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ABSTRACT

In this paper, we present a new zero-test for expressions
which are constructed from formal power solutions to alge-
braic differential equations using the ring operations and dif-
ferentiation. We also provide a survey of all existing meth-
ods that we know of and a detailed comparison of these
methods with our approach.

1. INTRODUCTION

Zero-testing is an important issue on the analysis side of
symbolic computation. Standard mathematical notation
provides a way of representing many transcendental func-
tions. However, trivial cases apart, this notation gives rise
to the following problems:

e Expressions may not be defined: consider 1/0, log(0)
or log(e® ¥ — e%e¥).

e Expressions may be ambiguous: what values should
we take for log(—1) orv'z2 7

e Expressions may be redundant: sin®z + cos®z and 1
are different expressions, but they represent the same
function.

Often, one is interested in expressions which represent func-
tions in a ring. In that case, the third problem reduces to
deciding when a given expression represents the zero func-
tion.

As to the first two problems, one has to decide where and
how we want our functions to be defined. In this paper,
we will be concerned with expressions that represent formal
power series (in fact, this approach covers most elementary
calculus on special functions, using analytic continuation if
necessary). The expressions will then be formed from the
constants and the indeterminates using the ring operations
and power series solutions to algebraic differential equations.
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The correctness and non-ambiguity of expressions may be
ensured by structural induction. This may involve zero-
testing for the series represented by subexpressions.

Several classical approaches for zero-testing exist [9, 6, 10,
11, 7, 12] and we provide a quick survey of them in sec-
tion 2. Our new zero-test, which is described in section 5, is
based on a similar approach as [10, 11, 12]. We believe the
algorithm to be interesting for five main reasons:

e We treat differential equations of arbitrary order.

e Our method accommodates divergent power series so-
lutions.

e It reformulates previous work from [10, 11, 12] in the
more standard setting of differential algebra.

e We believe it to be more efficient. With some more
work, it might be possible to give complexity bounds
for the algorithm (or a modified version of it) along the
same lines as [12]. Such bounds are also interesting in
relation to “witness conjectures” [17, 13, 16, 8].

e On the longer run, the algorithm might generalize to
the multivariate setting of partial differential equations
with initial conditions on a subspace of dimension > 0.

Throughout the paper, we will assume that the reader is
familiar with differential algebra and the notations used in
this field; see section 3 and [2] for a nice introduction. The
proof of our algorithm also uses a result from the preprint
[15], which is too complicated to be presented here, although
we do provide a sketch of the proof in section 4.

We plan to provide some examples and more explanations in
a forthcoming journal paper. We are also writing a lecture
note about the subject of section 4. No implementations are
available yet.

2. ASURVEY OF EXISTING APPROACHES

A differentially algebraic power series is a power series f
which satisfies a non-trivial algebraic differential equation
P(f) = 0. Consider a power series expression constructed
from z and the constants in some field C like Q, using +, —, -
and left composition of infinitesimal power series by differen-
tially algebraic power series @1, ..., ¢,. Then it is a classical
problem to test whether such an expression represents zero.
There are many approaches for this problem.


 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.


2.1 Structural approaches.

If the differentially algebraic power series are particularly
simple, then it is sometimes possible to characterize all pos-
sible relations between the power series under consideration.
This is clearly the case if we restrict the differentially alge-
braic power series to be algebraic.

A more interesting example is obtained when we also allow
left composition with log(1 + z) and exp z. In this case, the
Ax theorem [1] and the Risch structure theorem [9] may be
used to design a fast zero-test.

The structural approach may yield very efficient algorithms
when it works. However, it requires the characterization of
all possible relations in a given context, where we merely
asked for a test whether a particular one holds. Conse-
quently, the approach usually only applies in very specific
situations.

2.2 Bounding the valuation.

An obvious way to test whether an expression represents the
zero power series is to obtain a bound for its valuation in
terms of its size if the expression does not represent zero.
Khovanskii has given reasonably good uniform bounds (of

the form 0(252), where s denotes the input size) for the
number of zeros for systems of real Pfaffian functions [6].
These bounds may be adapted to the power series context.

This approach is interesting because it only requires fast
power series expansions [3, 14] for implementing a zero-
test. However, such a zero-test might be slow for expressions
which can be quickly rewritten to zero (like x — x, where z is
a complicated expression). Also, if we want the approach to
be efficient, good bounds (such as the ones predicted by wit-
ness conjectures [17, 13, 16, 8]) would be necessary. At the
moment, we only have Khovanskii-type bounds in the case
of Pfaffian functions. A new strategy for obtaining bounds,
which might generalize to higher order equations by adapt-
ing the algorithm in this paper, has been proposed in [12].
However, the obtained bounds are still doubly exponential.

2.3 Thelogical approach.

From a theoretical point, it is also interesting to ask whether
zero-tests always exist. This question has been answered
very precisely and in a very general context by Denef and
Lipschitz [4, 5]. In the present setting of power series expres-
sions, their approach uses the well-known fact that the set of
differentially algebraic power series is closed under the ring
operations and composition. However, the equations one
obtains for sums, products, etc. may be very complicated,
so that that approaches which essentially use this fact are
deemed to be very inefficient.

2.4 Groebner basesand saturation.

Another simple approach was proposed by Shackell in [11]
(see the first algorithm). The idea is to keep all algebraic
relations which hold between a finite number of power series
in a Groebner basis G. If we want to test a new relation,
then we include it in G and look whether we obtain a con-
tradiction. If not, then we keep on adding the derivatives
of all relations in GG into G. Under certain hypotheses, this
process always ends up in a contradiction or a proof that
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the added relations all hold. However, the approach does
not seem to provide any reasonable complexity bounds.

2.5 Varyingtheinitial conditions.

Yet another interesting approach [7] to the zero-test prob-
lem is to change our point of view. The differentially alge-
braic power series y; at the top of this section are usually
specified by a finite number of algebraic differential equa-
tions and initial conditions. Now instead of asking whether
a given expression represents zero, we may ask for which ini-
tial conditions for ¢1, ..., v, the expression represents zero.

It turns out that the set of such initial conditions is a closed
algebraic set V. The “difficult” cases in the zero-test cor-
respond to the situation in which the original initial con-
ditions are in the closure of an open subset W of V' where
the answer is “easier”. It would be interesting to investigate
whether this approach of varying the initial conditions may
yield a better power series analogue for Khovanskii’s results.
A present disadvantage of the method is that it only applies
in the convergent case and that it is not yet clear how to
obtain complexity bounds.

2.6 The generalized solution approach.

The approach in this paper is similar to the algorithm in
[10]. A better understanding (and a complexity analysis)
of this algorithm were obtained in [12]. In order to explain
the underlying idea behind the present algorithm, let us as-
sume for simplicity that p = 1 and that f = ¢: satisfies the
algebraic differential equation Q(f) = 0.

Now suppose that we want to test whether P(f) = 0 for
a second algebraic differential polynomial P. Then we first
use differential algebra to determine a third equation R(f) =
0 which is equivalent to P(f) = 0 and Q(f) = 0 under
certain non-degeneracy conditions. Now we consider f as
an indeterminate and try to solve R(f) = 0 in a suitable
differential overfield L of C[[z]]. This field L consists of so
called logarithmic transseries and has the nice property that
Q(f) = 0 still has a unique solution in L for the initial
conditions of f. Hence, Q(f) = 0 if and only if R(f) =0
admits a solution f in L, in which case we necessarily have

f=r

The approach has the advantages that it accommodates di-
vergent differentially algebraic power series ¢i,...,pp, and
that the degeneracy of the initial conditions is not amplified
during the resolution process. We also have a good hope
to obtain complexity bounds along the same lines as in [12]
and some hope to generalize the approach to the multivari-
ate setting. We finally expect the approach to be one of the
most efficient ones in practice, although no implementations
are available yet.

3. THE EFFECTIVE SETUP

Let C be an effective field of constants of characteristic 0.
This means that all elements of C can be represented ef-
fectively and that there are algorithms for performing the
field operations and testing equality (or, equivalently, for
zero-testing).

Let R be an effective differential ring (i.e. the differentiation



is effective too). We assume that the elements of R are
formal power series in C[[z]], that R D Cf[z], and that the
differentiation § on R corresponds to the differentiation § =
z0/0z on C[[z]]. Moreover, we will assume that R is an
effective power series domain, i.e. there exists an algorithm
which takes f € R and k € N on input and which computes
the coefficient fr € C of z* in f. Notice that this implies
the existence of an algorithm to compute the valuation of
feR.

Now consider a non zero differential polynomial
Q e RIF,...,F"] C R{F}

of order r (recall that F") = §"F) and a power series solu-
tion f € C[[2]] to Q(f) = 0. We will assume that f is not a
multiple solution, i.e. %(f) # 0 for some i € {0,...,r}
(if f is a multiple solution, then we may always replace @ by
a non-zero % and continue doing this until f is no longer
a multiple solution). Choose i such that the valuation of
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aF (i)
of the form

f— fot-+ fudt + fFH

and division of the equation by a suitable power of z, we
may also assume that

Q =LF + zM, (1)
where L € C[0] and M € R{F}. Let A € C[k] be the
polynomial we get from L when reinterpreting J as an in-
determinate k. Then (1) yields a recurrence relation for all
but a finite number of coefficients of f:

e = =5 M. 2)
Indeed, the only k for which this relation does not hold are
roots of A. There are at most r such k and they correspond
to the initial conditions for f. Let s be the largest root of A
in N (or —1 if such a root does not exist). Then we notice in
particular that f is the unique solution to Q(f) = 0 whose
first s + 1 coefficients are fo,..., fs.

In what follows, we will show that the differential ring R{f}
is again an effective power series domain. Now elements in
R{f} can naturally be represented as the images of differ-
ential polynomials in R{F'} under the substitution F' — f.
It therefore suffices to design an algorithm to test whether
P(f) = 0 for a given differential polynomial P € R{F'}.
Our algorithm is based on Ritt reduction and the resolution
of algebraic equation in more general rings of formal power
series. We will use standard notations from differential al-
gebra:

e Ip denotes the initial and Sp denotes the separant of
a differential polynomial P.

e The rank of P € R{F'} is given by rank P = (r,d) €
N?, where r is the order of P and d = degp- P the
degree of P in F). Notice that the set N> of pos-
sible ranks is well-ordered w.r.t. the lexicographical
ordering. We will write Vp for (F("))<.
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e Given A, B € R{F}, we denote by Arem B the Ritt
reduction of A with respect to B. We thus have a
relation

IZH? A= XB + (Arem B),

where o, € N, X € R{F} and rank(Arem B) <
rank B.

REMARK 1. At a first glance, our setting may seem less
general than the one in the beginning of section 2. However,
since we will prove that R{f} is again an effective power se-
ries domain, we may repeat the construction after replacing
R by R{f}, and add as many other functions fs,..., fp as
we like. In fact, it suffices to add one f; for each new subex-
pression of the form ¢; o g.

4. LOGARITHMIC TRANSSERIES SOL U-
TIONSTOALGEBRAIC DIFFERENTIAL
EQUATIONS

It is well known that any non-trivial algebraic equation with
coefficients in C[[z]] has a solution in the field C*#[22] of
Puiseux series over the algebraic closure C*'8 of C. We will
sketch the proof of an analogous result in the case of al-
gebraic differential equations. For a full proof (of a more
general result) we refer to [15].

4.1 Logarithmictransseries

In order to solve equations of the form §f = 1, it is clear
that solutions to such equations might involve logarithms.
In fact, they may even involve iterated logarithms.

Let £ be the totally ordered group of logarithmic monomials
with powers in Q. More precisely, the elements of £ are
monomials

3)

where ap,...,o; € Q and log; stands for the [-th iterated
logarithm. Given such a monomial, we write m > 1 if and
only if a; > 0, where ¢ denotes the least 7 with a; # 0 in
(3). This defines a total ordering > on £. The asymptotic
relation m < n corresponds to writing m = o(n) as z — 0 in
analysis.

m = 27" (log 2)* - - - (log; )",

A subset 6 C £ is said to be grid-based, if there exist mono-
mials m; < 1,...,m,; < 1 and n in £, such that & C
myY - min. A grid-based logarithmic transseries is a map-
ping £ — C with grid-based support. We will usually write
such series using the infinite sum notation f =37 . fum
and we denote the set of all logarithmic transseries by L =
CLLID. Since the support of each non-zero f € L is grid-
based (whence well-ordered), this support admits a =-max-
imal element 0y which is called the dominant monomial of f.

It can be shown [13] that C'[£] is a field for the operations

F+g = D (futgm)m
meg
o = S (5 g
meg m=vto

In the second formula, the grid-based support property en-

sures that > fugw is a finite sum. There also exists a



natural derivation § on CL[£], which sends each monomial
m € £ of the form (3) to

a1

om = (—ao + Iog 2 (4)

aq
oo —" Im
log z---log; z
This derivation extends to the whole of L by (infinitary)
“strong linearity” [13].

Before proving that solutions to algebraic differential equa-
tions with coefficients in L always exist, we first observe that
we have the following uniqueness result:

LEMMA 1. Let Q € R{F'} be a differential polynomial of
the form (1), let f € C[[z]] be a solution to Q(f) = 0 and
let s be defined as in section 3. Then the equation Q(f) =0
with side condition f—f < z° admits f as its unique solution

in L.

Proor. Each series f in L may be expanded as a Puiseux

series in z
Z k
f = fk'z )

keQ

(5)

where the coefficients fj are series in C[F] and
3 = (log 2)%(loglog 2)%- - - .

Notice that we may interpret £ as the lexicographical prod-
uct of 22 and §. For the expansion (5), the recurrence rela-
tion (2) still determines the coefficients of f in a unique way
foral k >s. O

4.2 Asymptotic differential equations

A classical way to solve algebraic equations over power series
is to use the Newton polygon method. We have generalized
this method to algebraic differential equations. In fact, it
is more convenient to solve asymptotic differential equations
of the form

P(f)=0 (f<m), (6)

where P € L{F'} and m € £. In the sequel, we will assume
that C is algebraically closed.

In order to solve (6), we start by determining all possible
dominant monomials n < m of non-zero solutions and their
corresponding coefficients. Actually, it is convenient to char-
acterize such potential dominant monomials first. It suffices
to characterize when 1 is a potential dominant monomial:
we will then say that n is a potential dominant monomial,
if 1 is a potential dominant monomial for the equation

Pin(f) =0 (f <m/n).
Here Py, denotes the unique differential polynomial in L{F'}
with Pyn(f) = P(fn) for all f.

Write P = ), P,F® using multi-indices 4 and let 0p =
maxg 0p;. Then the dominant part of P is defined to be the
scalar differential polynomial

Ap =) Py, F¥
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in C{F'}, where P; 5, = (P;)op. We also define the domi-
nant part Ap;. € CLFI{F} of P w.r.t. z by

Ap. = P ,F,

where v is the valuation of P in z and P;, denotes the
coefficient of z” in P;.

Assume first that Ap € C[F)(0F)Y and Ap = Ap,.. Then
we define the differential Newton polynomial of P by Np =
Ap and we have

P(c+¢)— Np(c) <. 0p

for all c € C and £ <, 1. Here v <, to, if

w/b =27 (log, 2)*

with ap > 0. We say that 1 is a potential dominant mono-
mial of a solution to P(f) = 0 if and only if Np admits
such a non-zero constant root ¢ € C* (and c is a potential
dominant term). Furthermore, Np admits a non-zero root
if and only if Np & C, because Np € C[F](6F)N and C is
algebraically closed.

If Ap # Ap,. or Ap & C[F](6F)Y, then we use the technique
of “upward shifting”. Given A € CIFI{F}, we define A 1
to be the unique differential polynomial in L{F'} such that

At (foe/?)=A(f)o(e'?)

for all f. For instance, (§F —1) t= —zdF —1, and we notice
that the logarithmic solution log z of § f = 1 transforms to
the non-logarithmic solution z~* of —z§f = 1 under upward
shifting f — f 1= foel/*. Now we proved in [15] that after
a finite number of replacements P — Ap;, 1 we obtain
a differential polynomial P with Az = Ap._and Ap €

C[F](6F)N. We say that 1 is a potential dominant monomial
w.r.t. (6) if and only if 1 < m and Np := Np admits a non-
zero root in C*.

It is clear that if f is a solution to (6), then ?; must be a
potential dominant monomial of a solution. We say that a
potential dominant monomial n < m is classical, if Np
is not homogeneous (i.e. Np,, € C(SF)Y). These classi-
cal potential dominant monomials are finite in number and
they can be determined from something which resembles
the Newton polygon in the algebraic case [13, 15], by using
a succession of multiplicative conjugations P — Px .o and
upward shiftings P — Ap,. 1 of the dominant parts w.r.t. z.

Once we have found a potential dominant term ¢ = 7 of a
solution to (6), we may consider the refinement

f=po+f (f<m). (7)

In other words, a refinement is a change of variables to-
gether with the imposition of a new asymptotic constraint.
It transforms (6) into a new asymptotic differential equation

Pio(f)=0 (f=<m). (8)

Using the possibly transfinite process of determining poten-
tial dominant terms and making refinements, one finds all
solutions to (6). However, a more careful study is required
to ensure that one remains in the context of grid-based



transseries and that (for instance) no transseries like

logz + log, z + logy 2z + - - (9)

may occur as solutions of (6).

In order to do this, it is convenient to associate an invariant
to the equation (6): the highest possible degree of the dif-
ferential Newton polynomial Np,  that we can achieve for
a monomial n < m is called the Newton degree of (6) and
we denote it by deg_ , P. In the algebraic case, the Newton
degree measures the number of solutions to the asymptotic
equation (6), when counting with multiplicities. In the dif-
ferential case, it only gives a lower bound (see theorem 1
below). Also, an equation of Newton degree 0 does not ad-
mit any solutions.

Now we have shown in [13, 15] that the Newton degree de-
creases during refinements and that quasi-linear equations
(i.e. equations of Newton degree 1) always admit solutions.
Finally, in the case when deg_s P+, = deg_,,, P > 2, it is
possible to replace ¢ by a solution to a quasi-linear equation
of the form

ot tar p
(aF)ao - (aF(T))ar (80)

=0 (p=<m), (10)
and force the Newton degree to strictly decrease after a finite
number of steps. In other words, the transfinite resolution
process has been replaced by an essentially finite algorithm,
which avoids solutions of the form (9). In particular, these
methods yield the following theorem:

THEOREM 1. Consider an asymptotic algebraic differen-
tial equation (6) of Newton degree d > 0 over L. Then (6)
admits at least d solutions in L when counting with multi-
plicities.

5. THEALGORITHM

In this sequel, we assume that @, f and s are as in section
3. We will give an algorithm to test whether P(f) = 0 for
given P € R{F}. We will write P = 0 if and only P(f) = 0.

5.1 Statement of the algorithm
Algorithm P =0

INPUT: a differential polynomial P € R{F'}
OuTPUT: true if and only if P =0

Step 1. [Initialize]
H:=1
R:=P
reducing := true

Step 2. [Reduction]
while reducing
if R € R then return R =0
else if Ir =0 then R:= R — IrVr
else if Sg =0 then
H :=1IrH,R := Rrem Sg
else if Qrem R # 0 then
H .= IRSRH,R = QremR
else H := IrSrH,reducing := false

121

Step 3. [Final test]
let k be minimal with deg_ &« Hyf 4.0, .6 =0
k := max{k, s}
return deg_,x Ry 4...qf .0 #0

REMARK 2. In the particular case when an asymptotic
differential equation (6) has power series coefficients in C[[z]]
and m = 2* its Newton degree deg_ . P is the minimal

degree of a term szk,if(i) in P,k with 0p . =0p .
In particular, the minimal k in step 3 can be found by ex-
panding the power series coefficients H;(f) of H in z us-
ing any fast expansion algorithm for solutions to differential

equations [3, 14].

5.2 Correctness and termination proof
THEOREM 2. The above algorithm for testing whether
P = 0 terminates and is correct.

PROOF. In the loop in step 2, we notice that the rank of R
strictly decreases at each iteration. Also, the rank of Ir (or
Sr) in each recursive call of the zero-test is strictly smaller
than the rank of R (and whence the rank of P). These two
observations, and the fact that the set of possible ranks is
well-ordered, imply the termination of the algorithm; the
existence of a minimal k with deg_» Hyy 1.4, .+ =0 will
be proved below.

As to the correctness of the algorithm, we claim that at the
start and the end inside the loop in step 2, we maintain the
properties that H # 0 and the existence of a relation of the
form

H°P=AR+B (11)

for a € N and differential polynomials A and B with B = 0.
Indeed, we have H = A =1 and B = 0 at the first entry. If
Ir =0and R = R—IrVR, then we have H*P = AR+ B =
AR + (B + AIRVR), with B + AIrVg = 0. If Sg = 0,
H = IgH and R = Rrem Sg, then IS R = XSg + R for
some 8 € N and differential polynomial X. Also, Is, = dIr,
where d > 2 is the degree of R in the highest f") occurring
in R. Consequently, denoting & = max(c, 3), we have
HP

ISH®P
ISHY °R+ IZH® B
d 15 PH R +

(dSI& PHY X Sp + InH* “B).

The case when Q rem R # 0 is treated in a similar way. This
proves our claim; notice that (11) implies P =0 < R = 0.
By definition, we also have R=0< R=0if R € R at the
first test in the loop.

Let us now assume that the algorithm reaches step 3. Since
H # 0, we may write H(f) = c;2' + O(2'*") with ¢; # 0 for
some [ € N. For this I, we have deg_, i H f ..1f.1 =
0, which implies that there exists a minimal number k,
such that both deg_ .« Hyf 4..pf,.» = 0 and k > s. If
deg v Ryfoy..qpo.¢ = 0, then we have R(f) ~ R(fo +

<o+ frzF) #£ 0, whence R # 0 and P # 0. Conversely,



assume that deg__ R+f0+...+szk # 0. Then theorem 1 im-

plies the existence of a series f € CLLT with R(f) = 0 and
R 2*. Since Qrem R = 0 and IzrSgr|H, we have a
relation of the form

H°Q = XR, (12)

where 3 € N and X is a differential polynomial. Now
deg 1 Hyf 1...p5,.0 =0 implies H(f) # 0, so that Q(f) =
0. But, by lemma 1, there exists a unique solution in C'[£]1

to the equation Q(f) = 0 with the side condition f—f < 2°.
Hence f=f, R(f)=0and P=0. [
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