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Abstract We carefully study the number of arithmetic operations required
to compute rational Puiseux expansions of a bivariate polynomial F over a
finite field. Our approach is based on the rational Newton-Puiseux algorithm
introduced by D. Duval. In particular, we prove that coefficients of F may be
significantly truncated and that the complexity of parts of the computation
may be bounded in terms of the output size. These preliminary results lead to
a more efficient version of the algorithm with a complexity upper bound that
improves previously published results. This algorithm could easily be imple-
mented in a computer algebra system; the only asymptotically “fast” subal-
gorithm required to stay within our bound is the FFT-based multiplication of
univariate polynomials with coefficients in a finite field.

Keywords Puiseux series · Complexity · Algebraic functions

1 Introduction

1.1 Statement of the problem and motivations

Let K be a field and F be a polynomial of K[X, Y ] with degrees dX > 0,
dY > 0 and total degree d. We assume that F is squarefree and has no factor
in K[X ]; in other words, F is primitive with respect to Y . We denote by RF

the resultant of F and FY with respect to Y , where FY is the derivative of
F with respect to Y . The roots of RF ∈ K[X ] are called the affine critical
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points of F . The point at infinity is critical if X = 0 is a critical point of
F (1/X, Y )XdX . Non critical points are called regular points.

Let x0 be a critical point. If K has characteristic 0 or p > dY , each root of
F , viewed as a univariate polynomial in Y , can be formally represented by a
Laurent series S in (X − x0)

1/e, called a Puiseux series, for some well-chosen
positive integer e. This integer is the ramification index of S and coefficients
of S belong to a finite algebraic extension of K; see Section 2.

Puiseux series are ubiquitous in the theory and practice of algebraic curves:
For instance, they may be used to determine the genus of the curve F (X, Y ) =
0 via Hurwitz formula (20), to compute integral bases of the function field
K(X)[Y ]/(F ) (23), to determine bases of L(D) spaces for divisors D by means
of Dedekind-Weber’s algorithm (18; 2), to approximate values of algebraic
functions (when K ⊂ C), etc.

A Puiseux series can be decomposed into two parts: the singular part, that
captures important information such as ramification indices or Puiseux pairs,
and the regular part; see Section 2. Let K ′ denote the field generated over K
by the Puiseux series coefficients under consideration. Kung and Traub (29)
showed that, once the singular part is known, the regular part can be computed
using quadratic Newton iterations in O(dY M(N)) arithmetic operations in
K ′, where N is the number of terms required and M(N) is the number of
operations in K ′ necessary to multiply two polynomials of degree at most
N in K ′[X ]. Since their purpose is to estimate the asymptotic complexity
as a function of N , they do not study the complexity of the singular part
computation, which is a constant independent of N . In practice, however, the
singular part may already be a bottleneck.

In this paper, we focus on the complexity of the singular part, expressed
as a function of the input size (namely, dX , dY and the size of the coefficients
of F ), but also in terms of the output size.

From now on, assume that K is a field such that there exist algorithms for
factorizing elements of K[X ]. Singular parts of Puiseux series may be com-
puted with the classical Newton-Puiseux algorithm (see (42)) or the rational
Newton-Puiseux algorithm introduced by Duval in (19). The latter allows to
take into account conjugacy over K and to restrict computations to residue
fields of places, thus minimizing the required algebraic extensions of K and
giving useful arithmetic information. It is therefore the method of choice for
computer algebra systems; implementations are available in Maple, when K is
an algebraic number field, ((31), see the algcurves[puiseux] command due
to Mark Van Hoeij (23)) and Magma ((3), command RationalPuiseux) for
instance.

We became interested in the finite field case for the following reason: If K is
an algebraic number field, both variants suffer from a dramatic coefficient swell
that handicap their practical utility. Moreover they cannot be applied directly
with floating point coefficients; see (36; 35; 33) for examples and details. To
overcome these problems, we have introduced a symbolic-numeric method:
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– Important exact information, called polygon trees, is first obtained by means
of Duval’s algorithm applied modulo a well chosen prime number p. We
gave a good reduction criterion for choosing a prime p such that F and
F̄ = F mod p have the same polygon tree. Proofs and details are given in
(36); see also the preprint (35) or (33). We had to slightly modify classi-
cal Newton polygons to deal with cancellation modulo p of non essential
coefficients. To this end, we introduced generic Newton polygons, that we
will also use in this paper, since they have other advantages; Section 3.
For instance, they provide regularity indices directly and they are relevant
herein to simplify proofs.

– Then, polygon trees are used to guide floating point Puiseux series com-
putations. A method was sketched in (32) and significant improvements,
based on Singular Value Decompositions, were introduced in (33).

The rational Newton-Puiseux algorithm over finite fields is crucial in our
strategy to obtain floating point Puiseux series; it is therefore important to
understand its asymptotic behaviour.

Moreover, polygon trees encode ramification indices, Puiseux pairs, inter-
section multiplicity of branches, and more. Complexity results for Puiseux se-
ries over finite fields, combined with our good reduction criterion and bounds
for good primes p, lead to bit-complexity results for problems over algebraic
number fields. We illustrate this approach in the conclusion, but we will not
elaborate further on this topic in the present work.

1.2 Contributions and contents

Let L be a finite field with [L : Fp] = t0, where p is a prime satisfying p > dY .
In Section 2 we recall classical facts about rational Puiseux expansions and

Puiseux series.
Our variant of the rational Newton-Puiseux algorithm, based on generic

Newton polygons and appropriate truncations of powers of X , is described in
Section 3.

Section 4 contains our contributions:

– First of all, we study truncation orders in terms of the output size (Propo-
sitions 1 and 2). We also show that truncations orders throughout the
algorithm form a decreasing sequence. This justifies our variant of the al-
gorithm; see Propositions 3 and 4.

– Then, we study the coefficient field representation. Since we need to change
this representation along the course of the algorithm, we bound the number
of required operations in L for this task. Again, we give results in terms of
the ouput size (Proposition 5).

– The total running time is usually dominated by changes of variables; this
is precisely stated in Proposition 6.

– Unlike Duval (16), who relied the D5 system (16) to avoid factorization,
we have chosen to factorize characteristic polynomials because efficient
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factorization algorithms exist over finite fields1. Moreover, we obtain more
precise arithmetic information. The total cost is bounded in Proposition 7.

– In Proposition 8, we prove that the output size is at most the valuation in
X of the resultant of F and its derivative in Y .

– Finally, we prove our main result: rational Puiseux expansions above the
critical point 0 of a polynomial F ∈ L[X, Y ] may be computed with an
expected number of :

Õ (d3
Y d2

X + d2
Y dX t0 log p)

operation in L, where the notation Õ hides logarithmic factors; see Theo-
rem 3. This result was presented without proof at the ISSAC ’08 conference
(34) and improves those of Duval, namely O(d6

Y d2
X) for a monic F and

O(d8
Y d2

X) for the general case. It is worth noting that non monic cases re-
quire some care, since a bruteforce change of variable to make polynomials
monic do not yield the expected complexity.

– For expansions above all critical points of F , we have obtained a remarkably
similar estimate, indicating that “most of the complexity” may be located
above a single critical point; see Theorem 4. It also lead to the following
result: Provided that p > dY , the number of operations in L necessary to
compute the genus of the algebraic curve defined by F (X, Y ) = 0
belongs to:

Õ (d3
Y d2

Xt0 log p).

Surprisingly, we have not found complexity bounds for this problem in the
literature.

The only asymptotically “fast”method we use is for multiplying univariate
polynomials. Hence, our algorithms can be effectively implemented and our
results should be applicable for reasonable size entries. We emphasize that we
have attempted to parametrize our bounds in terms of subalgorithm complex-
ity (e.g. factorization, multiplication of univariate polynomials,...) and in term
of the output size. Hence, it should be reasonably easy to update our results to
take into account other algorithms for subproblems or any a priori information
about the output size.

1.3 Related works

Chistov (8) was first to show that Newton-Puiseux algorithm had polynomial
bit-complexity, but did not provide explicit exponents.

Other methods to compute Puiseux expansions have been proposed: (17),
following an idea of (11) and (37). We have explained in (36) why the Newton-
Puiseux approach seems preferable. No complexity results for these methods
is known.

1 In particular, we have shown in (34; 36) that the size of L can be kept small when
probabilistic versions of our symbolic-numeric method are used.
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Merle and Henry (22) studied the arithmetic complexity of the resolution
of the singularity at the origin defined by F (X, Y ) = 0, assuming that F
is irreducible in K[[X, Y ]]. Using lazy evaluation, a programming technique
that delays a calculation until the result is necessary to proceed further, they
obtained an arithmetic complexity similar to Duval’s, that is O(d8). Teitel-
baum (40) considered a more general situation and gave a factorization-free
algorithm that computes a representation for the resolution of a singularity
defined by a bivariate power series. The arithmetic complexity, expressed in
terms of a classical local invariant cF called the conductor degree is O(c6

F ). In
general, cF is not known in advance and would rather be a by-product of the
resolution process. In our context, if F happens to be irreducible in K[[X, Y ]],
cF is smaller than the X-valuation of the discriminant of F with respect to
Y (44), which in turn is bounded by (2dY − 1)dX ; this yields an upper bound
for the arithmetic complexity in O(d12).

Finally, note that Puiseux expansions may be computed efficiently in terms
of the truncation order if a linear differential equation satisfied by the functions
is known (12; 9; 10; 24; 25). But again, the singular part complexity has
not been detailed. The computation of the differential equation may be a
bottleneck since it usually has coefficients with fairly large degrees: a bound
in O(dXd4

X) was given in (14) and reduced to O(dXd3
Y ) in (4), but only when

K has characteristic 02.

1.4 Notations

– If L is a field, L will denote an algebraic closure of L.
– If H ∈ L[X, Y ], then HX and HY are the formal partial derivatives of H .

We denote by dX(H) (resp. dY (H), d(H)) the degree of H with respect to
X (resp. Y , resp. the total degree of H). The leading coefficient of H with
respect to the variable, say Y , is represented by lcY (H).

– For each positive integer e, ζe is a primitive e-th root of unity in L. Primitive
roots are chosen so that ζb

ab = ζa.
– vX denotes the X-adic valuation of the fractional power series field L((X1/e)),

normalized with vX(X) = 1. If S ∈ L((X1/e)), we denote by tc(S) the
trailing coefficient of S, namely S = tc(S)XvX(S) + terms of higher order.

– If S =
∑

k αkXk/e is a fractional power series in L((X1/e)) and r is a ra-

tional number, S̃r denotes the truncated power series S̃r =
∑

k≤N αkXk/e

where N = max{k ∈ N | k
e ≤ r}. We generalize this notation to elements of

L((X1/e))[Y ] by applying it coefficient-wise. In particular, if H ∈ L[[X ]][Y ]

is defined as H =
∑

i(
∑

k≥0 αikXk)Y i, then H̃r =
∑

i(
∑⌊r⌋

k=0 αikXk)Y i.
– If U is a univariate polynomial, then ∆U denotes the discriminant of U

and RU denotes the resutant of U and its derivative. If U is a multivariate
polynomial, the context will always allow to identify the variable.

2 Complications occur in characteristic p > 0 since the derivative of Xp is 0
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2 Rational Puiseux Expansions

The purpose of this section is to recall facts about Puiseux series and rational
Puiseux expansions. For short, Classical Puiseux series and rational Puiseux
expansion will respectively be called CPS and RPE.

Let L be a field of characteristic p ≥ 0 and H be a squarefree polynomial
in L[X, Y ], primitive in Y . We assume that L and H satisfy the characteristic
condition:

p = 0 or p > dY (H) (1)

Up to a change of variable X ← X + x0 or X ← 1/X , we suppose that
X = 0 is a critical point and we will consider Puiseux series and rational
Puiseux expansions above 0.

Definition 1 Let H be a polynomial in L[X, Y ] with dY (H) > 0. A parametriza-
tion R(T ) of H is a pair of non constant power series R(T ) = (X(T ), Y (T )) ∈
L((T ))2 such that H(X(T ), Y (T )) = 0 in L((T )). The parametrization is irre-
ducible if there is no integer u > 1 such that R(T ) ∈ L((T u))2. The coefficient
field of R(T ) is the extension of L generated by the coefficients of X(T ) and
Y (T ).

Definition 2 (Rational Puiseux expansions - RPEs)

– Assume that H is irreducible in L[X, Y ] (H 6= Y ) and letK = L(X)[Y ]/(H)
be the algebraic function field defined by H . A system of L-RPEs above 0
of H is a set of irreducible parametrizations {Ri}1≤i≤r of the form:

Ri(T ) = (Xi(T ), Yi(T )) =

(
γiT

ei ,

∞∑

k=ni

βikT k

)
∈ L((T ))2

with ei > 0, ni ∈ Z and βini
6= 0, and such that:

(i) There exists a canonical one-to-one correspondence between the {Ri}1≤i≤r

and the places {Pi}1≤i≤r of K dividing X ; see (36; 35) or (33) for more
details. Places are considered in the sense of (7).

(ii) The coefficient field of Ri is isomorphic to the residue field ki of Pi.
If H = Y , then R1 = (T, 0) is the only rational Puiseux expansion3 of H
above 0 and we set n1 = 0. In this case, e1 = 1 and k1 = L.

– Assume that H is squarefree. A system of L-RPEs above 0 of H is the
union of systems of L-RPEs for the irreducible factors of H in L[X, Y ].

The integer ei is called the ramification index of Ri.

This concept was introduced by Duval (18). A slightly different definition
appeared in (19) and (43), that corresponds to L-RPE in the above sense.
In the sequel, we will identify ki with the coefficient field of Ri. Since L and
H satisfy the characteristic condition (1), a system of L-RPEs exists; it is
however not unique since T may be replaced in Ri by γT for any γ in ki.

3 This case could have been avoided, but our symbolic-numeric method may cause an
expansion to vanish modulo a prime p and we have preferred to provide a treatment for
vanishing roots as well.
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Definition 3 We say that Ri is defined at T = 0 if Yi ∈ L[[T ]]. In this case,
the center of Ri is the pair (Xi(0), Yi(0)) ∈ k2

i .

The following result is classical (7, Chapter 4, Section 1):

Theorem 1 Set fi = [ki : L].

r∑

i=1

ei fi = dY (H)

It is well-known (42) that the roots of H , viewed as a univariate polynomial in
Y , may be expressed as fractional power series in X called the Puiseux series
of H above 0:

Theorem 2 (Puiseux) There exist positive integers e1, . . . , es with
∑s

i=1 ei =
dY (H) and dY (H) distinct series:

Sij(X) =
∞∑

k=ni

αik ζjk
ei

X
k
ei

where 1 ≤ i ≤ s, 0 ≤ j ≤ ei − 1, ni ∈ Z and αini
6= 0 if Sij 6= 0, such that:

H(X, Sij(X)) = 0 in L((X1/ei)).

If Sij = 0 is a root of H, we set ni = 0 and ei = 1.

From a system of RPEs, classical Puiseux series can readily be computed
with the following process:

1. Ri has exactly fi conjugates over L, that we denote Rσ
i (1 ≤ σ ≤ fi).

Rσ
i (T ) = (Xσ

i (T ), Y σ
i (T )) =

(
γσ

i T ei ,

∞∑

k=ni

βσ
ikT k

)

2. Each Rσ
i yields a Puiseux series Si = Y σ

i ((X/γσ
i )1/ei ).

3. The dY CPS are finally obtained using the action of Gei
on Si, where Gei

is the cyclic group generated by the automorphism X1/ei 7→ ζei
X1/ei of

L((X1/ei)).

Definition 4 Define si = min {0, ni}. The regularity index rij of Sij in H is

the least integer N ≥ si such that S̃ij

N
ei = S̃uv

N
ei implies (u, v) = (i, j); S̃ij

rij
ei

is called the singular part of Sij in H .
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Roughly speaking, the regularity index is the number of terms necessary to
“separate” a CPS from all the others. Since regularity indices of all Puiseux
series corresponding to the same RPE are equal, we define the singular part
of a RPE Ri to be the pair:

(
γiT

ei ,

ri∑

k=si

βikT k

)

where ri is the regularity index of any Puiseux series associated to Ri.
We insist on the dependance on H of the regularity index: Indeed, the

regularity index depends not only on the root considered, but also on the
the initial terms of the other roots. For instance, the regularity index of the
root 0 in H = Y (Y − X) (resp. H = Y (Y − X3)), H = Y (X3Y − 1) is 1
(resp. 3, 0). The regularity indices of the second roots are respectively 1, 3
and −3. Observe also that the singular part of a non zero root may be null:
The regularity index of the root X2 in H = (Y − X2)(Y − X) is 1 and the
corresponding singular part is 0 + 0X = 0. But the regularity index of the
very same root in H = (Y − X2)(Y − X3) is 2, yielding the singular part
X2. Finally, consider the example H = (Y − 1−X)(X2Y − 1). The regularity
index of 1 + X is 0 and the regularity index of 1/X2 is -2; the singular parts
are 1 and 1/X2. The above examples justify the introduction of the quantity
si, that will also enter our complexity estimates.

Our goal is to compute singular parts of RPEs, since higher order terms of
the series may be computed by means of asymptotically fast methods (29).

3 Rational Newton-Puiseux algorithm

In order to compute singular part of RPEs of H above 0, we present a modified
version of Duval’s rational Newton-Puiseux algorithm. In our approach, clas-
sical Newton polygons are replaced with generic Newton polygons; see (36; 35)
or (33). Generic polygons guarantee that polygon trees obtained with modular
computations are the same as polygon trees that would have been computed in
characteristic 0. Unlike classical Newton polygons, they also allow to compute
exactly regularity indices, even when one of the expansion is null.

Assume that H =
∑

i,j aijX
jY i satisfies the same hypotheses as in the

previous section; in particular, H(0, Y ) 6= 0.

Definition 5 For each pair (i, j) of Supp(H) = {(i, j) ∈ N2 | aij 6= 0}, define
Qij = {(i′, j′) ∈ R2 | i′ ≥ i and j′ ≥ j}. Then the Newton Polygon N (H) of
H is the set of finite edges of the convex hull H of Q(H) = ∪(i,j)∈Supp(H) Qij .

The generic Newton polygon GN (H) is obtained by restricting N (H) to edges
with slope no less than −1 and by joining the leftmost remaining point to the
vertical axis with an edge of slope −1. Namely, we add a fictitious point (0, j0)
to Supp(H) so as to mask edges with slope less than -1.

The algorithm first stage requires a special treatment and we introduce
exceptional polygons for this purpose.
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Definition 6 The exceptional Newton polygon EN (H) is the lower part of
the convex hull of Supp(H) ∪ {(0, 0)}. In other words, it consists of the edge
[(0, 0), (I(H), 0)], followed by a sequence of edges with positive slopes that join
(I(H), 0) to (dY (H), vX(lcY (H)). In particular, EN (H) = [(0, 0), (dY (H), 0)]
if H is monic.

Details, examples and figures are given in (36; 35).
Each edge ∆ of GN (H) (resp.N (H), EN (H)) corresponds to three integers

q, m and l with q > 0, q and m coprime, such that ∆ is on the line q j+m i = l.
If ∆ is the horizontal edge of EN (H), m = l = 0 and we choose q = 1.

Definition 7 We define the characteristic polynomial φ∆:

φ∆(T ) =
∑

(i,j)∈∆

aijT
i−i0

q

where i0 is the smallest value of i such that (i, j) belongs to ∆.

The rational Newton-Puiseux algorithm below performs successive changes
of variable, determined by (q, m, l) and the roots of φ∆. It returns a set of
triplets {(Gi(X, Y ), Pi(X), Qi(X, Y ))}i such that:

– Gi ∈ L[X, Y ],
– Pi(X) is a monomial of the form λiX

ei ,
– Qi(X, Y ) = Qi0(X) + ciY Xri , where ri is the regularity index of the

expansion, (Pi(T ), Qi0(T )) is the singular part of a parametrization of F
and ci ∈ ki.

– There exist nonnegative integers Li such that Gi(X, Y ) = F (Pi(X), Qi(X, Y ))/XLi ,
Gi(0, 0) = 0 and GiY (0, 0) 6= 0.

By the formal Implicit Function Theorem, the latter conditions ensure that
there exists a unique power series S such that Gi(X, S(X)) = 0 and S(0) = 0.
The corresponding parametrization of F is therefore Ri(T ) = (Pi(T ), Qi(T, S(T ))).
Hence, we will consider that such a triplet represents a Puiseux series or a RPE.

We first give specifications for two sub-algorithms:

Factor(L,φ)

Input:

L: a field
φ: a univariate polynomial in L[T ].

Output:

A set {(φi, Mi)}i so that φi is irreducible in L[T ] and φ = c
∏

i φMi

i , with
c ∈ L.

Bézout(q,m)

Input:

q: a positive integer
m: an integer

Output:
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A pair of integers (a, b) so that a q − b m = 1 and 0 ≤ b < q.

The rational Newton-Puiseux algorithm reads as follow. The algorithm is
presented in a recursive setting and we suppose that a mechanism to distin-
guish initial calls from recursive calls exists; for instance, an additional param-
eter could be used. Note that the main transformation is performed modulo a
power of X . We will discuss in Section 4 how this parameter should initially
be chosen and updated.

RNPuiseux(L,H,N)

Input:

L: A field.
H: A squarefree element of L[X, Y ], with dY (H) ≥ 1 and H(0, Y ) 6= 0.
N : a positive integer (truncation order).

Output:

A set of triplets {[Gi, Pi, Qi]}i, which form a set of representatives for:

- L-RPEs of H above 0 for the initial call,
- L-RPEs of H centered at (0, 0) for recursive calls.

Begin

If in a recursive call then

N ← GN (H)
If I(H) = 1 then Return {[H, X, Y ]} End

H̃ ← H
else

N ← EN (H)
v ← vX(lcY (H))

H̃ ← H modulo XN+v+1

End

R ← {}
For each side ∆ of N do

Compute q, m, l and φ∆

(u, v)← Bézout(q, m)
For each (f, k) in Factor(L, φ∆) do

ξ ← Any root of f
N̂ ← N/[L(ξ) : L]
(a, b)← Bézout(q, m)

Ĥ(X, Y )← H̃(ξbXq, Xm(ξa + Y ))/X l modulo X
bN+1

For each [G, P, Q] in RNPuiseux(L(ξ),Ĥ,N̂) do

R ← R ∪ {[G, ξb P q, Pm(ξa + Q)]}
End

End

End

Return R
End.
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Example 1 Consider F ∈ F13[X, Y ]:

F (X, Y ) =
(
16 X3 − Y 2 + 2 Y − 1

) (
−2 X2 + Y 2 − 2 Y + 1

) (
XY 3 − 2

)
.

The output of the algorithm is:

(P1, Q1) = (9 X2, 1 + X2(0 + 9 X(1 + Y )))

(P2, Q2) = (X, 1 + X
(√

2 + Y
)
)

(P3, Q3) = (2 X3,
1

X
(1 + Y ))

where
√

2 stands for any root of T 2 − 2. Null coefficients corresponds to fic-
titious edges of generic polygons. Ramifications indices are respectively 2, 1
and 3. Regularity indices are respectively 3, 1 and -1.

Polygons trees keep track of combinatorial information encountered in the
execution of the algorithm: Namely, generic Newton polygons and multiplicity
structures for the roots or characteristic polynomials. We refer the reader to
(34, Section 3.3) or (33, Section 2.1.5) for a formal definition and to (32; 33)
for methods to guide floating point computation.

4 Arithmetic complexity of RNPuiseux over finite fields

In this section, L denotes a finite field and F =
∑dY

i=0 Ai(X)Y i is a squarefree
polynomial in L[X, Y ], primitive with respect to Y , with degrees dY = dY (F ),
dX = dX(F ) and d = d(F ). We denote by p > dY the characteristic of L
and define t0 = [L : Fp]. The section is devoted to the proof of the following
theorems:

Theorem 3 Assuming that FFT-based polynomial multiplication over finite
fields is used, the RNPuiseux algorithm can compute the singular parts of a sys-
tem of RPEs above 0 of F with an expected number of Õ (d3

Y d2
X +d2

Y dXt0 log p)
field operations in L.

As usual, the notation Õ hides logarithmic factors. This result was pre-
sented in (34) without proof and only when F is a monic polynomial in Y .

Randomization is necessary for factorization steps and for the computation
of primitive elements; see Section 4.2 and 4.4. Therefore, we give bounds for
average numbers of operations.

This result improves those of (19), who used the D5 system to avoid fac-
torization. She obtained O(d6

Y d2
X) operations in L for the monic case, and

O(d8
Y d2

X) in general. If the cardinal of L is large, it may be preferable to use
the D5 approach in order to remove the dependence on q and t0; see (15) for
complexity results.

To deal with all conjugacy classes over L of affine critical points, we proceed
as follow: Let RF be the resultant of F and FY with respect to Y . If RF =
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∏
i Φhi

i is a factorization of RF into a product of irreducible polynomials Φi ∈
L[X ], RPEs above roots of Φi are conjugated over L. Therefore, it is sufficient
to compute a system of RPEs above one root ci of Φi for each i. We obtain a
remarkably similar result:

Theorem 4 Assuming that FFT-based polynomial multiplication over finite
fields is used, the RNPuiseux algorithm can compute the singular parts of sys-
tems of RPEs above all conjugacy classes over L of critical points of F , in-
cluding the point at infinity, with an expected number of Õ (d3

Y d2
X t0 log p) field

operations in L.

We first introduce notations and make some assumptions:

– {Ri}1≤i≤ρ with Ri(T ) = (Xi(T ), Yi(T )) stands for singular parts of a sys-
tem of RPEs above 0, with coefficient fields ki.

– (Gi, Pi, Qi) is the output of RNPuiseux corresponding to Ri.
– (ni, si, ri, ei, fi), 1 ≤ i ≤ ρ are the integers associated with Ri in Section 2.
– The eifi CPS associated with Ri are denoted Sijk(X), 0 ≤ k ≤ ei − 1, 1 ≤

j ≤ fi, and Yijk represents the singular part of Sijk.
– The following quantities enter our estimates:

δF =

ρ∑

i=1

(ri − si)fi ηF =

ρ∑

i=1

(ri − si + 1)fi

In particular, if F is monic, all the si are null and the definition of δF is
identical to that of (34; 35; 33). This modification allows to deal with the
non monic case. Considering Theorem 1, remark that:

δF ≤ ηF = δF +

ρ∑

i=1

fi ≤ δF + dY .

Note also, that unlike δF , ηF cannot be null.

Remark 1 The integer ηF is exactly the number of elements of L necessary
to represent the Yi. If ni ≥ 0, assume that a vector of coefficients in ki,
indexed from 0 to ri, is used to represent the singular part of Yi(T ). Such a
representation is legitimate since generic Newton polygon may introduce null
coefficients. If ni < 0, then Yi may be represented by a vector of ri − ni + 1
coefficient in ki. Since the elements of ki may in turn be represented by vectors
of fi elements of L, the total size of RNPuiseux output is ηF .

We split the proof of theorems 3 and 4 into several results.

4.1 Truncating powers of X

Lemma 1 Define v = vX(AdY
). Then, v = −∑ρ

i=1 sifi.
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Proof The minimal polynomial of Sijk over L((X)) is Mij =
∏ei−1

k=0 (Y −Sijk).
The content of Mij with respect to Y is Xsi . Setting M =

∏
ij Mij , it is easily

seen that M and X−vF are equal, up to a factor that is a unit in L[[X ]]. By
Gauss Lemma, the content of M is X

Pρ
i=1 sifi , while the content of X−vF is

X−v.

Proposition 1 RPEs of F̃ δF +v and F above 0 have the same singular parts.

Proof Since F and F̃ δF +v have the same degree in Y , they have the same
number of CPSs above 0; those are denoted by {Um}1≤m≤dY

. We order the
Ri so that:

r1 − s1

e1
≤ r2 − s2

e2
≤ · · · ≤ rρ − sρ

eρ
. (2)

It is sufficient to show that for each triplet (i, j, k) there exists an integer
l(i, j, k) such that vX(Sijk−Ul(i,j,k)) > ri/ei. In other words, Ul(i,j,k) = Yijk +

higher order terms. This will prove in particular that F̃ δF +v is squarefree and
that l defines a one-to-one map.

Assume that Proposition 1 is wrong. Let i0, 1 ≤ i0 ≤ ρ, be the smallest
integer such that there exist j0 and k0 satisfying: For each m, vX(Si0j0k0 −
Um) ≤ ri0/ei0 .

Set m0 =
∑i0−1

i=1 eifi. For i < i0 and all relevant j and k, there exists
pairwise distinct l(i, j, k) with vX(Sijk −Ul(i,j,k)) > ri/ei; we assume that the
Um are ordered so that l(i, j, k) < m0.

Write F = F̃ δF +v +XδF +v+1V , where V ∈ L[X, Y ]. Computing valuations

in F̃ δF +v(X, Si0j0k0) = −XδF +v+1V (X, Si0j0k0), we obtain:

v + δF + 1 + vX(V (X, Si0j0k0)) = v +

dY∑

m=1

vX(Si0j0k0 − Um). (3)

Since vX(V (X, Si0j0k0)) ≥ dY
si0

ei0
, using the definition of i0, we get:

dY
si0

ei0

+ δF + 1 ≤
m0∑

m=1

vX(Si0j0k0 − Um) + (dY −m0)
ri0

ei0

.

Assumption (2) implies
∑ρ

i=i0
(ri − si)fi ≥ (dY −m0)(ri0 − si0)/ei0 . Hence:

m0
si0

ei0

+

i0−1∑

i=1

(ri − si)fi + 1 ≤
m0∑

m=1

vX(Si0j0k0 − Um) (4)

Next, we define I< (resp. I>, I=) to be the subset of integers in [1, i0 − 1]
such that si

ei
<

si0

ei0
(resp. si

ei
>

si0

ei0
, si

ei
=

si0

ei0
). We note that, if i ∈ I=, then

vX(Si0j0k0 − Ul(i,j,k)) ≤ ri/ei; otherwise, Si0j0k0 and Sijk would coincide up
to an order greater than ri/ei, contradicting the definition of ri. Splitting the
sum over m in inequality (4) and using this remark, we obtain:

m0
si0

ei0

+

i0−1∑

i=1

(ri − si)fi + 1 ≤
∑

i∈I<

sifi +
si0

ei0

∑

i∈I>

eifi +
∑

i∈I=

rifi.
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Splitting m0 =
∑

i∈I<
eifi +

∑
i∈I>

eifi +
∑

i∈I=
eifi gives:

i0−1∑

i=1

(ri − si)fi + 1 ≤
∑

i∈I<

(
si

ei
− si0

ei0

)
eifi +

∑

i∈I=

(
ri

ei
− si0

ei0

)
eifi.

But in the right hand side, the first sum is negative and si/ei = si0/ei0 in the
second sum. Hence:

i0−1∑

i=1

(ri − si)fi + 1 ≤
∑

i∈I=

(ri − si)fi.

This is clearly impossible since all terms are non negative and I= ⊂ [1, i0− 1];
the proof of Proposition 1 is complete.

The initial term of a RPE centered at (0, 0) corresponds to an edge with
negative slope of the classical Newton polygon of F . We assume for a moment
that the {Ri}1≤i≤ρ′ , 1 ≤ ρ′ ≤ ρ, are exactly the RPEs of F centered at (0, 0)
and we introduce the following quantity:

θF =

ρ′∑

i=1

(ri − si)fi =

ρ′∑

i=1

rifi.

We recall that Sijk vanishes at X = 0 if 1 ≤ i ≤ ρ′.

Proposition 2 RPEs centered at (0, 0) of F̃ θF and F have the same singular
parts.

Proof Although this result is similar to Proposition 1, we have not found a
reduction to Proposition 1, or vice versa.

Assume θF > 0 (otherwise, there is nothing to prove) and define d′Y =

dY (F̃ θF ) ≤ dY and v′ = vX(lcY (F̃ θF )). Define:

d0 = vY (F (0, Y )) = vY (F̃ θF (0, Y )) =

ρ′∑

i=1

eifi;

d0 is positive and represents the number of CPSs of F and F̃ θF vanishing at
X = 0. Denote by {Um}1≤m≤d′

Y
the Puiseux series of F̃ θF and suppose that

Um vanishes at X = 0 for 1 ≤ m ≤ d0.
If, for each triplet (i, j, k) with 1 ≤ i ≤ ρ′, there exists an integer l(i, j, k)

with 1 ≤ l(i, j, k) ≤ d0 and vx(Sijk − Ul(i,j,k)) > ri/ei, we are done. Sup-
pose that i0 is the smallest integer such that there exist j0 and k0 satisfying:
vx(Si0j0k0 − Um) ≤ ri0/ei0 for all m, 1 ≤ m ≤ d0. Set m0 =

∑i0−1
i=1 eifi.

For i < i0 and all relevant j and k, there exists pairwise distinct l(i, j, k)
with vX(Sijk − Ul(i,j,k)) > ri/ei; we assume that the Um are ordered so that
l(i, j, k) ≤ m0 for i < i0.
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Evaluating the expression F = F̃ θF + XθF +1V at Y = Si0j0k0 , we now
obtain:

θF + 1 + vX(V (X, Si0j0k0)) = v′ +

d′
Y∑

m=1

vX(Si0j0k0 − Um).

For m > d0, vX(Si0j0k0 − Um) = vX(Um) ≤ 0 and Lemma 1 applied to F̃ θ

gives v′ = −∑d′
Y

m=d0+1 vX(Um). Since vX(V (X, Si0j0k0)) ≥ 0, we get:

θF + 1 ≤
d0∑

m=1

vX(Si0j0k0 − Um)

We have vX(Si0j0k0 − Um) ≤ ri/ei if m = l(i, j, k) ≤ m0 for some i < i0
and vX(Si0j0k0 − Um) ≤ ri0/ei0 for m > m0. We deduce:

θF + 1 ≤
i0−1∑

i=1

rifi + (d0 −m0)
ri0

ei0

⇐⇒
ρ′∑

i=i0

rifi + 1 ≤ (d0 −m0)
ri0

ei0

.

The latter inequality is impossible if the positive rational numbers {ri/ei}1≤i≤ρ′

form a non decreasing sequence; Proposition 2 is proved.

Consider the following examples:

– Set H = Xv
∏

ijk(Y −Yijk) and suppose that the coefficients of Xri/ei are
non zero for all i.
– If v = 0, it is easily seen that dX(H) = θH . If θH > 0, then H̃θH−1 has

a Puiseux series equal to 0: The truncation order θH is optimal for H .
– If v > 0, the truncation order δH +v is not equal to dX(H). For general

F , define γF =
∑ρ

i=1(max {ri, 0}−min {ni, 0})fi. It can be shown that
dX(H) = γF ≤ δF + v. Truncating at order γF is not always sufficient,
as demonstrated by the following example:

F = (X3 + 9 X4)Y 6 − 3 Y 4X2 + (3 X − 6 X2)Y 2 −X2 − 2 X − 1.

The singular part of the unique RPE is (T 6, 1
T 3 − 1

2
1
T ) and γF = 0 −

(−3) = 3. But the RPE of F̃ 3 is precisely (T 6, 1
T 3 + 1

T ).
– If Fm = X2mY 2− 1, the two Puiseux series are ±1/Xm. This time, δFm

=
2(−m + m) = 0, but δFm

+ v = 2 m. The bound δFm
+ v is optimal for this

case.

– Define Fm = (Y −Xm)(XmY − 1). We have θFm
= 0; F̃m

0
= Y gives the

correct singular part for the positive order expansion, namely, 0. But to
get both singular parts, order δFm

+ v = 0 + (−m − (−m)) + m = m is
required.
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Although bounds of Proposition 1 and 2 are attained for families of examples,
they are usually not optimal.

For the next step, we introduce more notations. If H is a polynomial as
specified in RNPuiseux, let ∆ be an edge of the Newton polygon, ξ be a root of
φ∆ with multiplicity M∆,ξ and (m∆, q∆, l∆, a∆, b∆) be the integers associated
with ∆. The main transformation in the rational Newton-Puiseux algorithm
is the computation of H∆,ξ:

H∆,ξ =
(ξb∆Xq∆ , Xm∆(ξa∆ + Y ))

X l∆
.

Proposition 3

θH =
∑

(∆,ξ)∈GN (H)

[L(ξ) : L]
(
θH∆,ξ

+ m∆M∆,ξ

)
(5)

δH =
∑

(∆,ξ)∈EN (H)

[L(ξ) : L] θH∆,ξ
(6)

Proof Let Ri be a RPE of H and R̂i be the corresponding RPE of H∆,ξ. If ri

and ei (resp. r̂i and êi) are the regularity and ramification indices of Ri (resp.

R̂i), we have: r̂i = ri −m∆/q∆ei = ri −m∆êi. Moreover, if fi (resp. f̂i) is the

the degree of the residue field of Ri (resp. R̂i), then fi = [L(ξ) : L]f̂i because
the ground field of H∆,ξ is L(ξ). Denote by E∆,ξ the set of indices i such that
Ri corresponds to (∆, ξ). Then:

θH =
∑

(∆,ξ)∈GN (H)

∑

i∈E∆,ξ

rifi

=
∑

(∆,ξ)∈GN (H)

∑

i∈E∆,ξ

(r̂i + m∆êi)f̂i[L(ξ) : L]

=
∑

(∆,ξ)∈GN (H)

[L(ξ) : L]


 ∑

i∈E∆,ξ

r̂if̂i + m∆

∑

i∈E∆,ξ

êif̂i




The latter sum represents the number of roots of H∆,ξ that vanish at X = 0,
and this is precisely the multiplicity of ξ as a root of Φ∆; see (6) Section 8.3
or (42) for instance. This gives equality (5). For the second equality, the same
argument applied to the exceptional Newton polygon gives:

ρ∑

i=1

rifi =
∑

(∆,ξ)∈EN (H)

[L(ξ) : L]
(
θH∆,ξ

+ m∆M∆,ξ

)
.

For ∆ ∈ EN (H), we always have m∆ ≤ 0. From m∆

q∆
= si

ei
, we get:

∑

(∆,ξ)∈ EN (H)

[L(ξ) : L]m∆M∆,ξ =
∑

(∆,ξ)∈EN (H)

m∆

q∆

∑

i∈E∆,ξ

eifi =

ρ∑

i=1

sifi.

Proposition 3 is proved.
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The main result of this section is now:

Proposition 4 The function call RNPuiseux(L, F , δF ) returns a system of
L-RPEs of F above 0.

Proof We consider a single expansion R and drop indices to simplify notations,
so that (G, P, Q) are the associated quantities. F = H1, H2, . . . , Hh+1 = G be
the sequence of input polynomials in the corresponding branch of the function
call tree. Propositions 1 and 2 show that it is sufficient to truncate F modulo
XδF +v+1 and to compute Hi modulo XθHi

+1 for i > 1. But recurrence relation
coefficients in Proposition 3 are positive; therefore, δF /[L(ξ1, . . . , ξi) : L] ≥
θHi+1 for 1 ≤ i ≤ h, where the ξi are the succesive roots of the characteristic
polynomials. Hence, RNPuiseux returns the expected output.

In practice, δF is usually unknown in advance and we will give bounds in
Section 4.5.

Remark 2 Proposition 3 allows to truncate further powers of X . Consider the
following example: Assume that L is a field that contains no square roots
of 2 and let F be the irreducible polynomial of L[X, Y ] corresponding to
the RPE (T 6, T 2 +

√
2T 4 + T 9), with residue field of degree 2 over L. We

skip the first step, because the exceptional polygon has a unique slope with
a unique root, namely, 0. Since F is monic, δF + v = θH1 . Each polygon
has a unique slope that we call ∆i. Starting from θH1 = 2 × 9 + 0 = 18
and applying relation (5), we obtain θH2 = θH1 − M∆1,1 = 18 − 4 = 14,
θH3 = θH2/[L(

√
2) : L] −M∆2,

√
2 = 14/2 − 2 = 5 (it can be shown that the

optimal truncation orders are 7, 9 and 5; see remark 3). Hence, if there is a
unique RPE, the θHi

, i > 1, can be deduced from δF + v. If there are several
RPEs, information obtained from recursive calls for some branches can also
be used to reduce truncation orders for other branches.

Remark 3 The proof of Proposition 4 given in (33; 35) is significantly different:
Therein, a formula for the optimal truncation order is determined and it is
shown that it is bounded by δF (F is assumed monic). Note that the proof
of Lemma 16 of (33) is wrong: It is implicitely assumed that the sequence of
optimal truncation orders is decreasing, but this is false. However, the final
result is correct because one can show that the optimal truncation orders are
bounded by terms of the decreasing sequence δF + v ≥ θH2 ≥ · · · ≥ θHh

, as
above.

To conclude this section, we show that there are families of examples
such that the sequence of truncation orders given by Proposition 1 and 2
is optimal: This occurs when the ramification is introduced at the last step
of the computation. Consider the irreducible polynomial F that vanishes at
(T 6, 1 + T 6 + T 12 + T 13). There is a unique RPE above 0 and EN (F ) has a
unique horizontal slope. The unique root of the characteristic polynomial is 1.
Therefore, δF + v = θH1 = θH2 = 13, θH3 = 7, θH4 = 1. Truncating the Hi at

orders less than 13, 7 or 1 yields an incorrect output: Indeed, F̃ 12, H̃2

12
, H̃3

6

and H̃4

0
are not even squarefree.
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4.2 Representation of residue fields and arithmetic in finite fields

RNPuiseux constructs residue fields ki step by step by adding characteristic
polynomial roots to the ground field. It would therefore be convenient to rep-
resent them as multiple extensions. More precisely:

ki ≃ L[T1, . . . , Tmi
]/(M1(T1), M2(T1, T2), . . . , Mmi

(T1, . . . , Tmi
)),

for some integer mi, where Mj is the minimal polynomial (with degTj
(Mj) ≥

2) of a root over the previous coefficient field:

ki,j−1 ≃ L[T1, . . . , Tj−1]/(M1(T1), . . . , Mj−1(T1, . . . , Tj−1)),

with ki,0 = L and ki,mi
= ki.

With such a triangular representation, it is shown in (30) that the number
of operations in L necessary to perform an operation in ki is bounded by
C4mifi log3 (fi), for some universal constant C. Since mi ≤ log2 fi, we obtain
Cf3

i log3 (fi); with such a bound, we could not reach our goal, namely Theorem
3. Moreover, taming the “exponential” factor 4mi seems to be difficult (see
(30)) although recent results (28) may prove useful (Eric Schost, personal
communication).

Therefore, we turn to primitive representations for the fields ki,j : ki,j ≃
L[T ]/(Pj(T )), where Pj is the minimal polynomial over L of a primitive ele-
ment αj , i.e. ki,j ≃ L(αj) for 1 ≤ j ≤ mi. The elements of ki,j are encoded
as polynomials of degree less than [ki,j : L] with coefficients in L. Whenever
the root ξ = ξj of a characteristic polynomial is not in the coefficient field, the
following computations are required:

(A) Compute a primitive element αj of ki,j = L(ξj , αj−1) and its minimal
polynomial Pj over L.

(B) Express ξj and αj−1 as polynomials in αj of degree less than [ki,j : L] with
coefficients in L.

(C) Rewrite the coefficients of H(X, Y ) ∈ L(αj−1)[X, Y ] in terms of αj .

There are obviously at most log2 (fi) such transformations to perform.
Moreover, when a recursive call to RNPuiseux return, note that the repre-

sentation of ξj is different from the coefficient representation of the returned
triplet [G, P, Q]. In order to form a meaningful result [G, ξb

jP
q, Pm(ξa

j + Q)]
we still need to:

(D) Rewrite ξa
j and ξb

j in terms of αmi
.

These “backward” transformations must be executed each times the function
returns.

Since changes of representation are not required if multiple extension are
used, for the sake of simplicity, we have not included them in our description
of RNPuiseux.

Let us introduce some notations and recall a few facts:
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– Lt denotes a simple algebraic extension of degree t of L, as above.
– By an L-operation, we mean a field operation in L: addition, multiplication

or division.
– For a sufficiently large integer N , we define L(N) = log N log log N . In the

sequel, log always stands for a logarithm with base greater than 1.
– M(N) is a bound for the number of field operations needed to compute

the product of two polynomials of degree no larger than N with coefficients
in a finite field. We recall that we can choose M(N) = C0N

2 for classical
arithmetic and M(N) = C1NL(N) ∈ Õ (N) if FFT-based multiplication
is used, where C0 and C1 are constants; see (21, Corollary 8.22), for in-
stance. We assume M(N) ≥ N and the following property. If a and b are
positive integers, then there exists a constant C such that:

M(a)M(b) ≤ CM(ab) log (ab)L(ab). (7)

This property is verified by the two functions above: since log a log b ≤
1
2 log2 ab, we deduce (log log a)(log log b) ≤ 2(log log ab)2 and the inequality
follows. Moreover, we assume that M is superadditive:

M(a) +M(b) ≤M(a + b).

Again, this property is satisfied by the above functions.
– It will be convenient to introduce M̃(N) = M(N)/N , so that M̃(N) ∈

O(N) or M̃(N) ∈ O(L(N)).
– Multiplication (resp. addition, division) of two elements of Lt can be done

in O(M(t)) (resp. O(t), O(M(t) log t)) L-operations; see (21, Corollary
11.8) for instance.

– ω is a real number such that two square matrix of size n can be multiplied
using O(nω) operations in their coefficient field. We assume 2 ≤ ω ≤ 3.
The best known exponent is ω = 2.376; see (13)

– Let dj = [ki,j : ki,j−1] and Dj = d1 · · · dj for 1 ≤ j ≤ mi.

4.2.1 Step (A)

We choose a random linear combination of monomials in {ξl
jα

m
j−1 | 0 ≤ l <

dj , 0 ≤ m < Dj−1} with coefficients in L and compute its minimal polynomial
over L. If this polynomial has degree Dj, we are done; otherwise we repeat the
process. It is well-known that the ratio of primitive elements of ki;j is bounded
from below by a constant; see (38, Fact 5.8) for instance. Hence, the expected
number of trials is in O(1). To compute a minimal polynomial, we suggest two
methods, both due to Shoup:

(A1) In (38), it is shown that such a minimal polynomial can be computed with

O(D
(ω+1)/2
j ) L-operations; see Theorem 3.4 and the subsequent remark

therein. Writing D
(ω+1)/2
j ≤ fid

(ω−1)/2
Y , multiplying by (ri − si) and sum-

ming over i, we obtain a total cost in O(δF d
(ω−1)/2
Y ). The method is based

on the (theoretical) application of Tellegen’s transposition principle. If fast
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matrix multiplication is used, the method is superior to the next one. But
so far, fast matrix multiplication methods have demonstrated little practi-
cal value. Athough this approach may give the best asymptotic behaviour,
it is not recommanded in practice.

(A2) More recently, Shoup has given an explicit version of Tellegen’s principle
for “power projections” that allows to compute minimal polynomials with

O(M(Dj)D
1/2
j +D2

j ) L-operations; see (39). The algorithm has been imple-
mented by Shoup, who reported an experimental behaviour in accordance

with the theory. WritingM(Dj)D
1/2
j +D2

j ≤ fiM̃(Dj)Dj ≤ fiM(dY ), the
total cost is O(δF M(dY )).

4.2.2 Step (B)

Again, we suggest two methods based on the work of Shoup:

(B1) A method in O(D
(ω+1)/2
j ), leading to a total cost of O(δF d

(ω−1)/2
Y ), see

(38, Theorem 3.5 and the subsequent remark therein). This algorithm is
based on the following ingredients: The resolution of a Toeplitz system in
O(DjL(Dj) log Dj) L-operations, the resolution of two power projection
problems, and the evaluation of a univariate polynomial at an element of
kij . The same comments apply as for (A1).

(B2) By (39), power projections and evaluation in (B1) can be achieved by

an explicit algorithm requiring O(M(Dj)D
1/2
j + D2

j ). This gives again
O(δF M(dY )).

4.2.3 Step (C)

The number of coefficients of H that require a change of representation is
bounded by dY δF /Dj−1: Indeed, at the first function call, there is no need
for a representation change, but for following calls, the truncation order is δF

divided by the degree over L of the coefficient field. Each coefficient C(αj−1)
can be viewed as a polynomial of degree less than Dj−1 that must be evaluated
at an element of kij . Three evaluation methods are considered. The first two
ones are based on (5); the last one is a naive approach. It is interesting to
note that they all yield the same asymptotic bound. For practical purposes,
the last two ones are preferable since they are the simplest ones.

(C1) From (38, Fact 3.1), each evaluation can be done at a cost of

O
(
D

ω/2
j−1

[
Dj/D

1/2
j−1 + 1

]
+ D

1/2
j−1M(Dj)

)

L-operations. Multiplying by dY δF /Dj−1, simple calculations and inequal-
ities lead to O(δ2

F M(dY )). Note that classical matrix arithmetic may be
used.

(C2) Using the evaluation algorithm of (39), we get O(M(Dj)D
1/2
j−1 + DjDj−1),

hence O(δ2
F M(dY )) again.
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(C3) Finally, Horner scheme gives an evaluation cost of Dj−1M(Dj). Again,
this gives O(δ2

F M(dY )).

We could have multiplied by log2 fi instead of (ri − si) ≤ log2 fi and
obtained O(dY δFM(dY )). However, we prefer to insist on the dependence
on δF ; the result O(δ2

F M(dY )) cannot be deduced from the latter estimate
since dY may be greater than δF , as demonstrated by the example F (X, Y ) =
Y n −X for n > 2.

4.2.4 Step (D)

For 2 ≤ j ≤ mi, let gj be a univariate polynomial of degree less than Dj

such that αj−1 = gj(αj). Such polynomials have been computed at steps (B).
Using a backward induction argument, we show that a polynomial uj such
that αj = uj(αmi

) may be computed: This is trivially the case for j = mi.
Writing αj−1 = gj(uj(αmi

)), we see that uj−1 can be determined at the cost
of a polynomial evaluation. Then, ξa

j and ξb
j can easily be rewritten in terms of

αmi
by polynomial evaluations since their expression in terms of αj is known

by (B).
Therefore, each step (D) requires three evaluations of polynomials of degree

less than fi at elements of ki, at a cost O(f
(ω+1)/2
i ) (resp. O(M(fi)f

1/2
i + f2

i ),
O(fiM(fi)) if approach (C1) (resp. (C2), (C3)) is used. Multiplying by (ri−si)

and summing over i, we get respectively O(δF d
(ω−1)/2
Y ), O(δFM(dY )) and

O(δFM(dY )).
To conclude step (D), remark that polynomials uj−1 could easily be re-

turned by adding a fourth element to the triplet [G, ξb
jP

q, Pm(ξa
j + Q)].

We have proved:

Proposition 5 For an integer N ≥ δF , all steps of type (A), (B), (C) and
(D) required by RNPuiseux(L, F , N) can be performed with O(δ2

FM(dY )) field
L-operations.

Remark 4 Eric Schost pointed out that recent and remarkable results of Ked-
laya and Umans (27; 28) could improve estimates of this section and of Section
4.3 and 4.4. In this paper, we have decided not to take these results into ac-
count for three reasons: It is not clear that they lead to an overall improvement
of Theorem 3, they do not seem to be of practical interest at this point, and
finally, they are of binary nature: They do not yield estimates for the number
of L-operations.

4.3 Changes of variables

Lemma 2 Let N be a positive integer. Let H ∈ Lt[X, Y ] and ξ ∈ Lt be as
in RNPuiseux. Define U(X, Y ) = H(ξbXq, Xm(ξa + Y ))/X l, where (m, q, l)
corresponds to an edge ∆ of a Newton polygon and (a, b) is given by algorithm
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Bézout. Then, the number of Lt-operations required to compute Ĥ = ŨN is
in:

– O(NM(dY (H))) if ∆ ∈ GN (H),
– O(NM(dY (H)) + v(H)) if ∆ ∈ EN (H), where v(H) = vX(lcY (H)).

Proof First of all, note that points (i, j) of Supp(H) along the line m i+q j = w
are transformed into points along the horizontal line j = w − l by the change
of variables; see Figure 1.

Consider first the case ∆ ∈ GN (H). Since the slope is negative, we just

need to perform a change of variable in H̄(X, Y ) =
∑N+l

w=l Hw(X, Y ) with
Hw(X, Y ) =

∑
mi+qj=w αijX

jY i.

Hw(ξbXq, ξaXm(1 + Y )) =
∑

mi+qj=w

αij

(
ξbXq

)j
(Xm (ξa + Y ))

i

= Xw
∑

mi+qj=w

αijξ
bj(ξa + Y )i

= XwVw(Y + ξa)

where Vw(Z) =
∑

mi+qj=w

αijξ
bjZi is a univariate polynomial of degree at most

dY .

If a and b are chosen as in Bézout, 0 ≤ b < q ≤ dY and |a| ≤ m. Since m/q ≤ 1,
ξa and ξb can be computed with O(log2 dY ) Lt-operations using “square and
multiply” technique. We then form relevant powers of ξb. The exponent j
is bounded by (N + l)/q, as illustrated by Figure 1. Since slopes of generic
Newton polygons are at least -1, we have l/q ≤ dY /q ≤ dY ; computing all
powers up to this bound is achieved in O(N +dY ) Lt-operations. Constructing
the polynomials Vw requires at most NdY multiplications in Lt. Finally, since
p > dY , a shift in Vw can be reduced to the multiplication of two polynomials
of degree at most dY , with cost O(M(dY )); see (1, Problem 2.6). Since we
must perform N such shifts, the total cost is in O(M(dY )N).

For ∆ ∈ EN (H), we proceed similarly. It is easily seen that |a| ≤ |m| ≤
v(H), so that ξb may be computed with O(log2 v(H)) Lt-operations. The
largest exponent j for powers of ξb is now at most (N + l−mdY )/q; see Figure
2. From (l−mdY )/q ≤ v(H), we get a number of operations in O(N + v(H)).
To complete the proof, remark that the number of Hw is the same as before.

Proposition 6 Let N ≥ δF be an integer. Changes of variables induced by
RNPuiseux(L,F ,N) can be performed with a number of L-operations in:

O
(
[N ηFM(dY ) + vdY ]M̃(dY ) log dY

)
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Fig. 2 Change of variables for negative slopes.

Proof To compute the RPE Ri, RNPuiseux performs at most (ri − si + 1)
changes of variables over a field included in Lfi

= ki, the first one correspond-
ing to the exceptional Newton polygon EN (F ).

Taking into account the extension Lfi
/L and Lemma 2, the number of

L-operations required by the changes of variables for the i-th RPE is in:

O ([NM(dY )(ri − si + 1) + v]M(fi) log fi) .

WritingM(fi) log fi ≤ fiM̃(dY ) log dY and summing over i yields the propo-
sition, considering Theorem 1.

4.4 Factorizations cost

If N and t are positive integers, define:

F(N, t) =M(N2) log N + tM(N) log N log p.

The factorization over Fpt of a univariate polynomial of degree N in Fpt [T ]
can be determined with an expected number of O(F(N, t)) Fpt-operations; see
(21, Corollary 14.30).
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Remark 5 There exist algorithms with better complexity bounds; see (41; 26)
for surveys and (28) for recent results. However, we have prefered to stick to
well established algorithms, since factorization is not the bottleneck of our
algorithm.

Proposition 7 All factorizations of characteristic polynomials required by
RNPuiseux(L,F ,δF) can be computed with an expected number of L-operations
in:

O
(
δFF(dY , t0)L(dY ) log2 dY

)
⊂ Õ

(
δF

[
M(d2

Y ) + t0 log pM(dY )
])

.

Proof Let Lt be the extension of L over which a factorization of a characteristic
polynomial φ∆ must be determined. First of all, we prove that the degree d∆

of φ∆ is at most dY /t. This is obviously true at the first stage of the algorithm,
where t = 1. Assume that the property is true at a given stage of the algorithm
and denote H ∈ Lt[X, Y ] the input polynomial, with an edge ∆. Let ξ be a root
of φ∆ and k be its mutiplicity in φ∆. At the next function call, let φ∆′ be a char-
acteristic polynomial of the polygon yielded by this choice of ∆ and ξ; denote
its degree by d∆′ . Since k is the number of Puiseux series of H having ξXm∆/q∆

as initial term, necessarily, d∆′ ≤ k. But k[Lt(ξ) : Lt] ≤ d∆ and d∆ ≤ dY /t by
the induction hypothesis. Therefore d∆′ ≤ dY /[Lt(ξ) : L]; this proves the prop-
erty. Hence, factorization of a characteristic polynomial can be achieved with
an average number of O(F(dY

t , t0t)) Lt-operations. We must now multiply by
the cost of each Lt-operations, namely O(M(t) log t) L-operations. By prop-
erty (7), we have O(M((dY

t )2) log dY

t M(t) log t) ⊂ O(M(d2
Y )L(dY ) log3 dY )

and O(M(dY

t ) log dY

t M(t) log t) ⊂ O(M(dY )L(dY ) log3 dY ), no matter which
arithmetic is used. Hence, the number of L-operations belongs to:

O
(
F(dY , t0t)L(dY ) log2 dY

)
. (8)

We treat separately characteristic polynomials of EN (F ). Remark that the
sum of their degree is less than dY . Since F is a superadditive function of its
first variable, the total cost of factoring characteristic polynomials of EN (F )
is in F(dY , t). For other characteristic polynomials, we multiply estimate (8)
by ri − si, bound t by fi and sum over i to obtain the result.

4.5 Bounding δF

The quantities δF and ηF are a priori unknown. To obtain a complete algo-
rithm, we provide a bound for δF . In fact, we have:

Proposition 8 δF + v ≤ vX(RF ).

Proof By definition of the regularity index, for each CPS Sijk, there exists
Si0j0k0 with i0 ∈ {1 . . . ρ}, j0 ∈ {1 . . . fi0} and k0 ∈ {1 . . . ei0} such that:

ri − 1

ei
< vX(Sijk − Si0j0k0) ≤

ri

ei
.
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This is equivalent to:

ri − si − 1

ei
< vX(Sijk − Si0j0k0)−

si

ei
≤ ri − si

ei
.

If vX(Sijk−Si0j0k0) 6= ri

ei
(⋆), then ei is a proper divisor of ei0 . Thus, denoting

q = ei0/ei > 1, there exists m ∈ N and α 6= 0 ∈ L such that 1 ≤ m < q and:

Si0j0k0(X) = S̃ijk

ri
ei (X) + αX

ri−1

ei
+ m

ei0 + · · ·

For any integer n, we denote S
[n,ei]
ijk the series obtained by applying the element

X 7→ ζn
ei

X1/ei of Gei
to Sijk. Hence, for 0 ≤ l ≤ q − 1, we have:

S
[lei,ei0 ]

i0j0k0
(X) = S̃ijk

ri
ei (X) + ζml

q αX
ri−1

ei
+ m

ei0 + · · ·

Remark that q(ri − si) + m− q = (ri − si) + (q − 1)(ri − si − 1) + m− 1. But
ri − si − 1 ≥ 0, otherwise inequation (⋆) above cannot hold. Morever, q > 1
and m ≥ 1. Therefore:

q−1∑

l=0

(
vX(Sijk − S

[lei,ei0 ]

i0j0k0
)− si

ei

)
= q

ri − si

ei
+

m− q

ei
≥ ri − si

ei
. (9)

In case, If vX(Sijk−Si0j0k0) = ri

ei
, we trivially have vX(Sijk−Si0j0k0)−si/ei ≥

(ri − si)/ei.
Consider now a triplet (i′, j′, k′) 6= (i, j, k). Obviously:

vX(Sijk − Si′j′k′)−min {si

ei
,
si′

ei′
} ≥ 0.

Taking relation (9) and the subsequent remark into account, we get:

∑

(i′,j′,k′)

(i′,j′,k′)6=(i,j,k)

(
vX(Sijk − Si′j′k′)−min {si

ei
,
si′

ei′
}
)
≥ ri − si

ei
.

Finally, summing over (i, j, k), we obtain vX(RF ) − v(2dY − 1) −M ≥ δF ,
where:

M =
∑

(i,j,k)

∑

(i′,j′,k′)

(i′,j′,k′)6=(i,j,k)

min {si

ei
,
si′

ei′
}.

To conclude the proof, we just need to show that M ≥ −v(2dY − 2). We
proceed as follow: Since si ≤ 0, we have min { si

ei
, si′

ei′
} ≥ si

ei
+ si′

ei′
and :

M ≥
∑

(i,j,k)

∑

(i′,j′,k′)

(i′,j′,k′)6=(i,j,k)

si

ei
+
∑

(i,j,k)


 ∑

(i′,j′,k′)

si′

ei′


− si

ei
= −2v(dY − 1).

The last equality comes from Lemma 1.
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4.6 Proof of Theorem 3 and 4

It is interesting to bound first the number of L-operations in terms of the
output size, namely ηF .

Lemma 3 Let N ≥ δF be an integer. Assuming FFT -based multiplication,
the number of L-operations required by RNPuiseux(L,F ,N) belongs to:

Õ (dY [ηF N + v + δF (δF + dY + t0 log p)]) .

Proof Follows easily from Propositions 5, 6 and 7, sinceM(d2
Y ) ∈ O(M(dY )2).

Corollary 1 Define αF = vX(RF ). Assuming FFT -based multiplication, there
is an algorithm to compute singular parts of all RPEs of F above 0 with a
number of L-operations in:

Õ (αF dY [αF + dY + t0 log p] + vdY )

Proof By Proposition 8, RNPuiseux(L,F ,αF ) returns the expected output.
Then, apply Lemma 3 with δF ≤ αF and ηF ≤ αF + dY .

This proof raises a question: In practice, should RF be computed or is it
preferable to set N = dX(2dY − 1) ? We have decided not to include the
computation of RF in our bound since RF is usually necessary to locate critical
points anyway.

Proof of Theorem 3: Trivial consequence of Corollary 1 since αF ≤ dX(2dY−
1).

Corollary 2 Define µF = degX RF . Assuming FFT -based multiplication,
there exists an algorithm to compute singular parts of all RPEs of F above
all affine critical points with a number of L-operations in:

Õ
(
dY µF [dY + dX + µF t0 log p] + dXd2

Y

)
.

Proof First of all, calculation of RF can be done in Õ (dXd2
Y ) L-operations

(21, Corollary 11.18). Thus, this step is included in our complexity bound.
Moreover, RF can be factorized over L in O(F(D, t0)) ⊂ Õ (µ2

F +µF t0 log p)
L-operations using fast multiplication; see (21, Corollary 14.30). This step is
also included in our complexity bound.

Then, let RF = c
∏m

i=1 Φhi

i be the factorization of RF into monic irreducible
factors Φi, set ti = degX(Φi) and let ci be a root of Φi. Coefficients of Fi =
F (X + ci, Y ) can be computed at the cost of dY shifts in the coefficients
of F in Y ; the complexity of this step is in Õ (dY dX) field operations in
Lti

= L[T ]/(Φi(T )) using a “divide and conquer” approach for shifts4. In
terms of L-operations, the cost function is therefore in Õ (dY dX ti). Summing
over i and bounding

∑
i ti by µF gives again a sufficient estimate for.

4 Note that the method based on a reduction to a polynomial multiplication requires
p > dX and cannot be applied
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Define vi = vX(lcY (Fi)). By Proposition 8, we can truncate Fi at order
hi. Hence, RPEs of F above X = ci may be computed by the function call
RNPuiseux(Lti

,Fi,hi), using:

Õ (dY [(hi + dY )hi + hitit0 log p])

⊂ Õ (dY [(µF + dY )hi + hiµF t0 log p])

field operation in Lti
; see Lemma 3 with δFi

+ vi ≤ hi, ηFi
≤ hi + dY and

N = hi. Multiplying by ti and summing over i, trivial inequalities allow to
conclude.

Proof of Theorem 4: For affine critical points, apply Corollary 2 with µF ≤
dX(2dY − 1). For RPEs above infinity, define G(X, Y ) = F (1/X, Y )XdX ∈
L[X, Y ]; G satifies hypotheses of RNPuiseux input. Obviously, dX(G) = dX

and dY (G) = dY . To complete the proof, remark that the bound of Theorem
3 applied to G is included in the bound of Theorem 4.

Corollary 3 Assume that F is an irreducible polynomial of L̄[X, Y ] and let
d be its total degree. Suppose that p > dY . If FFT-based multiplication is used,
there exists an algorithm to compute the genus of the curve F (X, Y ) = 0 that
requires Õ (d3

Y d2
Xt0 log p) ⊂ Õ (d5t0 log p) L-operations.

Proof Trivial, by Riemann-Hurwitz formula; see (20), for instance.

5 Conclusion

We conclude this paper with a number of remarks:
Upgrading the arithmetic in a degree t finite field represented as a multiple

extension to achieve an O(M(t)) complexity would render Section 4.2 obsolete.
Faster algorithms could be used for subproblems (factorization and poly-

nomial evaluation, notably). It is not clear that this would improve our main
result: Indeed the dominating term would be O(dY ηF N) anyway (Lemma 3),
since we have been unable to exhibit a better bound than O(dXdY ) for N and
ηF .

Algorithm RNPuiseux returns truncated series in “Horner-like form”; see
examples in Section 3. If expanded forms are required, it is easy to check that
they can be obtain in O(η2

F ) operations in L.
Our bounds, combined with estimates for the size of a good prime p, yield

bit-complexity results when the ground field K is an algebraic number field.
Let us give an example: Define K = Q(γ) and let Mγ ∈ Z[T ] be the minimal
polynomial of γ over Q.

If P is a multivariate polynomial in K[X], let (H, c) be the unique pair in
H ∈ Z[T, X], c ∈ N, with degT (H) < w and P (X) = H(γ, X)/c, where c is
minimal. We define ht(P ) = max{log c, log ‖H‖∞}.

From (33, Theorem 17), we can easily deduce:
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Theorem 5 Let ǫ be a real number with 0 < ǫ ≤ 1. There exists a Monte-
Carlo like algorithm that computes the genus of the curve F (X, Y ) = 0 with
probability of error less than ǫ and a number of word operations in:

Õ (d3
Y d2

Xw2 log2 ǫ−1[ht(Mγ) + ht(F )]).

Similar results can be obtained for Las Vegas and deterministic approaches.
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algébrique. L’Enseignement Mathématique 2(10), 267–270 (1964)

13. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic pro-
gressions. In: STOC ’87: Proceedings of the nineteenth annual ACM sym-
posium on Theory of computing, pp. 1–6. ACM, New York, NY, USA
(1987). DOI http://doi.acm.org/10.1145/28395.28396

14. Cormier, O., Singer, M.F., Trager, B.M., Ulmer, F.: Linear Differential
Operators for Polynomial Equations. Journal of Symbolic Computation
34(5), 355–398 (2002)



29

15. Dahan, X., Schost, E., Maza, M.M., Wu, W., Xie, Y.: On the com-
plexity of the D5 principle. SIGSAM Bull. 39(3), 97–98 (2005). DOI
http://doi.acm.org/10.1145/1113439.1113457

16. Della Dora, J., Dicrescenzo, C., Duval, D.: About a New Method for Com-
puting in Algebraic Number Fields. In: EUROCAL 85. Springer-Verlag
LNCS 204 (1985)

17. Diaz-Toca, G., Gonzalez-Vega, L.: Determining Puiseux Expansions by
Hensel’s Lemma and Dynamic Evaluation. In: V. Ganzha, E. Mayr,
E. Vorozhtsov (eds.) Computer Algebra in Scientific Computing, CASC
2002. Proceedings of the Fifth International Workshop on Computer Al-
gebra in Scientific Computing, Yalta, Ukraine. Technische Universität
München, Germany (2002)

18. Duval, D.: Diverses questions relatives au calcul formel avec des nombres
algebriques (1987). Thèse d’État
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33. Poteaux, A.: Calcul de développements de puiseux et application au calcul
de groupe de monodromie d’une courbe algébrique plane. Ph.D. thesis,
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