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Overview

• Goal: changing lexicographic orders of polynomial systems.

• Which systems: regular chains in positive dimension.

• Toy example:
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Many other similar implicitization examples.

• How: by a modular algorithm, reducing to perform most operations in

dimension 0.

• Tools: a few basic routines (linear algebra, Newton-Hensel lifting).



A driving example from invariant theory

Polynomials P (X1, X2) invariant under (X1, X2) 7→ (−X1,−X2), can be rewritten

in terms of:

P1 = X2
1 , P2 = X2

2 , S = X1X2.

To rewrite an invariant polynomial, obtaining the expressions of X1 and X2 in terms

of P1, P2, S is relevant.

This is done by changing the order in the input system.

Initial order : Target order :

P1 > P2 > S > X1 > X2 X2 > X1 > S > P1 > P2

P1 −X2
1

P2 −X2
2

S −X1X2

Change of
−−−−−−→

order

SX2 − P1X1

X1
2 − P1

S2 − P1P2



More examples: implicitization, ranking conversions

• For R = x > y > z > s > t and R = t > s > z > y > x we have:

convert(
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• For R = · · · > vxx > vxy > · · · > uxy > uyy > vx > vy > ux > uy > v > u and

R = · · ·ux > uy > u > · · · > vxx > vxy > vyy > vx > vy > v we have:
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Regular chains (1/2)

Consider ordered variables X = X1 > · · · > Xn.

Let C = C1, . . . , Cs be in k[X], with main variables Xℓ1 < · · · < Xℓs .

For i ≤ s, the initial hi is the leading coefficient of Ci in Xℓi .

The saturated ideal is Sati(C) = (C1, . . . , Ci) : (h1 . . . hi)
∞.

C is a regular chain if hi is regular mod Sati(C) for all i.

The quasi-component W (C) := V (C) \ V (h1 · · ·hℓs) satisfies W (C) = V (Satn(C)).

The algebraic variables are those which appear as main variables. The other ones are

free.

Example

C2 = (X1 +X2)X3
2 +X3 + 1

C1 = X1
2 + 1.

, with
mvar(C2) = X3

mvar(C1) = X1

.



Regular chains (1/2)

Consider ordered variables X = X1 > · · · > Xn.

Let C = C1, . . . , Cs be in k[X], with main variables Xℓ1 < · · · < Xℓs .

For i ≤ s, the initial hi is the leading coefficient of Ci in Xℓi .

The saturated ideal is Sati(C) = (C1, . . . , Ci) : (h1 . . . hi)
∞.

C is a regular chain if hi is regular mod Sati(C) for all i.

The quasi-component W (C) := V (C) \ V (h1 · · ·hℓs) satisfies W (C) = V (Satn(C)).

The algebraic variables are those which appear as main variables. The other ones are

free.

Example

C2 = (X1 +X2)X
2
3 +X3 + 1

C1 = X2
1 + 1.

, with init(C2) = h2 = X1 +X2



Regular chains (1/2)

Consider ordered variables X = X1 > · · · > Xn.

Let C = C1, . . . , Cs be in k[X], with main variables Xℓ1 < · · · < Xℓs .

For i ≤ s, the initial hi is the leading coefficient of Ci in Xℓi .

The saturated ideal is Sati(C) = (C1, . . . , Ci) : (h1 . . . hi)
∞.

C is a regular chain if hi is regular mod Sati(C) for all i.

The quasi-component W (C) := V (C) \ V (h1 · · ·hℓs) satisfies W (C) = V (Satn(C)).

The algebraic variables are those which appear as main variables. The other ones are

free.

Example

C2 = (X1 +X2)X
2
3 +X3 + 1

C1 = X2
1 + 1.

,
Sat1(C1, C2) = (C1) : h1 = (C1)

Sat2(C1, C2) = (C1, C2) : (X1 +X2)
∞



Regular chains (1/2)

Consider ordered variables X = X1 > · · · > Xn.

Let C = C1, . . . , Cs be in k[X], with main variables Xℓ1 < · · · < Xℓs .

For i ≤ s, the initial hi is the leading coefficient of Ci in Xℓi .

The saturated ideal is Sati(C) = (C1, . . . , Ci) : (h1 . . . hi)
∞.

C is a regular chain if hi is regular mod Sati(C) for all i.

The quasi-component W (C) := V (C) \ V (h1 · · ·hℓs) satisfies W (C) = V (Satn(C)).

The algebraic variables are those which appear as main variables. The other ones are

free.

Example

C2 = (X1 +X2)X
2
3 +X3 + 1

C1 = X2
1 + 1.

,
h2 = X1 +X2 is not a zero− divisor

in k[X1, X2]/(X
2
1 + 1).



Regular chains (1/2)

Consider ordered variables X = X1 > · · · > Xn.

Let C = C1, . . . , Cs be in k[X], with main variables Xℓ1 < · · · < Xℓs .

For i ≤ s, the initial hi is the leading coefficient of Ci in Xℓi .

The saturated ideal is Sati(C) = (C1, . . . , Ci) : (h1 . . . hi)
∞.

C is a regular chain if hi is regular mod Sati(C) for all i.

The quasi-component W (C) := V (C)\V (h1 · · ·hℓs) satisfies W (C) = V (Satn(C)).

The algebraic variables are those which appear as main variables. The other ones are

free.

Example

C2 = (X1 +X2)X
2
3 +X3 + 1

C1 = X2
1 + 1.

, W (C) = V (C) \ V (X1 +X2).



Regular chains (1/2)

Consider ordered variables X = X1 > · · · > Xn.

Let C = C1, . . . , Cs be in k[X], with main variables Xℓ1 < · · · < Xℓs .

For i ≤ s, the initial hi is the leading coefficient of Ci in Xℓi .

The saturated ideal is Sati(C) = (C1, . . . , Ci) : (h1 . . . hi)
∞.

C is a regular chain if hi is regular mod Sati(C) for all i.

The quasi-component W (C) := V (C) \ V (h1 · · ·hℓs) satisfies W (C) = V (Satn(C)).

The algebraic variables are those which appear as main variables. The other ones

are free.

Example

C2 = (X1 +X2)X
2
3 +X3 + 1

C1 = X2
1 + 1.

, X1, X3 are algebraic, X2 is free.



Regular chains (2/2)

The regular chains are simple data structures, well-suited to describe the generic

points of varieties of positive dimension.

In positive dimension, lexicographic Gröbner bases become complicated to under-

stand. Modular algorithms become harder to design.

References:

• Lazard. A new method for solving... (1991)

• Kalkbrener. Generalized Euclidean algorithm... (1993)

• Moreno Maza. On triangular decompositions... (2000)

• Lemaire - Moreno Maza - Xie. The RegularChains library. (2005)



Specialization and lift paradigm (1/2)

Technique relying on the Hensel lifting (p-adic lifting), or the Newton operator

(variables lifting, like in this work).

Principle:

• Specialize the free variables at a generic point † . . .

• reach dimension 0 where the main computations are done (for a lower cost) . . .

• and finally use Newton-Hensel techniques to recover the free variables (move up

again to positive dimension).

† the non-generic point are in a closed subset of the variety. The conditions defining

this closed set depend on the problem considered.

Many previous versions (for gcd, factorization, Gröbner bases, . . . ) Our approach

follows Giusti et al., Schost, and Dahan et al.



Specialization and lift paradigm (2/2)

Regular chain of

dimension > 0 for an

initial order

Regular chain for the

target order, with

the same solutions

Specialization of vari-

ables (go to dim. 0)

��

Newton-Hensel lifting

(back to dim > 0)

OO

Regular chain in di-

mension zero

Changes

of order in

dimension 0

// Regular chain with a

new order



Main algorithm

Main problem:
algebraic/free variables for

the initial order
6=

algebraic/free variables for

the target order

Need to swap some free variables and algebraic ones.

To do this by staying close to dimension 0, we need to perform several times the

following loop:

• change of order in dimension 0.

• lift a relevant variable vi (go to dimension 1)

• specialize another variable wi (back to dimension 0)

Problem: Find the sequence of couples of variables (vi, wi) to specialize and to lift.

Solution: Linearization of the problem through the tangent space of a generic point.



The algorithm on the example

Initial order : Target order :

P1 > P2 > S > X1 > X2 X2 > X1 > S > P1 > P2

P1 −X2
1

P2 −X2
2

S −X1X2

Change of
−−−−−−→

order

SX2 − P1X1

X1
2 − P1

S2 − P1P2

Algebraic variables : Algebraic variables :

P1 > P2 > S X2 > X1 > S

• Step 1 (more details later): determine that we will exchange (X2, P2) and

(X1, P1).

• Step 1.5: Specialize the free variables at (1, 1).

• Step 2: do the work in dimension 0 and 1.

• Step 3: move up to dimension 2.
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Finding what variables to exchange (1/2)

Let M be the set of all possible choices for the algebraic variables

• We know one element minit in M : those corresponding to the input regular

chain.

• There is an mfinal that corresponds to the output regular chain.

• We want to find a sequence

minit = m0 → m1 → · · · → mN = mfinal

where mi and mi+1 differ only by one entry.



Finding what variables to exchange (2/2)

Let C = C1, . . . , Cs be the input regular chain.

Prop. A set of s variables is in M if and only if the corresponding submatrix of

the Jacobian of C has full rank.

Prop. The set mfinal is the maximal element in M for a lexicographic order

induced by the target order on the variables.

Prop. The set mfinal can be computed by a greedy algorithm which relies only

on testing appartenance to M .

Technically, all these propositions require that C defines a prime saturated ideal. All

proofs then use the fact that M defines a matroid.



In dimension 0

Easier problem, which mainly reduces to suitable linear algebra operations.

0. Gröbner basis computation

• Bucherberger

• Faugère

1. Change of order for Gröbner bases

• FGLM

• Gröbner Walk

2. Specialized algorithms

• Pardi

• Dı́az Toca / González Vega - Pascal / Schost



Work involved

Step 1. Determining the variables to exchange.

• Linear algebra modulo a zero-dimensional regular chain.

Step 2. Work in dimension 0 / 1

• Newton-Hensel lifting:

– operations modulo a regular chain . . .

– . . . with power series coefficients and

– univariate rational function reconstruction

Step 3. Lifting all free variables.

• Newton-Hensel lifting with multivariate power series coefficients.

• Rational reconstruction of multivariate functions.



Complexity results

Let C be a regular chain whose saturated ideal is prime.

Theorem 1. There exists a probabilistic algorithm, of complexity polynomial in

the following quantities:

• the number of variables n
• complexity of evaluation of the inputs
• degree of the quasi-component W (C)
o number of monomials with n variables in the degree of the output

Theorem 2. Let d the maximum degree of the input, n the number of variables,

if all the random values are made uniformly in a finite set Γ, then the probability

of failure is at most:
2n(3dn + n2)d2n

|Γ|
.



Conclusion and future work

A simple modular algorithm for changing of order in positive dimension.

Complexity study, estimation of probability of success.

Implementation submitted for Maple 11 integration.

Todo:

• remove the primality assumption;

• improve the code

– Newton-Hensel lifting in several variables

– rational reconstruction in several variables

– use alternative normalization for the output to decrease the coefficient size


