# A Standard Basis Free Algorithm for Computing the Tangent Cones of a Space Curve

Parisa Alvandi<sup>1</sup> Marc Moreno Maza<sup>1</sup> Éric Schost<sup>1</sup> Paul Vrbik<sup>2</sup>

<sup>1</sup>University of Western Ontario, Canada <sup>2</sup>University of Newcastle, Australia

> CASC @ Aachen 14-18 September 2015

# Plan

### 1 Intersection Multiplicities via Regular Chains

- 2 Reducing from dim n to dim n 1: using transversality
- 3 Tangent Cone via Limit Computation
- 4 Limit Points of a Quasi-Component
- 5 Tangent Cone via Regular Chains

> 
$$Fs := [(x^2 + y^2)^2 + 3x^2y - y^3, (x^2 + y^2)^3 - 4x^2y^2]:$$
  
> plots[implicitplot](Fs,x=-2..2,y=-2..2);



> R := PolynomialRing([x, y], 101):> rcs := Triangularzie(Fs, R, normalized = 'yes'):> seq (TriangularizeWithMultiplicity(Fs, T, R), T in rcs):  $\begin{bmatrix} 1, \begin{cases} x-1=0\\ y+14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x+1=0\\ y+14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x-47=0\\ y-14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x+47=0\\ y-14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 14, \begin{cases} x=0\\ y=0 \end{bmatrix} \end{bmatrix}$ 

3 / 39

> 
$$Fs := [x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1]$$
:  
>  $R := PolynomialRing([x, y, z], 101)$ :  
> TriangularizeWithMultiplicity( $Fs, R$ ):

$$\begin{bmatrix} \begin{bmatrix} x - z = 0 \\ y - z = 0 \\ z^2 + 2z - 1 = 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 2, \begin{cases} x = 0 \\ y = 0 \\ z - 1 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 2, \begin{cases} x = 0 \\ y - 1 = 0 \\ z = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 2, \begin{cases} x - 1 = 0 \\ y = 0 \\ z = 0 \end{bmatrix} \end{bmatrix}$$

## TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity:

Input  $f_1, \ldots, f_n \in \mathbf{k}[x_1, \ldots, x_n]$  such that  $V(f_1, \ldots, f_n)$  is zero-dimensional.

Output Finitely many pairs  $[(T_1, m_1), \ldots, (T_\ell, m_\ell)]$  where  $T_1, \ldots, T_\ell$ are regular chains of  $\mathbf{k}[x_1, \ldots, x_n]$  such that for all  $p \in V(T_i)$  $I(p; f_1, \ldots, f_n) = m_i$  and  $V(f_1, \ldots, f_n) = V(T_1) \uplus \cdots \uplus V(T_\ell)$ .

TriangularizeWithMultiplicity works as follows

- Apply Triangularize on  $f_1, \ldots, f_n$ ,
- **2** Apply  $IM_n(T; f_1, \ldots, f_n)$  on each regular chain T.

 $\mathsf{IM}_n(T; f_1, \ldots, f_n)$  works as follows

- if n = 2 apply Fulton's algorithm extended for working at a regular chains instead of a point (S. Marcus, M., P. Vrbik; CASC 2013),
- 2 if n > 2 attempt a reduction from dimension n to n 1.

# Plan

### Intersection Multiplicities via Regular Chains

### 2 Reducing from dim n to dim n-1: using transversality

#### 3 Tangent Cone via Limit Computation

4 Limit Points of a Quasi-Component



# Reducing from dim n to dim n-1: using transversality (1/2)

#### Definition

The intersection multiplicity of p in  $V(f_1, \ldots, f_n)$  is given by  $I(p; f_1, \ldots, f_n) := \dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$ . where  $\mathcal{O}_{\mathbb{A}^n, p}$  and  $\dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$  are respectively the local ring at the point p and the dimension of the vector space  $\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle$ .

The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that  $f_n$  does not contribute to  $I(p; f_1, \ldots, f_n)$ .

# Reducing from dim n to dim n-1: using transversality (1/2)

### Definition

The intersection multiplicity of p in  $V(f_1, \ldots, f_n)$  is given by  $I(p; f_1, \ldots, f_n) := \dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$ . where  $\mathcal{O}_{\mathbb{A}^n, p}$  and  $\dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$  are respectively the local ring at the point p and the dimension of the vector space  $\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle$ .

The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that  $f_n$  does not contribute to  $I(p; f_1, \ldots, f_n)$ .

#### Theorem 1

Assume that  $h_n = V(f_n)$  is non-singular at p. Let  $v_n$  be its tangent hyperplane at p. Assume that  $h_n$  meets each component (through p) of the curve  $C = V(f_1, \ldots, f_{n-1})$  transversely (that is, the tangent cone  $TC_p(C)$  intersects  $v_n$  only at the point p). Let  $h \in k[x_1, \ldots, x_n]$  be the degree 1 polynomial defining  $v_n$ . Then, we have

 $I(p; f_1, \ldots, f_n) = I(p; f_1, \ldots, f_{n-1}, h).$ 

# Reducing from dim n to dim n-1: using transversality (2/2)

The theorem again:

#### Theorem

Assume that  $h_n = V(f_n)$  is non-singular at p. Let  $v_n$  be its tangent hyperplane at p. Assume that  $h_n$  meets each component (through p) of the curve  $C = V(f_1, \ldots, f_{n-1})$  transversely (that is, the tangent cone  $TC_p(C)$  intersects  $v_n$  only at the point p). Let  $h \in k[x_1, \ldots, x_n]$  be the degree 1 polynomial defining  $v_n$ . Then, we have  $l(p; f_1, \ldots, f_n) = l(p; f_1, \ldots, f_{n-1}, h)$ .

#### How to use this theorem in practise?

Assume that the coefficient of  $x_n$  in h is non-zero, thus  $h = x_n - h'$ , where  $h' \in k[x_1, \ldots, x_{n-1}]$ . Hence, we can rewrite the ideal  $\langle f_1, \ldots, f_{n-1}, h \rangle$  as  $\langle g_1, \ldots, g_{n-1}, h \rangle$  where  $g_i$  is obtained from  $f_i$  by substituting  $x_n$  with h'. Then, we have

 $I(p; f_1, \ldots, f_n) = I(p|_{x_1, \ldots, x_{n-1}}; g_1, \ldots, g_{n-1}).$ 

# Reducing from dim n to dim n - 1: a simple case (1/3)

### Example

Consider the system

$$f_1 = x, f_2 = x + y^2 - z^2, f_3 := y - z^3$$

near the origin  $o := (0,0,0) \in V(f_1,f_2,f_3)$ 



# Reducing from dim n to dim n - 1: a simple case (2/3)

#### Example

Recall the system

$$f_1 = x$$
,  $f_2 = x + y^2 - z^2$ ,  $f_3 := y - z^3$ 

near the origin  $o := (0, 0, 0) \in V(f_1, f_2, f_3)$ .

#### Computing the IM using the definition

Let us compute a basis for  $\mathcal{O}_{\mathbb{A}^3,o}/\langle f_1, f_2, f_3 \rangle$  as a vector space over  $\overline{k}$ . Setting x = 0 and  $y = z^3$ , we must have  $z^2(z^4 + 1) = 0$  in  $\mathcal{O}_{\mathbb{A}^3,o} = \overline{k}[x,y,z]_{(z,y,z)}$ . Since  $z^4 + 1$  is a unit in this local ring, we see that

$$\mathcal{O}_{\mathbb{A}^{3},o}/\left\langle \mathit{f}_{1},\mathit{f}_{2},\mathit{f}_{3}
ight
angle =\left\langle 1,z
ight
angle$$

as a vector space, so  $I(o; f_1, f_2, f_3) = 2$ .

# Reducing from dim n to dim n - 1: a simple case (3/3)

3

#### Example

Recall the system again  

$$f_1 = x, f_2 = x + y^2 - z^2, f_3 := y - z$$
  
near the origin  $o := (0, 0, 0) \in V(f_1, f_2, f_3).$ 

### Computing the IM using the reduction

We have

$$\mathcal{C} := V(x, x+y^2-z^2) = V(x, (y-z)(y+z)) = TC_o(\mathcal{C})$$

and we have

h = y.

Thus C and  $V(f_3)$  intersect transversally at the origin. Therefore, we have  $I_3(p; f_1, f_2, f_3) = I_2((0, 0); x, x - z^2) = 2.$ 

# Reducing from dim *n* to dim n - 1: via cylindrification (1/3)

In practise, this reduction from n to n-1 variables does not always apply. For instance, this is the case for *Ojika 2*:

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$



Figure: The real points of  $V(x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1)$ .

## Reducing from dim *n* to dim n - 1: via cylindrification (2/3)

Recall the system

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$

If one uses the first equation, that is  $x^2 + y + z - 1 = 0$ , to eliminate z from the other two, we obtain two bivariate polynomials  $f, g \in k[x, y]$ .



Figure: The real points of  $V(x^2 + y + z - 1, x + y^2 - x^2 - y, x - y + x^4 + 2x^2y - 2x^2 + y^2)$  near the origin.

# Reducing from dim *n* to dim n - 1: via cylindrification (3/3)

At any point of  $p \in V(h, f, g)$  the tangent cone of the curve V(f, g) is independent of z; in some sense it is "vertical". On the other hand, at any point of  $p \in V(h, f, g)$  the tangent space of V(h) is not vertical.

Thus, the previous theorem applies without computing any tangent cones.



Figure: The real points of  $V(x^2 + y + z - 1, x + y^2 - x^2 - y, x - y + x^4 + 2x^2y - 2x^2 + y^2)$  near the origin.

# Plan

### 1 Intersection Multiplicities via Regular Chains

### 2 Reducing from dim n to dim n - 1: using transversality

### 3 Tangent Cone via Limit Computation

4 Limit Points of a Quasi-Component



## Tangent cones and tangent spaces

#### Tangent space

Let  $F \subset k[x_1, \ldots, x_n]$  and  $p \in V(F)$ . The tangent space of V := V(F) at p is the algebraic set given by

$$T_p(V) := V(\{ \mathbf{d}_p(f) : f \in \mathbf{I}(V)\})$$

where  $\mathbf{d}_p(f)$  is the linear part of f at p, that is, the affine form  $\frac{\partial f}{\partial x_1}(p)(x_1 - p_1) + \cdots + \frac{\partial f}{\partial x_n}(p)(x_n - p_n)$ .

#### Tangent cone

The tangent cone of V := V(F) at p is the algebraic set given by

$$TC_{p}(V) = V(\{ \operatorname{HC}_{p}(f; \min) : f \in I(V) \}$$

where  $\operatorname{HC}_p(f; \min)$  is the homogeneous component of least degree of f in x - p. If V is a curve, then  $TC_p(V)$  consists of finitely many lines, all intersecting at p.

## Tangent cone: a basic example



The tangent cone of V(h) for  $h = y^2 - x^2(x+1) \in \mathbb{C}[x, y]$  is V((y-x)(y+x)).

#### Previous works

One can compute the ideal  $\langle \operatorname{HC}_{p}(f; \min) : f \in I(V) \rangle$  by means of standard bases (F. Mora 1982) or Grönber bases (T. Mora, G. Pfister & C. Traverso; 1992).

We are going to take a different route and rely on:

Theorem (Chapter 9 in (D. Cox, J. Little, & D. O'Shea; 1992))

A line L through p lies in the tangent cone  $TC_p(V)$  if and only if there exists a sequence  $(q_k, k \in \mathbb{N})$  of points on  $V \setminus \{p\}$  converging to p and such that the secant line  $L_k$  containing p and  $q_k$  becomes L when  $q_k$  approaches p.

## Tangent cone computation via tangent spaces



Assume  $\overline{k} = \mathbb{C}$  and none of the  $V(f_i)$  is singular at p. For each component  $\mathcal{G}$  through p of  $\mathcal{C} = V(f_1, \ldots, f_{n-1})$ ,

- There exists a neighborhood B of p such that  $V(f_i)$  is not singular at all  $q \in (B \cap G) \setminus \{p\}$ , for i = 1, ..., n 1.
- Let  $v_i(q)$  be the tangent hyperplane of  $V(f_i)$  at q. Regard  $v_1(q) \cap \cdots \cap v_{n-1}(q)$  as a parametric variety with q as parameter.
- Then,  $TC_p(\mathcal{G}) = v_1(q) \cap \cdots \cap v_{n-1}(q)$  when q approaches p.
- Finally,  $TC_p(\mathcal{C})$  is the union of all  $TC_p(\mathcal{G})$ . This approach avoids standard basis computation and extends for working with V(T) instead of p.

But how to compute the limit of  $v_1(q) \cap \cdots \cap v_{n-1}(q)$  when approaches p?

# Plan

### 1 Intersection Multiplicities via Regular Chains

2 Reducing from dim n to dim n - 1: using transversality

### 3 Tangent Cone via Limit Computation

4 Limit Points of a Quasi-Component



# Limit points of a quasi-component

#### Input

- Let  $R \subset \mathbb{C}[X_1, \ldots, X_s]$  be a regular chain.
- Let  $h_R$  be the product of initials of polynomials of R.
- Let W(R) be the quasi-component of R, that is  $V(R) \setminus V(h_R)$ .

#### Desired output

The non-trivial limit points of W(R), that is

$$\lim(W(R)) := \overline{W(R)}^Z \setminus W(R).$$

# Puiseux expansions of a regular chain

### Notation

- Let  $R := \{r_1(X_1, X_2), \dots, r_{s-1}(X_1, \dots, X_s)\} \subset \mathbb{C}[X_1 < \dots < X_s]$  be a 1-dim regular chain.
- Assume R is strongly normalized, that is,  $\operatorname{init}(R) \in \mathbb{C}[X_1]$ .
- Let  $\mathbf{k} = \mathbb{C}(\langle X_1^* \rangle).$
- Then R generates a zero-dimensional ideal in  $\mathbf{k}[X_2, \ldots, X_s]$ .
- Let  $V^*(R)$  be the zero set of R in  $\mathbf{k}^{s-1}$ .

### Definition

We call Puiseux expansions of R the elements of  $V^*(R)$ .

### Remarks

- The strongly normalized assumption is only for presentation ease.
- The 1-dim assumption is, however, harder to relax.
- One could think of generalizations of Puiseux expanions using Jung-Abhyankar theorem. More on this tomorrow and slater.

## An example

## A regular chain R

$$R := \begin{cases} X_1 X_3^2 + X_2 \\ X_1 X_2^2 + X_2 + X_1 \end{cases}$$

## Puiseux expansions of R

$$\begin{cases} X_3 = 1 + O(X_1^2) \\ X_2 = -X_1 + O(X_1^2) \end{cases} \begin{cases} X_3 = -1 + O(X_1^2) \\ X_2 = -X_1 + O(X_1^2) \end{cases} \begin{cases} X_3 = -X_1 + O(X_1^2) \\ X_2 = -X_1^{-1} + X_1 + O(X_1^2) \end{cases} \begin{cases} X_3 = -X_1^{-1} + \frac{1}{2}X_1 + O(X_1^2) \\ X_2 = -X_1^{-1} + X_1 + O(X_1^2) \end{cases} \begin{cases} X_2 = -X_1^{-1} + X_1 + O(X_1^2) \end{cases}$$

# Relation between $\lim_{0}(W(R))$ and Puiseux expansions of R

#### Theorem

For 
$$W \subseteq \mathbb{C}^s$$
, denote  
 $\lim_{0}(W) := \{x = (x_1, \dots, x_s) \in \mathbb{C}^s \mid x \in \lim(W) \text{ and } x_1 = 0\},\$   
and define  
 $V^*_{\geq 0}(R) := \{\Phi = (\Phi^1, \dots, \Phi^{s-1}) \in V^*(R) \mid \operatorname{ord}(\Phi^j) \geq 0, j = 1, \dots, s-1\}.\$   
Then we have

$$\lim_{0}(W(R)) = \cup_{\Phi \in V^*_{\geq 0}(R)}\{(X_1 = 0, \Phi(X_1 = 0))\}.$$

$$V_{\geq 0}^{*}(R) := \begin{cases} X_{3} = 1 + O(X_{1}^{2}) \\ X_{2} = -X_{1} + O(X_{1}^{2}) \\ \end{bmatrix} \cup \begin{cases} X_{3} = -1 + O(X_{1}^{2}) \\ X_{2} = -X_{1} + O(X_{1}^{2}) \\ \end{bmatrix} \\ X_{2} = -X_{1} + O(X_{1}^{2}) \\ \end{bmatrix}$$
  
Thus the limit ponts are  $\lim_{0 \to \infty} (W(R)) = \{(0, 0, 1), (0, 0, -1)\}.$ 

# Limit points of a quasi-component

> with(AlgebraicGeometryTools):  
> R := PolynomialRing([x, y, t]);   
> F := [t\*y^2 + y + 1, (t + 2)\*t\*x^2 + (y +1)\* (x + 1)];  
> C := Chain(F, Empty(R), R);  
> lm := LimitPoints(C, R, false, true);  
> Display(lm, R);  
$$R := polynomial_ring$$
$$F := [ty^2 + y + 1, (t+2) tx^2 + (y+1) (x+1)]$$
$$C := regular_chain$$
$$lm := [regular_chain, regular_chain, regular_chain, regular_chain]$$
$$lm := [regular_chain, regular_chain]$$
$$lm := [regular_chain]$$

# Plan

### 1 Intersection Multiplicities via Regular Chains

- 2 Reducing from dim n to dim n 1: using transversality
- 3 Tangent Cone via Limit Computation
- 4 Limit Points of a Quasi-Component



### Algorithm principle

- Recall  $\langle f_1, \ldots, f_{n-1}, f_n \rangle$  is zero-dimensional.
- We want  $TC_p(\mathcal{C})$  for  $p \in V(f_1, \ldots, f_{n-1}, f_n)$  and  $\mathcal{C} := V(f_1, \ldots, f_{n-1})$ .
- Let  $m(x_1, \ldots, x_n)$  be a point on the curve C.
- Let  $\vec{u}$  be a unit vector directing the line (pm).
- The set  $\{\lim_{m\to p, m\neq p} \vec{u}\}$  describes  $TC_p(\mathcal{C})$ .

## Step 1

• Let *T* be a 0-dim regular chain defining the point *p*; rename its variables to *y*<sub>1</sub>,..., *y*<sub>n</sub>.

### Algorithm principle

- Recall  $\langle f_1, \ldots, f_{n-1}, f_n \rangle$  is zero-dimensional.
- We want  $TC_p(\mathcal{C})$  for  $p \in V(f_1, \ldots, f_{n-1}, f_n)$  and  $\mathcal{C} := V(f_1, \ldots, f_{n-1})$ .
- Let  $m(x_1, \ldots, x_n)$  be a point on the curve C.
- Let  $\vec{u}$  be a unit vector directing the line (pm).
- The set  $\{\lim_{m\to p, m\neq p} \vec{u}\}$  describes  $TC_p(\mathcal{C})$ .

- Let *T* be a 0-dim regular chain defining the point *p*; rename its variables to *y*<sub>1</sub>,..., *y*<sub>n</sub>.
- Consider the polynomial system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .

### Algorithm principle

- Recall  $\langle f_1, \ldots, f_{n-1}, f_n \rangle$  is zero-dimensional.
- We want  $TC_p(\mathcal{C})$  for  $p \in V(f_1, \ldots, f_{n-1}, f_n)$  and  $\mathcal{C} := V(f_1, \ldots, f_{n-1})$ .
- Let  $m(x_1, \ldots, x_n)$  be a point on the curve C.
- Let  $\vec{u}$  be a unit vector directing the line (pm).
- The set  $\{\lim_{m\to p, m\neq p} \vec{u}\}$  describes  $TC_p(\mathcal{C})$ .

- Let *T* be a 0-dim regular chain defining the point *p*; rename its variables to *y*<sub>1</sub>,..., *y*<sub>n</sub>.
- Consider the polynomial system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- This is a 1-dim system in the variables  $y_1, \ldots, y_n, x_1, \ldots, x_n$ .

### Algorithm principle

- Recall  $\langle f_1, \ldots, f_{n-1}, f_n \rangle$  is zero-dimensional.
- We want  $TC_p(\mathcal{C})$  for  $p \in V(f_1, \ldots, f_{n-1}, f_n)$  and  $\mathcal{C} := V(f_1, \ldots, f_{n-1})$ .
- Let  $m(x_1, \ldots, x_n)$  be a point on the curve C.
- Let  $\vec{u}$  be a unit vector directing the line (pm).
- The set  $\{\lim_{m\to p, m\neq p} \vec{u}\}$  describes  $TC_p(\mathcal{C})$ .

- Let *T* be a 0-dim regular chain defining the point *p*; rename its variables to *y*<sub>1</sub>,..., *y*<sub>n</sub>.
- Consider the polynomial system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- This is a 1-dim system in the variables  $y_1, \ldots, y_n, x_1, \ldots, x_n$ .
- Let  $R_1, \ldots, R_e$  be regular chains decomposing the zero set V of (S).

### Recall

- The set  $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$  describes  $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- Let  $R_1, \ldots, R_e$  be regular chains decomposing the zero set V of (S).

## Step 2

• We divide each component of  $p \vec{m}$  by  $x_1 - y_1$ . This works only if  $x_1 - y_1$  vanishes finitely many times in V.

### Recall

- The set  $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$  describes  $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- Let  $R_1, \ldots, R_e$  be regular chains decomposing the zero set V of (S).

- We divide each component of  $p \vec{m}$  by  $x_1 y_1$ . This works only if  $x_1 y_1$  vanishes finitely many times in V.
- Fix i = 1 · · · e. If x₁ − y₁ is regular modulo the saturated ideal of R<sub>i</sub>, then each compliant of p m can be divided by x₁ − y₁.

### Recall

- The set  $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$  describes  $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- Let  $R_1, \ldots, R_e$  be regular chains decomposing the zero set V of (S).

- We divide each component of  $p \vec{m}$  by  $x_1 y_1$ . This works only if  $x_1 y_1$  vanishes finitely many times in V.
- Fix  $i = 1 \cdots e$ . If  $x_1 y_1$  is regular modulo the saturated ideal of  $R_i$ , then each compliant of  $\vec{pm}$  can be divided by  $x_1 y_1$ .
- Assume  $x_1 y_1$  is regular modulo the saturated ideal of  $R_i$ . Define  $s_i = \frac{x_i y_i}{x_1 y_1}$ . We have  $\vec{u} = (1, s_2, \dots, s_n)$ .

### Recall

- The set  $\{\lim_{m\to\rho,m\neq\rho} \vec{u}\}$  describes  $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- Let  $R_1, \ldots, R_e$  be regular chains decomposing the zero set V of (S).

- We divide each component of  $p \vec{m}$  by  $x_1 y_1$ . This works only if  $x_1 y_1$  vanishes finitely many times in V.
- Fix  $i = 1 \cdots e$ . If  $x_1 y_1$  is regular modulo the saturated ideal of  $R_i$ , then each compliant of  $\vec{pm}$  can be divided by  $x_1 y_1$ .
- Assume  $x_1 y_1$  is regular modulo the saturated ideal of  $R_i$ . Define  $s_i = \frac{x_i y_i}{x_1 y_1}$ . We have  $\vec{u} = (1, s_2, \dots, s_n)$ .
- Let  $s_2, \ldots, s_n$  be variables; extend  $R_j$  with the polynomials  $s_2(x_1 y_1) (x_2 y_2), \ldots, s_n(x_1 y_1) (x_n y_n)$  to a chain  $S_j$ .

### Recall

- The set  $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$  describes  $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and  $f_1 = \cdots = f_{n-1} = 0$ .
- Let  $R_1, \ldots, R_e$  be regular chains decomposing the zero set V of (S).

- We divide each component of  $p \vec{m}$  by  $x_1 y_1$ . This works only if  $x_1 y_1$  vanishes finitely many times in V.
- Fix  $i = 1 \cdots e$ . If  $x_1 y_1$  is regular modulo the saturated ideal of  $R_i$ , then each compliant of  $\vec{pm}$  can be divided by  $x_1 y_1$ .
- Assume  $x_1 y_1$  is regular modulo the saturated ideal of  $R_i$ . Define  $s_i = \frac{x_i y_i}{x_1 y_1}$ . We have  $\vec{u} = (1, s_2, \dots, s_n)$ .
- Let  $s_2, \ldots, s_n$  be variables; extend  $R_j$  with the polynomials  $s_2(x_1 y_1) (x_2 y_2), \ldots, s_n(x_1 y_1) (x_n y_n)$  to a chain  $S_j$ .
- Finally  $\{\lim_{m\to p, m\neq p} \vec{u}\}$  is given by the limit points of the  $S_j$ 's, that is, the sets  $\overline{W(S_j)} \setminus W(S_j)$ .

# Example

$$\begin{array}{l} \hline R & \coloneqq PolynomialRing([x, y, z]^{\mathbb{N}}):\\ F & \coloneqq [x^{2} + y^{2} + z^{2} - 1, x^{2} - y^{2} - z^{*}(z-1)];\\ rc & \coloneqq Chain([z-1, y, x], Empty(R), R);\\ F & \coloneqq [x^{2} + y^{2} + z^{2} - 1, x^{2} - y^{2} - z(z-1)]\\ rc & \coloneqq regular\_chain \end{array}$$

#### > with (AlgebraicGeometryTools); [Cylindrify, IntersectionMultiplicity, IsTransverse, LimitPoints, RootOfToRegularChain, Tang TangentPlane, TriangularizeWithMultiplicity]

> cases := TangentCone(rc, F, R);

# Summary

#### Theorem

Consider a one-dimensional regular chain  $R_1$  solving the system  $f_1(x_1, \ldots, x_n) = \cdots = f_{n-1}(x_1, \ldots, x_n) = 0$  at a point  $p(y_1, \ldots, y_n)$  given by a zero-dimensional T such that  $V(T) \subseteq V(f_1, \ldots, f_n)$ . W.o.l.g.  $x_1 - y_1$ is regular modulo  $sat(R_i)$ . Then, each line of  $TC_p(C)$  not contained in the hyperplane  $x_1 = y_1$  has his slopes  $s_2, \ldots, s_n$  obtained by lim(W(S)) where S is the regular chain (for  $y_1 < \cdots < y_n < x_1 < \cdots < x_n < s_2 < \cdots < s_n$ )  $S = R_1 \cup \{s_2(x_1 - y_1) - (x_2 - y_2), \ldots, s_n(x_1 - y_1) - (x_n - y_n)\}$ 

#### Remarks

Additional computations are needed to capture the lines contained in

- $x_1 = y_1$ : There are essentially two options:
  - Perform a random linear change of the coordinates so as to assume that, generically,  $y_1 = x_1$  contains no lines of  $TC_p(C)$ .
  - **2** Compute in turn the lines not contained in the hyperplane  $y_i = x_i$  for all i = 0, ..., n and remove the duplicates; indeed no lines of the tangent cone can simultaneously satisfy  $y_i = x_i$  for all i = 0, ..., n.

# Concluding remarks

### Theorem (Ssame as before)

Consider a one-dimensional regular chain  $R_1$  solving the system  $f_1(x_1, \ldots, x_n) = \cdots = f_{n-1}(x_1, \ldots, x_n) = 0$  at a point  $p(y_1, \ldots, y_n)$  given by a zero-dimensional T such that  $V(T) \subseteq V(f_1, \ldots, f_n)$ . W.o.l.g.  $x_1 - y_1$ is regular modulo sat $(R_i)$ . Then, each line of  $TC_p(C)$  not contained in the hyperplane  $x_1 = y_1$  has his slopes  $s_2, \ldots, s_n$  obtained by  $\lim(W(S))$  where S is the regular chain (for  $y_1 < \cdots < y_n < x_1 < \cdots < x_n < s_2 < \cdots < s_n$ )  $S = R_1 \cup \{s_2(x_1 - y_1) - (x_2 - y_2), \ldots, s_n(x_1 - y_1) - (x_n - y_n)\}$ 

### Remarks

- The proposed method reduces tangent cone computation to that of limits of rational functions.
- Thanks to the size estimates on R<sub>1</sub> (X. Dahan, A. Kadri & E. Schost; 2012; and run time estimates on Puiseux series calculation (P. G. Walsh; 2000) the proposed method is singly exponential in the size of the input system f<sub>1</sub>,..., f<sub>n</sub>.
- Relaxing the one-dimensional constraint is work in progress.