii] position ot. J7) of the triangular
Iil(l[)l’( ’(]llll)ll (((1 l,t(i(~lloililll)~lt agi~en matrix.-Jof order
It ((l(t(lltlilt(<l a(.coc(lillg to the rule+ of Section 2). T}le
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comlmting XOR(a. b) (lcf’t.) an(l t Iic <.{>]l(,sljollclil]g [I]at rix MC arrording to Vavasis’ reduction (right).
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False and True, respectively. kl~e first (Icfitt[ (]M Iit)lrl ional
blocks for the recI/ //amkI n?od{/, tl](,ll SI II(I} t II( I>,,l]a,iot
of the algorithm in fioatin~ point wit lIIIIel i(.

●

●

●

.A D block is represcn(e,l hy tlie IIIaI ris of’ I;igtitx 6,
If a is either 1 or -1, af”tw .1 Nej,s of exa(l ( ;(/1{ !v(
gCt J9.*.4 = D57 = il. ll.i, s = D5,.i = o. /)! (, = .1’,all(l
D,,, = j}.

.After2 step ot (.+QR applie~l (0 [IN, 1>10(1<01”l;i~[ll( 7
Jve get 11‘~,? = a and 11:2,2= .r.

The .Y Mock is depicted in Figur( S. I’erforltlitlg 10
step Of (.TQR OH tl]{, n]i~t.1.1~ of 1,IX II I.(, ,X 1(,ii\, (,\ ivil II
.~l O,10= NAND((I,IJ) wld :YI(], II = I’.

.Applyin% a floating poili[ inll)ktnellt ;LIiotj 01 ( ;Qtl t I) illl)’

of the al>o~w I.>locfw leads [.0 al>l>l.oxiltl;ll.c,[f IX,S(IIIs. 1,’01. ill-

s[a]]ce, [he re]atj\,(, errol aff’eclitlg ( II(, >igt) of t 11( tnslill of”

ml .\; I>lock I’aliges froll) ii lnii)inluttl of { 10 a IIliixilllllltl of

tlIc complltalioll of XOR(a, b).

1k 011il 1}{‘ version of MATL.AB (with c, the roundofT unit,
Mll]al Io 2.220.1. 1f)– ‘(’). Clearly. for matrices simulating cir-
rilit..s lvil II l]lat]y gates, the error will in general amplify to
tn:k i( iml>o>sIl~lc. to recover the exact (i. e., 1 or —1) re-
s{ill ( “lcarl~. classical error analysis cannot help in general,
sill((, it sfloliltl I)e pcrforll~ul for afl the possible matrices
r(q wesmll ill~ .N:\Xf)CVP iustances.

oul. solil Liotl is to sligllt.ly modify the exact blocks given
af>[)i.c so ( I)a[ ( I]ey id\vays return the exact results when the
elilllitlat ion is lm~orIIId IIMler machine arithmetic. We take
A(I!anl a,s(, 01 the foilotving crucial properties of the floating
l~oitlt alitlltiletic:

1. (t+b=~l. if[b <cI(JI:

2. /.,[ < J * J is a “’machine zero”,

flerc ( is tlw rOIIII(lofl Iuli( while W,is the smallest magnitude
r(l>l,(wl)l ?11)1([Itlmlx’r. ‘lllc othel crucial fact that. helps in
011I a))ill\si> is [l)i~t cmly the values 1 and – 1 need to be
lmswl f“rOIII OIIC Mock (0 another during the elimination
( t flis ciil] fx WCII l)) cotwiderins the first rotv in each of the
(,xw’1 I)lo(’li>l.
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Figure 7: The W block for GQR.
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References\\’P show our solution for the 11’ I,lorli (tile sanl( tcd-
niqne applies to the other Mocks as \w,ll). Let m’ hc tl]c
number of bits of the mantissa for the part. imllar arithmetic
under consideration and set m = m’ + 10 ~. (;onsi{lrr the
following modified IV block:

whew we have set .r = J’”. After columns 1 aud 2 have
been eliminated we get

\vhere *ciellotesa ]larl>itrary nonzeroeutry and lt~[. [<l < CC,
forsomesrnafl constant c. Using property 1 above. afterone
more step of GQR we obtain

(** *-. *
[I**** * )

\vhere :- denotes the machine ~ersion of tile — operation.

‘1’he crucial fact is that a2’” + ~r17–L771/21(1 + ~)

:)’t–[t’1/2j , \Yhich ]s a consequence of the choice

the fact the error < is of the order of c. But then
more step of GQR we get the exact ~alnes. i.e.,

= al’” —

of l/1 and
after on(,

{
******
o***** \

\\e concluc]e olir proof I.,y addressing the linifortnil~ of the
matrix generation process. using al-gllltl(,lltssitllil;tl. to those
in Theorem :3.1, we can prove that tfw grvwraliml of [lw
matrix A, correspomfing to a circuit /in Imt lmir call IN, lxv-
fot’me(l ill 0(lo9 t/) space. ~vhere j) is tfle lllln)ber of gates in
the cirmlit C’. a

5 Open problems

The matrices arising from the redl]ctiot 1 in Sect ion J iUld the

OIIC in [11] are singular. and all tl)e attenll)(.s \ve lllil(lt~ to ex-

tend the proofs to nonsiugular matrices fi~il(,d. W’hilr the
(Ieep reasons of this state of affairs coLd(l he an int erestiug
subject per se (\vit 11possible relat.io~lshil~s \vi(h [hf. reslllts
in [1]). it clearly leaves (Is wit]] an opeu proldem. For gem
eral matrices. it \Youkl Iw interesting to kno\v 1Iw statl]s
of HQR \\,ith COIUUI1)pivoting. the algorit 1)11)of {lloi(( for
cletcrmining the rank of a matrix ill lniutice.

.+s alread~ mentioned. the resIIl(.s 01 [ his paper sIII)I)orl
t hLJbelief that t.her( is a tradeoff lwt weell Imlallelislll, {)11t Ile
u[le hand, an[l nonclegeucrac~. and ac c(lrac~,, 01] t Ile ()(Ilci,, ill
numerical a]gori t huls [4]. if:e wwpect t IIat fill’ (Ieelwr \York is
llesxied (0 either pI’O\’c such a tra(leoff 0]1 ii soli(l t l)(,[]l’f, ti(itl

grouu{l or to ?xhihir S( Ale algorithms slllwta]ltiall} lnoIe

ef[icient than the o]les adopte(l h), nunlcrical ;il]i~l}, >ts for
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A Gaussian elimination and Givens rotations

Let .4 be an n x n matrix and let a be a column vector.
i.e., an n x I matrix. The elements of.4 are denoted by a,J,

z,3 = 1,. ... n, while the elements of a are denoted bY al,
i=l, ,.. ,n.
- Thetranspose of Aisthematrix Bsuchthatbtj =a,,. B

is usually denoted by AT.
The transpose of the column vector a is the row vector

~i.e., an 1 x n matrix) a~ with the same components as a.

- A matrix Q is orthogonal when QTQ=l, where lis the
identity matrix.
- Apermutation matrix P isa matrix which is zero every-
where except for just one 1 in each row and column. .Any
permutation matrix is orthogonal.
- The LU decomposition of A is a pair of matrices, L and
U, such that L is lower triangular (i.e., 1,, = Oforj > i)
with unit diagonal elements, U is upper triangular, and .4 =
LU. For an arbitrary (even nonsingular) matrix A the LU
decomposition might not be defined. A sufficient condition
for its existence (and unicity) is that all the leading principal
minors of.4 be nonsingular.
- The PLU decomposition of A is a triple of matrices P, L,
and U such that L and U are as above, P is a permutation
matrix, and PTA = LU. The PLU decomposition is always
defined (even for singular matrices), but not unique.
- The QR decomposition of A is a pair of matrices Q and
R, such that Q is orthogonal, R is upper triangular, and
A = QR. The QR decomposition always exists.

Gaussian Elimination (GE). GE computes the LU de-
composition of .4 (whenever it exists) by determining a se-

quence of n – 1 element=y transformations iVf(~) with the

following properties (in which the a$)s are the elements of
A(k)):

In other words, the transformation A(k) = M(k)A(k -1) sends
to zero the elements in column k of A(k– 1) below the main
diagonal, leaving the already introduced zeros unchanged.
The (k+ 1)th transformation J4(k+l) is a matrix defined as
1 – ~e~, where

TT=(o,.. ,o,n+l>..., rn)

and ~i = a~~)/a~~), i = k+ 1, . . . ,n. If, for some k, u~~) = O
the algorithm fails. However, it can be proved that, if .4 is

strongly nonsingular, a$~) # O, k = 1, . . . . n.

GE with Partial pivoting (GEP). GEP computes a
PLU decomposition of A. GEP never fails. As in GE, the
matrices L and b’ are built using a sequence of elementary
transformations. However, before applying hf(~+ 1) to .4(k),
GEP determines the index h such that

choosing the ind(’x // is an exampk’ of ,0/rot/111) I/I(ItF ,1(1 ,Iml
the row // itself is called p?vof TOW

QR factorization via Givens rotations (GQR). ( ;(2R

applles to general real matrlc e>,It c’onl~ute> <i Wlll~’llM

of ~ transformations (called rotahons). ~lwll that (I,wh
transformation annihilates one element beknv the maiu f11-
agonal. leaving all the already introduced zeros unchaugell
GQR annihilates the subdiagonal part of t lw mat rix i]] the
natural order (left to right and top to bottom).

The rotation used to annihilate a selected Pntry {z,,, ot a
matrix .4 is the orthogonal matrix G, ~ defined as follo~vs:

G,,, =

1

0

0

c

1)

1) +;

+ .1

where c =
* a“d s = a’ ““(’ “i’” ““’’i”

J

verify that G, ~ is indeed orthogonal and that the entrv j. 1
of GiJ .4 is zero.

and swaps the rows k and h of A(k). If the maximum above
is O, the algorithm sets A(k+l ) = A(k). The rule used for
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