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Solving polynomial systems? What does this mean?

The algebra text book says:

For F ⊂ k[x1, . . . , xn] this is simply

a primary decomposition of 〈F 〉 or

the irreducible decomposition of V (F ) (the zero set of F in k
n
).

The computer algebra system does well:

For F ⊂ k[x1, . . . , xn], with k = Z/pZ or k = Q,

computing a Gröbner basis of 〈F 〉 or

computing a triangular decomposition of V (F ).

But most scientists and engineers need:

For F ⊂ Q[x1, . . . , xn], a useful description of the points of V (F )
whose coordinates are real.

For F ⊂ Q[u1, . . . , ud ][x1, . . . , xn], the real (x1, . . . , xn)-solutions as a
function of the real parameter (u1, . . . , ud).
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Solving for the real solutions: classical techniques

In dimension zero over Q:

For F ⊂ Q[x1, . . . , xn], if V (F ) is finite, many standard and efficient
techniques apply to identify the real solutions.

In (generic) dimension zero over Q[u1, . . . , ud ]:

For F ⊂ Q[u1, . . . , ud ][x1, . . . , xn] and an integer r one can determine
“generic” conditions on u1, . . . , ud for F to admit exactly r real
(x1, . . . , xn)-solutions

For arbitrary systems:

For F ⊂ Q[x1, . . . , xn], one can partition Rn into cylindrical cells where the
sign of each f ∈ F does not change.
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Real root isolation for zero-dimensional systems
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Real root classification: generically 0-dimensional systems
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Cylindrical algebraic decomposition of {ax2 + bx + c}
root
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q = 0 q <,> 0
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p = 0 p <,> 0

The cylindrical algebraic decomposition of {ax2 + bx + c} is given by the
tree above, where t = bx + c , q = 2ax + b, and r = 4ac − b2. This is the
best possible output for that method, leading to 27 cells!
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Can a computer program be as good as a high-school
student?

For the equation ax2 + bx + c = 0, can a computer program produce?


ax2 + bx + c = 0

a 6= 0 ∧ b2 − 4ac > 0


2ax + b = 0

4ac − b2 = 0

a 6= 0
bx + c = 0

a = 0

b 6= 0


c = 0

b = 0

a = 0
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Yes, our new algorithm RealTriangularize can do that!
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RealTriangularize applied to the Eve surface (1/2)
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RealTriangularize applied to the Eve surface (2/2)
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Triangular Set

Definition

T ⊂ k[xn > · · · > x1] is a triangular set if T ∩ k = ∅ and
mvar(p) 6= mvar(q) for all p, q ∈ T with p 6= q.

Theorem (J.F. Ritt, 1932)

Let V ⊂ Kn be an irreducible variety and F ⊂ k[x1, · · · , xn] s.t.
V = V (F ). Then, one can compute a (reduced) triangular set T ⊂ 〈F 〉
s.t.

(∀ g ∈ 〈F〉) prem(g ,T ) = 0.

Theorem (W.T. Wu, 1987)

Let V ⊂ Kn be a variety and let F ⊂ k[x1, · · · , xn] s.t. V = V (F ). Then,
one can compute a (reduced) triangular set T ⊂ 〈F 〉 s.t.

(∀ g ∈ F ) prem(g ,T ) = 0.

Unfortunately, this procedure cannot decide whether V = ∅ holds or not.
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Regular chain

Definition

Let T ⊂ k[xn > · · · > x1] be a triangular set. For all t ∈ T write
init(t) := lc(t,mvar(t)) and hT :=

∏
t∈T init(t). The quasi-component

and saturated ideal of T are:

W (T ) := V (T ) \ V (hT ) and sat(T ) = 〈T 〉 : h∞T

Theorem (F. Boulier, F. Lemaire and M.M.M. 2006)

We have: W (T ) = V (sat(T )). Moreover, if sat(T ) 6= 〈1〉 then sat(T ) is
strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

T is a regular chain if T = ∅ or T := T ′ ∪ {t} with mvar(t) maximum s.t.

T ′ is a regular chain,

init(t) is regular modulo sat(T ′)
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Regular chain: alternative definition
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Regular chain: algorithmic properties

Definition

Let T ⊂ k[xn > · · · > x1] be a triangular set and p ∈ k[xn > · · · > x1]. If
T is empty then, the iterated resultant of p w.r.t. T is res(T , p) = p.
Otherwise, writing T = T<w ∪Tw

res(T , p) =

{
p if deg(p,w) = 0
res(T<w , res(Tw , p,w)) otherwise

Theorem (P. Aubry, D. Lazard, M.M.M.)

T is a regular chain iff

{p | prem(p,T ) = 0} = sat(T )

Theorem (L. Yang, J. Zhang 1991)

p is regular modulo sat(T ) iff

res(T , p) 6= 0
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Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition

Let F ⊂ k[x]. A family of regular chains T1, . . . ,Te of k[x] is called a
Kalkbrener triangular decomposition of V (F ) if

V (F ) = ∪e
i=1V (sat(Ti )).

Wu-Lazard triangular decomposition

Let F ⊂ k[x]. A family of regular chains T1, . . . ,Te of k[x] is called a
Wu-Lazard triangular decomposition of V (F ) if

V (F ) = ∪e
i=1W (Ti )
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Triangularize applied to sofa and cylinder (1/2)

x2 + y3 + z5 = x4 + z2 − 1 = 0
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Triangularize applied to sofa and cylinder (2/2)
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Regular chain: specialization properties

Notation

Let T ⊂ Q[x1 < . . . < xn] be a regular chain with y := {mvar(t) | t ∈ T}
and u := x \ y = u1, . . . , ud . Hence sat(T ) has dimension d.

Recall that hT is the product of the init(t), for t ∈ T .

Denote by sT the product of the discrim(t,mvar(t)).

Definition

We say that T specializes well at a point u ∈ Rd if hT (u) 6= 0 and the
triangular set T (u) is a regular chain generating a radical ideal.

Theorem (X. Hou, B. Xia, L. Yang, 2001)

Define BPT := res(T , hT ) res(T , sT ), the border polynomial of T . Then

T specializes well at u ∈ Rd if and only if BPT (u) 6= 0.

For each connected component C of BPT (u) 6= 0, the number of real
solutions of T (u) is constant for u ∈ C .
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Border polynomial and specialization

Example (bad specialization of a regular chain)

T :=


x4x5

2 + 2x5 + 1
(x1 + x2)x3

2 + x3 + 1
x1

2 − 1.
Tx2,x4=−1,1 :=


x5

2 + 2x5 + 1
(x1 − 1)x3

2 + x3 + 1
x1

2 − 1.

Example (border polynomial)

res(dis(t2), t1) res(res(dis(t3), t2), t1). res(init(t2), t1) res(res(init(t3), t2), t1).

For the above regular chain, it is

(4x2 + 3)(4x2 − 5)(x2
2 − 1)(x4 − 1)x4
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Regular semi-algebraic system

Notation

Let T ⊂ Q[x1 < . . . < xn] be a regular chain with
y := {mvar(t) | t ∈ T} and u := x \ y = u1, . . . , ud .

Let P be a finite set of polynomials, s.t. every f ∈ P is regular
modulo sat(T ).

Let Q be a quantifier-free formula of Q[u].

Definition

We say that R := [Q,T ,P>] is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebraic set S in Rd ,

(ii) the regular system [T ,P] specializes well at every point u of S

(iii) at each point u of S , the specialized system [T (u),P(u)>] has at
least one real solution.

Define

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.
(CDMMXX) RealTriangularize Algebra Seminar 23 / 62
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Example

The system [Q,T ,P>], where

Q := a > 0, T :=

{
y2 − a = 0
x = 0

, P> := {y > 0}

is a regular semi-algebraic system.
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Triangular decompositions of semi-algebraic systems (1/2)

Proposition

Let R := [Q,T ,P>] be a regular semi-algebraic system of Q[u1, . . . , ud , y].
Then the zero set of R is a nonempty semi-algebraic set of dimension d .

Theorem

Every semi-algebraic system S can be decomposed as a finite union of
regular semi-algebraic systems such that the union of their zero sets is the
zero set of S. We call it a (full) triangular decomposition of S.
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Triangular decompositions of semi-algebraic systems (2/2)

Notation

Let S = [F ,N≥,P>,H 6=] be a semi-algebraic system of Q[x]. Let c be the
dimension of the constructible set of Cn corresponding to S.

Definition

A finite set of regular semi-algebraic systems Ri is called a lazy triangular
decomposition of S if

for each i , ZR(Ri ) ⊆ ZR(S) holds, and

there exists G ⊂ Q[x] such that

ZR(S) \
(
∪t

i=1ZR(Ri )
)
⊆ ZR(G ),

where the complex zero set V (G ) has dimension less than c .
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A detailed example

Original problem

Consider the following question (Brown, McCallum, ISSAC’05): when does
p(z) = z3 + az + b have a non-real root x + iy satisfying xy < 1.

The equivalent quantifier elimination problem

(∃x ∈ R)(∃y ∈ R)[f = g = 0 ∧ y 6= 0 ∧ xy − 1 < 0], where

f = Re(p(x + iy)) = x3 − 3xy2 + ax + b

g = Im(p(x + i))/y = 3x2 − y2 + a

The semi-algebraic system to solve

S :=


f = 0,
g = 0,
y 6= 0,
xy − 1 < 0
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A lazy triangular decomposition

The command LazyRealTriangularize([f , g , y 6= 0, xy−1 < 0], [y , x , b, a])

returns the following:

[{t1 = 0, t2 = 0, 1− xy > 0}] h1 > 0, h2 6= 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,
h1 = 0, 1− xy > 0, y 6= 0], [y , x , b, a]) h1 = 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,
h2 = 0, 1− xy > 0, y 6= 0], [y , x , b, a]) h2 = 0

[ ] otherwise

where
t1 = 8x3 + 2ax − b, t2 = 3x2 − y2 + a,
h1 = 4a3 + 27b2,
h2 = −4a3b2 − 27b4 + 16a4 + 512a2 + 4096.
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A full triangular decomposition

Evaluate the output with the value command, which yields

[{t1 = 0, t2 = 0, 1− xy > 0}] h1 > 0, h2 6= 0

[ ] h1 = 0

[{t3 = 0, t4 = 0, h2 = 0}] h2 = 0

[ ] otherwise

where
t3 = (2a3 + 32a + 18b2)x − a2b − 48b
t4 = xy + 1
h1 = 4a3 + 27b2,
h2 = −4a3b2 − 27b4 + 16a4 + 512a2 + 4096
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Outline of the algorithm

Definition

Let [T ,P] be as before and B ⊂ Q[u]. We say that [B6=,T ,P>] is a
pre-regular semi-algebraic system of Q[u, y] if [T ,P] specializes well at
every point of B(u) 6= 0.

Computation in complex space

ZR(F ,N≥,P>,H 6=)
↓⋃

ZR(B6=,T ,P>)

Computation in real space

[B6=,T ,P>]
↓

Q := ∃y (B(u) 6= 0,T (u, y) = 0,P(u, y) > 0)
↓

output [Q,T ,P>], where Q 6= false
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Fingerprint polynomial set

Definition

Let R := [B6=,T ,P>]. Let D ⊂ Q[u]. Let dp and b be the product of D
and B. We call D a fingerprint polynomial set (FPS) of R if:

(i) for all α ∈ Rd , b ∈ B: dp(α) 6= 0 ⇒ b(α) 6= 0,

(ii) for all α, β ∈ Rd with α 6= β and dp(α) 6= 0, dp(β) 6= 0, if for p ∈ D,
sign(p(α)) = sign(p(β)), then R(α) has real solutions iff R(β) does.

Open projection operator (Brown-McCalumn operator)

Let A be a squarefree basis in Q[u1 < · · · < ud ]. Define

oproj(A, ud) :=
⋃
f ∈A

lc(f , ud) ∪
⋃
f ∈A

discrim(f , ud) ∪
⋃

f ,g∈A

res(f , g , ud).

Theorem

For A ⊂ Q[u1, . . . , ud ], let oaf(A) = der(A, ud) ∪ oaf(oproj(der(A, ud), ud−1)).

If R := [B6=,T ,P>] is a PRSAS, then, oaf(B) is a fingerprint polynomial
set of R.(CDMMXX) RealTriangularize Algebra Seminar 32 / 62
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A detailed example (1/3)
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A detailed example (2/3)
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A detailed example (3/3)
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LazyRealTriangularize for a system of equations

Algorithm 1: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F , ∅, ∅, ∅]
Output: a lazy triangular decomposition of S
T := Triangularize(F )
for Ti ∈ T do

Bpi := BorderPolynomial(Ti , ∅)
solve ∃y(Bpi (u) 6= 0,Ti (u, y) = 0),
and let Qi be the resulting quantifier-free formula
if Qi 6= false then output [Qi ,Ti , ∅]
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Complexity results (1/2)

Assumptions

(H0) V (F ) is equidimensional of dimension d ,

(H1) x1, . . . , xd are algebraically independent modulo each associated prime
ideal of the ideal generated by F in Q[x],

(H2) F consists of m := n − d polynomials, f1, . . . , fm.

Geometrical formulation

Hypotheses (H0) and (H1) are equivalent to the existence of regular
chains T1, . . . ,Te of Q[x1, . . . , xn] such that

x1, . . . , xd are free w.r.t. each Ti

V (F ) = V (sat(T1)) ∪ . . . ∪ V (sat(Te)).
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Complexity results (2/2)

Notation

Let n, m, δ, ~ be respectively the number of variables, number of
polynomials, maximum total degree and height of polynomials in F .

Proposition

Within mO(1)(δO(n2))d+1 + δO(m4)O(n) operations in Q, one can compute a
Kalkbrener triangular decomposition E1, . . . ,Ee of V (F ), where each
polynomial of each Ei

has total degree upper bounded by O(δ2m),

has height upper bounded by O(δ2m(m~ + dmlog(δ) + nlog(n))).

From which, a lazy triangular decomposition of F can be computed in(
δn

2
n4n
)O(n2)

~O(1) bit operations.
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Notations

Table 1 Notions for Tables 2 and 3

symbol meaning
#e number of equations in the system
#v number of variables in the equations
d max total degree of the equations
G Groebner:-Basis (with plex order) in Maple 13
T Triangularize in RegularChains library of Maple
LR lazy RealTriangularize implemented in Maple
R complete RealTriangularize implemented in Maple
Q Qepcad b
> 1h the examples cannot be solved in 1 hour
FAIL Qepcad b failed due to prime list exhausted
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Timings for algebraic varieties

Table 2 Timings for algebraic varieties

system #v/#e/d G T LR
Hairer-2-BGK 13/ 11/ 4 25 1.924 2.396
Collins-jsc02 5/ 4/ 3 876 0.296 0.820

Leykin-1 8/ 6/ 4 103 3.684 3.924
8-3-config-Li 12/ 7/ 2 109 5.440 6.360

Lichtblau 3/ 2/ 11 126 1.548 11
Cinquin-3-3 4/ 3/ 4 64 0.744 2.016
Cinquin-3-4 4/ 3/ 5 > 1h 10 22

DonatiTraverso-rev 4/ 3/ 8 154 7.100 7.548
Cheaters-homotopy-1 7/ 3/ 7 3527 174 > 1h

hereman-8.8 8/ 6/ 6 > 1h 33 62
L 12/ 4/ 3 > 1h 0.468 0.676

dgp6 17/19/ 2 27 60 63
dgp29 5/ 4/ 15 84 0.008 0.016
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Timings for semi-algebraic systems

Table 3 Timings for semi-algebraic systems

system #v/#e/d T LR R Q
BM05-1 4/ 2/ 3 0.008 0.208 0.568 86
BM05-2 4/ 2/ 4 0.040 2.284 > 1h FAIL

Solotareff-4b 5/ 4/ 3 0.640 2.248 924 > 1h
Solotareff-4a 5/ 4/ 3 0.424 1.228 8.216 FAIL

putnam 6/ 4/ 2 0.044 0.108 0.948 > 1h
MPV89 6/ 3/ 4 0.016 0.496 2.544 > 1h
IBVP 8/ 5/ 2 0.272 0.560 12 > 1h

Lafferriere37 3/ 3/ 4 0.056 0.184 0.180 10
Xia 6/ 3/ 4 0.164 2.192 230.198 > 1h

SEIT 11/ 4/3 0.400 33.914 > 1h > 1h
p3p-isosceles 7/ 3/ 3 1.348 > 1h > 1h > 1h

p3p 8/ 3/ 3 210 > 1h > 1h FAIL
Ellipse 6/ 1/ 3 0.012 0.904 > 1h > 1h
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Conclusion

We have proposed adaptations of the notions of regular chains and
triangular decompositions in order to solve semi-algebraic systems
symbolically.

We have shown that any such system can be decomposed into finitely
many regular semi-algebraic systems.

We propose two specifications of such a decomposition and present
corresponding algorithms:

Under some assumptions, one type of decomposition
(LazyRealTriangularize) can be computed in singly exponential
time w.r.t. the number of variables.

We have implemented both types of decompositions and reported on
comparative benchmarks.

Our experimental results suggest that these approaches are promising.
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Work in progress

We have obtained geometrical invariants for the notion of border
polynomial.

We have improved the performances of our algorithms by avoiding
unnecessary recursive calls

We have developed an incremental algorithms for decomposing
semi-algebraic systems

We have procedures for performing set theoretical operations on
semi-algebraic sets.

As a consequence we can produce decomposition free of redundant
components.
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Thank you!
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Laurent’s model for the mad cow disease (1/4)

The dynamical system ruling the transformation

The normal form PrPC is harmless, while the infectious form PrPSc

catalyzes a transformation from the normal form to the infectious one.{
dx
dt = k1 − k2x − ax (1+byn)

1+cyn

dy
dt = ax (1+byn)

1+cyn − k4y

where x =
[
PrPC

]
, y =

[
PrPSc

]
and where b, c , n, a, k4, k1 are biological

constants which can be set as follows:

b = 2, c = 1/20, n = 4, a = 1/10, k4 = 50 and k1 = 800.

The dynamical system to study{
dx
dt = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

dy
dt = 2(x+2xy4−500y−25y5)

20+y4
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Laurent’s model for the mad cow disease (2/4)

The semi-algebraic system to be solved

S :=


16000 + 800y4 − 20k2x − k2xy4 − 2x − 4xy4 = 0

2(x + 2xy4 − 500y − 25y5) = 0
k2 > 0

Computations (1/5)

LazyRealTriangularize to this system, yields the following regular
semi-algebraic system (and unevaluated recursive calls)

(2y4 + 1)x − 500y − 25y5 = 0
(k2 + 4)y5 − 64y4 + (20k2 + 2)y − 32 = 0

(k2 > 0) ∧ (R1 6= 0)

where

R1 = 100000k8
2 + 1250000k7

2 + 5410000k6
2 + 8921000k5

2 − 9161219950k4
2

− 5038824999k3
2 − 1665203348k2

2 − 882897744k2 + 1099528405056.
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Laurent’s model for the mad cow disease (3/4)

Computations (2/5)

Through the computation of sample points, we easily obtain the following
observation. Whenever R1 > 0 holds, the system has 1 equilibrium, while
R2 < 0 implies that the system has 3 equilibria.

Computations (3/5)

Now we study the stability of those equilibria. To this end, we consider the
two Hurwitz determinants.
Adding to S the constraints {∆1 > 0, a2 > 0}

∆1 = 54y8 + 40k2y4 + 2082y4 − 312xy3 + 20040 + k2y8 + 400k2,

a2 = 20000k2 + 2000 + 50k2y8 + 200y8 + 2000k2y4 − 312k2xy3 + 4100y4.

we obtain a new semi-algebraic system S ′.
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Laurent’s model for the mad cow disease (4/4)

Computations (4/5)

Applying LazyRealTriangularize to S ′ in conjunction with sample point
computations brings the following conclusion. If R1 > 0, then the system
has 1 asymptotically stable hyperbolic equilibria.

Computations (5/5)

If R1 < 0 and R2 6= 0, then System has 2 asymptotically equilibria, where
R2 is given by:

R2 = 10004737927168k9
2 + 624166300700672k8

2 + 7000539052537600k7
2

+ 45135589467012800k6
2 − 840351411856453750k5

2 − 50098004352248446875k4
2

− 27388168989455000000k3
2 − 8675209266696000000k2

2

+ 102960917356800000000k2 + 5932546064102400000000.

To further investigate the number of asymptotically stable hyperbolic
equilibria on the hypersurface R2 = 0 and the equilibria when R1 = 0, one
can apply SamplePoints on S ′, which produces 14 points.

(CDMMXX) RealTriangularize Algebra Seminar 52 / 62



Program verification: an example from Lafferriere (1/4)

Reachability computation

This problem reduces to determine the set

{(y1, y2) ∈ R2 | (∃a ∈ R)(∃z ∈ R) (0 ≤ a)∧(z ≥ 1)∧(h1 = 0)∧(h2 = 0)}

where

h1 = 3 y1 − 2 a(−z4 + z) and h2 = 2 y2z2 − a(z4 − 1).

The semi-algebraic system to be solved

One wishes to compute the projection of the semi-algebraic set defined by

(0 ≤ a) ∧ (z ≥ 1) ∧ (h1 = 0) ∧ (h2 = 0)

onto the (y1, y2)-plane.
For the variable ordering a > z > y1 > y2. we obtain the five following
regular semi-algebraic systems R1 to R5
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Program verification: an example from Lafferriere (2/4)

The triangular decomposition (1/3)

RT
2 =


a
y1

y2

RP
2 =

{
z > 1

RT
3 =


z − 1

y1

y2

RP
3 =

{
0 < a

RT
4 =


a

z − 1
y1

y2

The projection on the (y1, y2)-plane of ZR(R2) ∪ ZR(R3) ∪ ZR(R4) is
clearly equal to the (y1, y2) = (0, 0) point.
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Program verification: an example from Lafferriere (3/4)

The triangular decomposition (2/3)

RT
1 =

{ (
z4 − 1

)
a− 2 z2y2

4 y2 z5 + 4 y2 z4 + (3 y1 + 4 y2 ) z3 + 3 y1 z2 + 3 y1 z + 3 y1

RQ1 =

{
(y1 + y2 < 0) ∧ (y1 < 0) ∧ (0 < y2)

3y5
1 − 6y2y4

1 − 63y2
2 y3

1 + 192y3
2 y2

1 + 112y4
2 y1 + 16y5

2 6= 0
RP

1 =
{

z > 1

The projection on the (y1, y2)-plane of ZR(R1) is given by ZR(RQ1 ).
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Program verification: an example from Lafferriere (4/4)

The triangular decomposition (3/3)

RT
5 =


(
z4 − 1

)
a− 2 z2y2

tz
3 y1

5 − 6 y2 y1
4 − 63 y2

2y1
3 + 192 y2

3y1
2 + 112 y2

4y1 + 16 y2
5

RQ5 =
{

0 < y2 RP
5 =

{
z > 1

where tz is a large polynomial of degree 4 in z .
The polynomial with main variable y1, say ty1 is delineable above 0 < y2.
Using a sample point we check that ty1 admits a single real root.

Conclusion

It follows that the projection on the (y1, y2)-plane of ZR(R5) is given by:

(0 < y2)∧ (3 y1
5−6 y2 y1

4−63 y2
2y1

3 + 192 y2
3y1

2 + 112 y2
4y1 + 16 y2

5).
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Recall: cylindrical algebraic decomposition of
{ax2 + bx + c}

root
�
�

�
��+

Q
Q
Q
QQs

a = 0 a 6= 0
�

�
�
��+ ?

b = 0 b 6= 0
�

�
�

��+ ? ?

c = 0 c 6= 0 C

? ?



�
J
Ĵ

C C t = 0 t 6= 0

?

C





�

@
@@R

r = 0 r 6= 0




�
@
@R

q = 0 q 6= 0
?

H
HHHj

p = 0 p 6= 0

The cylindrical algebraic decomposition of {ax2 + bx + c} is given by the
tree above, where t = bx + c , q = 2ax + b, and r = 4ac − b2. This is the
best possible output for that method.
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Cylindrical algebraic decomposition of Rn (1/2)

Definition

A CAD of Rn is a partition of Rn, where

all the cells are cylindrically arranged, that is, for all 1 ≤ j < n the
projections on the first j coordinates (x1, . . . , xj) of any two cells are
either identical or disjoint.

each cell is a connected semi-algebraic subset, called a region

Complexity of CAD

Unfortunately the number of cells can be doubly exponential in n.

Case of n = 1

This is a finite partition of the real line into points and open intervals.
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Cylindrical algebraic decomposition of Rn (2/2)

Case of n > 1

From a CAD D ′ of Rn−1, one builds a CAD D of Rn. Above each R ∈ D ′:

consider finitely many disjoint graphs (called sections) of continuous
real-valued algebraic functions,

decomposing the cylinder R × R1, into sections and sectors (located
between two consecutive sections), which form a stack over R,

then all the sections and sectors are the elements of D.
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A Cylindrical Algebraic Decomposition of R2 Induced by
the Tacnode Curve

Tacnode curve: y4 − 2y3 + y2 − 3x2y + 2x4 = 0.
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RealTriangularize applied to the Tacnode Curve
> R := PolynomialRing([x,y]);

> F := [y^4-2*y^3+y^2-3*x^2*y+2*x^4];

> RealTriangularize(F, R, output=record);

{ 4 2 4 3 2

{ 2 x - 3 y x + y - 2 y + y = 0

{

{ 0 < y { x = 0

{ , { ,

{ y - 1 <> 0 { y = 0

{

{ 2

{ 8 y - 16 y < 1

{ x = 0 { 2

{ , { 2 x - 3 = 0 ,

{ y - 1 = 0 {

{ y - 1 = 0

{ 2

{ 32 y x - 48 y - 3 = 0

{

{ 2

{ 8 y - 16 y - 1 = 0
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