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1. Introduction

Triangular sets appear under various names in many papers concerning systems of poly-
nomial equations. Ritt (1932) introduced them as characteristic sets. He described also an
algorithm for solving polynomial systems by computing characteristic sets of prime ideals
and factorizing in field extensions. Characteristic sets of prime ideals have good prop-
erties but factorization in algebraic extensions is, most of the time, too costly. In order
to avoid factorizations, Wu’s algorithm (Wu, 1986, 1987) computes characteristic sets of
finite sets of polynomials which do not generate necessarily prime ideals. Wu’s algorithm
may produce redundant decompositions of varieties and may not discover their possible
emptiness. Several authors continued and improved Wu’s approach, mainly Chou and
Gao (1990, 1991a, 1992), Gallo and Mishra (1990, 1991) and Wang (1992, 1993, 1995).

Kalkbrener (1991) and Yang and Zhang (1994) introduced particular triangular sets,
called regular chains. Taking advantage of the good properties of regular chains, Kalk-
brener presented also an algorithm for decomposing a variety into unmixed-dimensional
non-empty components described as regular chains. In addition, Lazard (1991a) intro-
duced the notion of normalized triangular sets which are special regular chains and he
provided a method for uniquely decomposing the solution of a polynomial system as
regular zeros of such normalized triangular sets. This avoids the problems resulting from
the non-canonicity of Wu’s and other decompositions. Following the work of Lazard
(1992), an efficient alogrithm for solving zero-dimensional systems by means of normal-
ized triangular sets is reported in Moreno Maza and Rioboo (1995). Wang (1998a) gave
a generalization of the notion of a regular chain to pairs of polynomial sets (one set for
equations and the other one for inequations) whose union is a triangular set, such pairs
being called simple systems. He also presented an algorithm for solving polynomial sys-
tems by means of simple systems. The relationships between most of these algorithms and
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other methods for solving polynomial systems is discussed in the review paper of Lazard
(1991b) while an experimental comparison of several methods for computing triangular
decompositions is presented in Aubry and Moreno Maza (1997).

On the other hand, it has been remarked for a long time that field extensions of finite
type are well represented as towers of simple transcendental or algebraic extensions,
themselves represented by triangular sets. As irreducible varieties correspond to field
extensions, solving polynomial systems may be viewed as equivalent to find the triangular
sets corresponding to the fields associated to the components of the variety.

All these theories are very close together and the situation is rather confusing because
many slightly different notions are used under the same (or, on the contrary, completely
different) names by various authors. In this paper we are concerned with the clarification
of this situation and we think that our main result is a step in this direction. More
specifically we study the theoretical relationship between these various approaches to
triangular sets, namely characteristic set (Ritt, 1932; Wu, 1984a), regular chain and
representation of a regular chain (Kalkbrener, 1991), tower of simple extensions (Lazard,
1991a), regular set (Moreno Maza, 1997).

One can easily verify that if T is a reduced triangular set contained in a prime ideal
P, then the following conditions are equivalent:

(i) T is a regular chain whose representation is P,
(ii) T is a regular set which describes a tower of field extension defining the field asso-

ciated to P,
(iii) P is the set of all polynomials reducible to 0 by T ,
(iv) T is a Ritt characteristic set of P.

It appears also that an ideal is naturally associated to any triangular set; we call it the
saturated ideal. We review or define precisely all the above notions when the saturated
ideal is not necessarily prime. We prove their main properties and study the relationship
between them. Our main result is that, for a non-empty triangular set T , the following
conditions are equivalent:

(i) T is a regular chain,
(ii) T is a regular set, which is the name we give for the generalization of triangular

sets defining towers of field extensions,
(iii) the set of all polynomials reducible to 0 by T is the saturated ideal of T ,
(iv) T is a Ritt characteristic set of its saturated ideal.

The paper is structured as follows. Section 2 consists mainly of standard preliminar-
ies. In Section 3, we review Ritt characteristic sets and the way they are used in the
algorithms of Ritt (1966), and Wu (1987). We also examine the relationship between
Ritt characteristic sets and Gröbner bases. In fact Ritt characteristic sets may easily be
deduced from lexicographical Gröbner bases. In Section 4, we study properties of regular
chains and establish that the ideal associated to a regular chain (namely its represen-
tation) is the radical of the saturated ideal of T . In Section 5 we define regular sets
and their associated tower of simple extensions. We give an isomorphism which shows
the relation between the saturated ideal of a regular set and its tower. The very short
Section 6 states precisely the above mentioned main result and proves it as a corollary of
the preceding sections. Some natural results which appear in the paper may have been
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stated earlier (or may easily be deduced from earlier work) but we have not always found
the original sources. For this reason and for an easier reading, several results which are
not new are given with self-contained proofs.

2. Preliminaries

2.1. triangular sets

In this section we define our notations related to multivariate polynomials and we
recall the most general definition for triangular sets, as in Wang (1993) where they are
called triangular forms. We present a terminology which is completely different from the
one of Gröbner basis theory, even if the notions are similar, in order to avoid confusion
when both theories are used simultaneously. Note also that the term of initial is standard
in differential algebra.

Notation 2.1. Let k be a field and x1 < x2 < · · · < xn be n ordered variables. For
every i in the range 1 . . . n we define Pi = k[x1, . . . , xi] to be the ring of multivariate
polynomials in the variables x1, . . . , xi with coefficients in k. We also put P0 = k. Let
p ∈ Pn with p 6∈ k. We write deg(p, xi) for the degree of p with respect to xi.

Definition 2.1. Let p ∈ Pn with p 6∈ k. We call the main variable of p, denoted
by mvar(p), the greatest variable v ∈ {x1, . . . , xn} such that deg(p, v) 6= 0. Assuming
mvar(p) = xi, let us regard p as a univariate polynomial in Pi−1[xi]. Thus, we can write
p = cxi

d + r, where d = deg(p, xi), c ∈ Pi−1, r ∈ Pi and r 6= 0 ⇒ deg(r, xi) < d. The
quantities c, d and r are respectively called the initial, the main degree and the tail of
p and denoted by init(p), mdeg(p) and tail(p). Finally, we call the head of p, denoted by
head(p), the polynomial p− tail(p).

Example 2.1. Assume n ≥ 3 and let p ∈ Pn. If p = x1x
2
3 − 2x2x3 + 1, then we have

mvar(p) = x3, mdeg(p) = 2, init(p) = x1, tail(p) = −2x2x3 + 1 and head(p) = x1x
2
3.

Definition 2.2. A subset T of Pn is called a triangular set if no element of T lies in k
and if for all p, q ∈ T with p 6= q we have mvar(p) 6= mvar(q). A variable v ∈ {x1, . . . , xn}
is called algebraic w.r.t. T if there exists p ∈ T such that v = mvar(p). We denote by
algVar(T ) the set of all variables which are algebraic w.r.t. T .

Example 2.2. Assume n ≥ 4. The subset T1 = {x2
2 − x1, x1x

2
3 − 2x2x3 + 1, (x2x3 −

1)x4 +x2
2} of Pn is a triangular set (whose algebraic variables are x2, x3, x4) whereas the

subset T2 = {x2
1x2 + 1, x1x

2
2 − 1} of Pn is not a triangular set.

Example 2.3. Let p ∈ Pn. Let iter(p) be the subset of Pn recursively defined as follows:
if p ∈ R then iter(p) = ∅ otherwise iter(p) = {p} ∪ iter(init(p)).

Then iter(p) is a triangular set of Pn whose elements are called the iterated initials of
p. For instance, with p = (x2x3 − 1)x4 + x2

2 we have iter(p) = {x2, x2x3 − 1, p}.

2.2. reduced triangular sets

In this section we first recall the partial ordering on the polynomials which is used
in various algorithms dealing with triangular sets, and especially in the one of Ritt
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(1966) and Wu (1987). The termination of this algorithm is also based on the notion of
reduced triangular sets (Definition 2.5) called chains in Ritt (1966) and ascending sets
in Wu (1987). To increase the efficiency of the Ritt–Wu algorithm, one may use the
weaker notion of initially reduced triangular sets instead: see Moreno Maza (1997) for
some examples. Moreover, initially reduced triangular sets appear in the output of the
algorithm of Lazard (1991a) and Moreno Maza (1997) and in the connection between
triangular sets and Gröbner bases (Theorem 3.3).

Definition 2.3. Let p, q ∈ Pn. We say that p is smaller than q w.r.t. Ritt ordering and
we write p≺rq if one of the following assertions holds:

(i) p ∈ k and q 6∈ k,
(ii) p, q 6∈ k and mvar(p) < mvar(q),
(iii) p, q 6∈ k and mvar(p) = mvar(q) and mdeg(p) < mdeg(q).

We say that p is greater than q w.r.t. Ritt ordering and we write pÂrq if q≺rp. We say
that p and q are not comparable w.r.t. Ritt ordering and we write p∼rq if neither p≺rq
nor pÂrq hold.

Remark 2.1. For p ∈ Pn with p 6∈ k we have init(p)≺rp and tail(p)≺rp. Note also that
every decreasing chain w.r.t. the Ritt ordering starting at p breaks off after finitely many
steps.

Definition 2.4. Let p, q ∈ Pn with q 6∈ k. We say that p is reduced w.r.t. q in Ritt
sense and we write red?(p, q) if one of the following assertions holds:

(i) p≺rq,
(ii) p 6∈ k and mvar(p) > mvar(q) and red?(init(p), q) and red?(tail(p), q).

For a subset T of Pn we say that p is reduced w.r.t. T and we write red?(p, T ) if for every
t ∈ T the assertion red?(p, t) holds. We say that p is initially reduced w.r.t. q and we
write iRed?(p, q) if one of the following assertions holds:

(i) p≺rq,
(ii) p 6∈ k and mvar(p) > mvar(q) and iRed?(init(p), q).

For a subset T of Pn we say that p is initially reduced w.r.t. T and we write iRed?(p, T )
if for every t ∈ T the assertion iRed?(p, t) holds.

Proposition 2.1. For p, q ∈ Pn with q 6∈ k, the following assertions are equivalent:

(i) red?(p, q),
(ii) deg(p,mvar(q)) < mdeg(q).

Proof. The result is trivial if p≺rq. The general case is treated by induction on vd,
where v = mvar(p) and d = mdeg(p), using the Ritt ordering (see Remark 2.1).2
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Notation 2.2. Let T be a triangular set of Pn and i be an integer in {1, . . . , n}. If
xi is an algebraic variable w.r.t. T , we denote by Txi the polynomial in T whose main
variable is xi. We also define:

T−xi = T ∩Pi−1 and T+
xi = {t ∈ T | mvar(t) > xi}.

Definition 2.5. A triangular set T of Pn is called reduced (resp. initially reduced) if
for every v ∈ algVar(T ) we have red?( Tv, T−v ) (resp. iRed?( Tv, T−v )).

Example 2.4. Assume n ≥ 4. The subset T1 (Example 2.2) of Pn is an initially reduced
triangular set, but it is not reduced because of the tail of the third polynomial. The subset
T3 = {x1(x1 − 1), x2

1x2 + 1} of Pn is not initially reduced because of the initial of the
second polynomial.

Remark 2.2. Our notion of reduced triangular set is the same as in Ritt (1966) or
Wu (1987). However, our notion of initially reduced triangular set is weaker than Wu’s
notion of ascending set in the weak sense, see p. 6 in Wu (1987). Indeed, a triangular
set T has this latter property if for every t ∈ T , the head of t is reduced w.r.t. T \ {t},
whereas we only ask that for each polynomial p in iter(t) \ {t} such that there exists
q ∈ T with mvar(p) = mvar(q) we have red?(p, q). Wu remarked that without any notion
of reduction, his computations were frequently faster but may not terminate. Our notion
of initially reduced triangular guarantees the termination of Wu’s algorithm. Moreover,
the efficiency of the corresponding implementation compares to the one which does not
use any notion of reduction.

On the other hand, for the algorithm of Chou and Gao (1990) and the algorithm of
Wang (1993) the following notion of fine triangular sets, which is weaker than the one
of initially reduced triangular sets, is adequate. Moreover, fine triangular sets are crucial
for the main result of this paper (Theorem 6.1).

Notation 2.3. Let p, q ∈ Pn, with q 6∈ k. We denote by prem(p, q) and pquo(p, q) the
pseudo-remainder and the pseudo-quotient of p by q when interpreting them as univariate
in mvar(q). Let T ⊆ Pn be a triangular set. If T = ∅ we define prem(p, T ) = p otherwise we
define prem(p, T ) = prem(prem(p, Tv), T−v ) where v is the greatest variable of algVar(T ).
For instance, with T4 = {x1(x1 − 1), x1x2 − 1} and p = x2

2 + x1x2 + x2
1, we have

prem(p, T ) = prem(prem(p, Tx2), Tx1) = prem(x4
1 + x2

1 + 1, Tx1) = 2 x1 + 1.

Definition 2.6. A triangular set T of Pn is called fine if it is not empty and if for
every v ∈ algVar(T ) we have prem(init( Tv), T−v ) 6= 0.

2.3. saturated ideals and regular zeros

Triangular sets are deeply involved in polynomial system solving. In methods like those
of Wu (1987), Wang (1993), Lazard (1991a) and Moreno Maza (1997), one has to consider
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a particular subset of the affine variety associated to a triangular set (on an algebraic
closure of k), namely the set of regular zeros.

In the method of Kalkbrener, one has to consider a particular ideal associated with a
triangular set, namely its saturated ideal. This concept of saturated ideal associated with
a triangular set was first considered in Chou and Gao (1991b). However, the more general
concept of saturated ideal w.r.t. a multiplicatively closed subset of a ring is standard in
commutative algebra, see p. 90 in Bourbaki (1961).

To investigate triangular set properties, we recall these notions in this section.

Notation 2.4. For F ⊆ Pn we denote by 〈F 〉 the ideal of Pn generated by F and by√
〈F 〉 the radical of 〈F 〉. For h ∈ Pn we denote by 〈F 〉 : h the ideal quotient of 〈F 〉 by h

(i.e. the set of the polynomials p ∈ Pn such that p h ∈ 〈F 〉). Let T ⊆ Pn be a triangular
set. We denote by red 7→0(T ) the subset of Pn defined as follows:

red 7→0(T ) = {p ∈ Pn | prem(p, T ) = 0}.

Proposition 2.2. Let p ∈ Pn and T = {t1, . . . , t`} be a triangular set of Pn. Let
ck be the initial of tk. Then we have red?(prem(p, T ), T ). Moreover, there exist integers
e1, . . . , e` and polynomials q1, . . . , q` in Pn such that:

ce11 · · · ce`` p = q1t1 + · · ·+ q`t` + prem(p, T ).

Proof. This statement is easily obtained by induction on ` and using Proposition 2.1.
It appears in Wu (1984a) as the remainder formula.2

Definition 2.7. Let T ⊆ Pn be a non-empty triangular set. Let h be the product of
the initials of the polynomials in T . We call the saturated ideal of T the ideal of Pn

denoted by sat(T ) and defined as follows:

sat(T ) = {p ∈ Pn | (∃n ∈ N) hnp ∈ 〈T 〉}.
If T = ∅ we set sat(T ) = {0}.

Proposition 2.3. For any triangular set T ⊆ Pn we have:

red 7→0(T ) ⊆ sat(T ).

The set red 7→0(T ) is not necessarily an ideal of Pn and the previous inclusion is not
necessarily an equality.

Proof. The above inclusion is obviously obtained from Proposition 2.2. Let us now give
a counter-example illustrating the fact that red7→0(T ) is not necessarily an ideal of Pn.
Assume n ≥ 2 and consider the following triangular set T4 = {x1(x1− 1), x1x2− 1}. One
can check that a lexicographical Gröbner basis of sat(T4) is {x1 − 1, x2 − 1}. We define
p = (x1−1)(x1x2−1) and q = −(x1−1)x1x2. We see that prem(p, T4) = prem(q, T4) = 0.
But we have p+ q = 1− x1 and thus (p+ q) 6∈ red7→0(T4).2

Notation 2.5. Let K be an algebraic closure of k. For F ⊆ Pn we denote by V(F )
the affine variety of Kn associated with F (i.e. the set of the points in Kn where every
polynomial in F vanishes). For W ⊆ Kn we denote by W the Zariski closure of W w.r.t.
k (i.e. the intersection of those V(F ) containing W , for any F ⊆ Pn).
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Definition 2.8. Let T ⊆ Pn be a non-empty triangular set. Let h be the product of
the initials of the polynomials in T . We call the regular zeros of T the elements of the
subset of V(T ) denoted by W(T ) and defined as follows:

W(T ) = V(T ) \V(h).

The triangular set T is called consistent if W(T ) 6= ∅, or, in other words, if h 6∈
√
〈T 〉.

Theorem 2.1. For any non-empty triangular set T ⊆ Pn we have:

W(T ) = V(sat(T )).

Proof. It is clear that W(T ) = V(
√
〈T 〉) \V(h). Thus, by Theorem 7, p. 193, in Cox

et al. (1992), we have W(T ) = V(
√
〈T 〉 : h). Finally, one can check that for any positive

integer k > 0 we have
√
〈T 〉 : h =

√
〈T 〉 : hk and thus

√
〈T 〉 : h =

√
sat(T ).2

3. Characteristic Sets

Ritt (1932) introduced the concept of a characteristic set of a finite or infinite set of
differential polynomials; see p. 4 in Ritt (1966). One of his goals was to provide a method
to solve systems of differential equations. A byproduct of that work is an algorithm for
solving systems of algebraic equations by means of triangular sets, p. 95 in Ritt (1966).
More precisely, given a finite subset F of Pn, Ritt’s algorithm computes characteristic
sets T1, . . . , T` of prime ideals such that:

V(F ) = ∪`1W(Ti).

Characteristic sets of prime ideals have good properties (see Theorem 3.3) but Ritt’s
process involves factorization in field extensions.

Wu (1986, 1987) used Ritt’s work to provide an algorithm for solving systems of alge-
braic equations by means of triangular sets which only requires pseudo-remainder com-
putations (i.e. no factorizations are needed). Wu’s process is based on a procedure called
CHRST-REM, see p. 3 in Wu (1987). Given a finite subset F of Pn, this procedure
computes a characteristic set T of a finite subset G of Pn such that 〈F 〉 = 〈G〉. But this
T is not necessarily a characteristic set of 〈F 〉. If F generates the unit ideal of Pn, it is
not always possible to discover it by using the procedure CHRST-REM. Moreover, the
decompositions provided by Wu’s algorithm (Wu, 1987) may be redundant. See Chapter
6 in Moreno Maza (1997) for some examples. However, Chou and Gao (1992) proved that
Wu’s algorithm provides a decomposition of an affine variety into unmixed-dimensional
(or empty) components, and provided an algorithm for removing empty components.

Wu used the concept of characteristic set in a more general situation than Ritt did
in his algorithm. But Wu did not give a precise definition for his case: in Wu (1987) a
characteristic set is the result of algorithm CHRST-REM. The output of this algorithm
depends on the ordering in which the input polynomials are being read. Taking into
account the way algorithm CHRST-REM works, we propose the Definition 3.1 below
for a characteristic set in the sense of Wu.

Wu characteristic set computations are based on Ritt ordering (see Definition 3.2) for
reduced triangular sets. In view of our Theorem 6.1 we extend Ritt ordering defined for
reduced triangular sets in p. 4 of Ritt (1966) to fine triangular sets. With this modifica-
tion, we review Ritt definition for characteristic sets of ideals in Pn (Definition. 3.3) and
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their basic properties (Proposition. 3.3, Theorem. 3.1). Until Remark 3.2, the content of
this section is standard, but generally stated for reduced characteristic sets (Ritt, 1966),
whereas we are concerned here with fine triangular sets. Then, we show how a Ritt char-
acteristic set of an ideal I can easily be produced from a lexicographical Gröbner basis
of I (Propositions 3.4, 3.5 and Theorem 3.2). Following Ritt (1966) we also investigate
the case of prime ideals (Theorem 3.3).

Notation 3.1. Throughout this section F will denote a non-empty subset of non-null
polynomials of Pn.

Definition 3.1. A non-empty subset T of 〈F 〉 is a Wu characteristic set of F if one of
the following conditions holds:

(i) T = {a} for a 6= 0 in k,
(ii) T is a triangular set and there exists a subset G of 〈F 〉 such that 〈F 〉 = 〈G〉 and

G ⊆ red7→0(T ).

Proposition 3.1. Let T = {t1, . . . , t`} be a triangular set of Pn. We denote by ck the
initial of tk. If T is a Wu characteristic set of F , then we have:

(i) 〈F 〉 ⊆ sat(T ),
(ii) W(T ) ⊆ V(F ) ⊆ V(T ),

(iii) V(F ) = W(T ) ∪ ∪l1V(F ∪ {ck}),
(iv) If 〈F 〉 is a prime ideal and if W(T ) 6= ∅ then we have V(F ) = W(T ).

Proof. Property (i) is deduced from Proposition 2.3. Then, property (ii) results from
(i) and Theorem 2.1. As (ii) holds, we clearly have:

W(T ) ∪ ∪l1V(F ∪ {ck}) ⊆ V(F ).

Conversely, because W(T ) ⊆ V(F ) ⊆ V(T ), if a point ζ ∈ V(F ) does not belong to
W(T ), then it lies in one of the V(F ∪ {ck}). Property (iv) follows easily from (iii).2

Remark 3.1. Let F and T be as above. The triangular set T may be a Wu characteristic
set of F even if F generates the unit ideal of Pn. For instance, choose F = T1 as in
Example 2.2. In that case F is a Wu characteristic set of itself but we have 〈F 〉 = 〈1〉.

Definition 3.2. Let T = {t1, . . . , t`} and S = {s1, . . . , sk} be two fine triangular sets
of Pn. We say that T is smaller than S w.r.t. Ritt ordering and we write T≺rS if one of
the following conditions holds:

(i) (∃i ∈ {1, . . . ,min(k, `)}) (∀j ∈ {1, . . . , i− 1}) tj∼rsj and ti <r si,
(ii) ` > k and (∀j ∈ {1, . . . , k}) tj∼rsj .

We say that T is greater than S w.r.t. Ritt ordering and we write TÂrS if S≺rT . We
say that T and S are not comparable w.r.t. Ritt ordering and we write T∼rS if neither
T≺rS nor TÂrS holds.

Proposition 3.2. Let T = {t1, . . . , t`} and S = {s1, . . . , sk} be two fine triangular sets
of Pn. Then the following assertions hold:
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(i) T∼rS ⇐⇒ l = kand(∀j ∈ {1, . . . , k})tj∼rsj,
(ii) (∀p ∈ Pn \ k) (red?(p, T )andxi = mvar(p)) =⇒ T−xi ∪ {p}≺rT .

Proof. This statement results obviously from Definitions 2.4 and 3.2.2

Definition 3.3. A subset T of F is a Ritt characteristic set of F if one of the following
conditions holds:

(i) T = {a} for a 6= 0 in k,
(ii) F ∩ k ⊆ {0} and T is a minimal element for ≺r in F , where F denotes the set of

all fine triangular sets contained in F .

Proposition 3.3. Let T be a Ritt characteristic set of 〈F 〉. Then T is a Wu charac-
teristic set of F . Moreover, if T is a triangular set, then we have 〈F 〉 ⊆ red7→0(T ).

Proof. The case T ⊂ k is trivial. So we assume that T is a triangular set. Thus we
have 〈F 〉 ∩ k = {0}. Let f ∈ 〈F 〉. We define r = prem(f, T ). From (i) of Proposition 2.2
we get r ∈ 〈F 〉. Assuming r 6= 0, we have r 6∈ k and r has a main variable v. From
Proposition 3.2 and (ii) of Proposition 2.2 we have:

T−v ∪ {r}≺rT.
This leads to a contradiction and shows that r = 0 and 〈F 〉 ⊆ red7→0(T ).2

Theorem 3.1. Let T be a fine triangular set contained in 〈F 〉. Then the following
conditions are equivalent:

(i) T is a Ritt characteristic set of 〈F 〉,
(ii) 〈F 〉 ⊆ red 7→0(T ).

Proof. From Proposition 3.3 we only need to prove that if T is not a Ritt characteristic
set of 〈F 〉 then there exists a polynomial p ∈ 〈F 〉 such that prem(p, T ) 6= 0. Thus
we assume that there exists a fine triangular set S ⊆ 〈F 〉 such that S≺rT . We define
S = {s1, . . . , sk} and T = {t1, . . . , t`}. If S is not reduced, and because S is a fine
triangular set, we can replace sj by prem(sj , {s1, . . . , sj−1}) for j in the range 2 . . . k
without violating any of the previous assumptions. We distinguish two cases.

First if ` < k and for all j ∈ {1, . . . , `} we have tj∼rsj , then let p = s`+1. Note
that red?(p, {s1, . . . , s`}). As for all j ∈ {1, . . . , `} we have tj∼rsj we also obtain
red?(p, {t1, . . . , t`}). Now if there exists i ∈ {1, . . . ,min(k, `)} such that si≺rti and for all
j ∈ {1, . . . , i−1} we have tj∼rsj , then let p = si. As above we have red?(p, {t1, . . . , ti−1}).
As p≺rti and as for j ∈ {i + 1, . . . , `} we have mvar(p)≺rmvar(tj), we obtain
red?(p, {t1, . . . , t`}). Finally, in both cases, we have found a polynomial p ∈ 〈F 〉 such
that prem(p, T ) 6= 0.2

Remark 3.2. Computing Wu characteristic sets by means of Wu’s procedure CHRST-
REM is a hard task on some examples. Thus, in Wang (1992), the following weaker notion
is used: a triangular set T contained in 〈F 〉 is called a medial set of F if it is not greater
w.r.t. Ritt ordering than any characteristic set of F . Of course, a Wu characteristic set
of F and thus a Ritt characteristic set of 〈F 〉 are medial sets of F .
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3.1. characteristic sets and lexicographical Gröbner bases

Notation 3.2. From now on, we assume 〈F 〉 6= Pn. We define I = 〈F 〉. Let ≺lex be
the lexicographical ordering on the monomials of Pn w.r.t the ordering x1 < · · · < xn.
Let p ∈ Pn. We denote by lm(p) the leading monomial of p w.r.t. ≺lex and by lc(p) the
corresponding leading coefficient in k. Let G be the minimal Gröbner basis of I w.r.t.
≺lex such that for every g ∈ G we have lc(p) = 1. We define lm(G) = {lm(g) | g ∈ G}.
Recall that if p lies in I then there exists g ∈ G such that lm(g) divides lm(p). Let v be
a variable in {x1, . . . , xn}. Now, we define:

Gv = {g ∈ G | mvar(g) = v} and G−v = {g ∈ G | mvar(g) < v}.
Finally, we denote by algVar(G) the set of those variables v such that Gv 6= ∅.

Definition 3.4. LetG be as above and let algVar(G) = {y1, . . . , ym} with y1 < · · · < ym.
We call the median set of F and denote by M(F ) the subset of G defined as follows:

(i) if m = 1 thenM(F ) = {g1} where g1 is the smallest polynomial in Gy1 w.r.t. ≺lex,
(ii) if m > 1 then defining T =M( G−ym) we distinguish two cases:

(a) if Gym ⊆ red7→0(T ) then M(F ) = T ,
(b) if Gym 6⊆ red7→0(T ) then M(F ) = T ∪ {gm} where gm is the smallest poly-

nomial g in Gym w.r.t. ≺lex such that prem(g, T ) 6= 0.

Example 3.1. Assume n ≥ 4 and define F = {x1x2, x2x3, x3x4}. Then we have G = F
and M(F ) = {x1x2, x3x4}.

Example 3.2. Assume n ≥ 4 and define F = {x2
2 − x1, x

2
3 − 2x2x3 + x1, (x3 − x2)x4}.

Then we have G = F and M(F ) = G. Note that W(M(F )) = ∅ because (x3 − x2) lies
in the radical of G−x4

.

Remark 3.3. Even if F generates a radical ideal we may have W(M(F )) = ∅. Assume
n ≥ 4 and consider F = {x2

1 − 2, x2
2 − 2, (x1 − x2)x3, (x1 + x2)x4}. In this case we have

G = F∪{x3x4} and M(F ) = F . We easily check that the product of the initials of Fx3

and Fx4 lies in the ideal generated by F−x3
. In order to avoid W(M(F )) being empty,

one may assume that F generates a prime ideal (see Theorem 3.3).

Proposition 3.4. The median set M(F ) is a non-empty triangular set such that

M(F ) ⊆ 〈F 〉 ⊆ red7→0(M(F )).

Proof. Let I and G be as in Notation 3.2 and set T = M(F ). Remark that T is not
empty and that the first inclusion is trivial. Let us prove the second one. Suppose that
there exists some p ∈ I such that p 6∈ red7→0(M(F )). Let r = prem(p, T ). Note that r ∈ I.
Thus, there exists g ∈ G such that lm(r) is a multiple of lm(g). As red?(r, T ) we have also
red?(lm(r), T ) and red?(lm(g), T ). Let v = mvar(g). It follows from Definition 3.4 that
either g ∈ red 7→0( T−v ), or g = Tv, or lm( Tv)≺lexlm(g). As red?(lm(g), T ) the last two
cases are impossible. Suppose that the first one holds. Define h = init(g). Thus we have
prem(h, T−v ) = 0 and one can check that there exists a polynomial c ∈ iter(h) such that
mvar(c) ∈ algVar( T−v ) and prem(c, T−v ) = 0. Hence c and lm(g) are not reduced w.r.t.
T−v . This contradicts Definition 3.4.2
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Proposition 3.5. The median set M(F ) is a fine triangular set.

Proof. Let I and G be as in Notation 3.2 and define T =M(F ). Assume that for some
v ∈ algVar(T ) we have prem(init(gv),M(F )) = 0 and put r = prem(tail(gv), T−v ). Then,
one can check that:

prem(gv, T−v ) = r.

As T−v ∪ {gv} ⊆ I we get r ∈ I. Thus, by Proposition 3.4 we have prem(r, T ) = 0. As
red?(r, T ), in fact we have r = 0. Hence prem(gv, T−v ) = 0. This contradicts the definition
of M(F ).2

Theorem 3.2. The median set M(F ) is a Ritt characteristic set of 〈F 〉.

Proof. This statement results from Theorem 3.1 and Propositions 3.4 and 3.5.2

Proposition 3.6. The median set M(F ) is initially reduced.

Proof. Let I and G be as in Notation 3.2. We define T = M(F ). Assume that T
is not initially reduced. Thus, there exists v ∈ algVar(T ) such that Tv is not initially
reduced w.r.t. T−v . We choose v as small as possible. It is clear that T−v 6= ∅. As T
is a fine triangular set, we have prem(init( Tv), T−v ) 6= 0. Then by multiplying Tv by a
product of the initials of T−v we can compute a polynomial t ∈ I such that mvar(t) = v,
the polynomial t is reduced w.r.t. T−v and lm(t)≺lexlm( Tv). Consequently, due to the
definition of T , the monomial lm(t) can be divided by one of those polynomials g ∈ Gv
such that prem(g, T−v ) = 0. This shows that t is not reduced w.r.t. T−v and leads to a
contradiction.2

Remark 3.4. Theorem 3.2 shows that every ideal I of Pn possesses a Ritt characteristic
set and that such a set is not harder to compute than a lexicographical Gröbner basis
of I. Moreover, to check whether a subset C of I is a Ritt characteristic set of I it is
sufficient to verify that C is a fine triangular set such that C∼rM(I). The following
theorem shows that if F generates a prime ideal then M(F ) is consistent and is easier
to obtain than in the general case.

Notation 3.3. For v ∈ algVar(G), if Gv 6= ∅ we denote by gv the smallest polyno-
mial in Gv w.r.t. ≺lex. We denote by TG the triangular set whose elements are these
polynomials gv.

Theorem 3.3. If F generates a prime ideal in Pn, then we have:

(i) M(F ) = TG,
(ii) 〈F 〉 = sat(M(F )),

(iii) V(F ) = W(M(F )),
(iv) M(F ) is consistent.

Proof. Let I and G be as in Notation 3.2. For convenience, we simply write T instead
of TG. We first prove (i). Let v ∈ algVar(T ). We shall verify that Tv is initially reduced
w.r.t. T−v . Let us assume the contrary. So let h be in iter( Tv) with w = mvar(h). Let us
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assume that w ∈ algVar( T−v ) and that h is not reduced w.r.t. Tw. Thus there exist an
integer e and two polynomials q and r such that:

init( Tw)e h = q Tw + r and r≺r Tw.
If r = 0 then init( Tw)eh ∈ I. As I is a prime ideal, either init( Tw) or h would lie in I.
This is impossible: G is a minimal Gröbner basis and thus for every g ∈ G, no polynomial
in iter(init(g)) can belong to I. If r 6= 0 then we can reduce Tv w.r.t. Tw and obtain a
polynomial t ∈ I such that mvar(t) = v and lm(t)≺lexlm( Tv). As G is a minimal Gröbner
basis of I, and since Tv is the smallest polynomial in G with v as main variable, we are
led to another contradiction. This completes the proof of (i). We now prove (ii). From
Propositions 3.4 and 2.3 we only need to verify: I ⊇ sat(T ). Let p ∈ sat(T ). There exists
a product π of the initials of T such that πp lies in the ideal generated by T and thus in
I. We have already remarked that no initial of T could lie in I. Thus, as I is a prime
ideal, we have p ∈ I. Point (iii) follows from (ii) and Theorem 2.1. Finally, point (iv)
follows from (iii) because we have assumed I 6= Pn.2

4. Regular Chains

The concept of a regular chain was introduced independently by Yang and Zhang
(1994) and Kalkbrener (1991). Regular chains also appear in Chou and Gao (1992).
Regular chains are special fine triangular sets which are used by these authors to provide
algorithms for computing unmixed-dimensional decompositions of algebraic varieties.
Without using factorization, these decompositions have better properties than the ones
produced by Wu’s algorithm.

Kalkbrenner’s original definition was based on the following remark. As every irre-
ducible variety is uniquely determined by one of its generic points, varieties can be rep-
resented by describing the generic points of their irreducible components. These generic
points are given in Kalkbrener (1991) by regular chains.

As varieties correspond to radical ideals and generic points to prime ideals, varieties can
also be represented by describing their associated prime ideals. These associated prime
ideals are given by regular chains in Kalkbrener (1998) where regular chains correspond
to a particular case of system of representations. The Definition 4.1 below follows this
second point of view.

Propositions 4.1 and 4.2 give a practical characterization of the representation of a
regular chain. Propositions 4.3 and 4.4 give practical properties of the radical of the sat-
urated ideal of a regular chain. Finally, Theorem 4.1 states the main result of this section:
the representation of a regular chain is the radical of its saturated ideal. This result is
close to Lemma 4.3 in Kalkbrener (1998) which is essentially an induction assertion for
our theorem. As the context is not exactly the same we provide a self-contained proof.

Notation 4.1. Let A be a commutative Noetherian ring with units. We denote by
reg(A) the multiplicatively closed subset of A consisting of the regular elements of A
(i.e. the elements of A which are not zero-divisors). Then we denote by fr(A) the total
quotient ring of A (i.e. the ring of fractions with numerators from A and denominators
from reg(A)). Let I be an ideal of A. We denote by A/I the residue class ring of A by
I, we denote by

√
I the radical of I and we denote by I[x] the ideal generated by I in

A[x]. For h ∈ A we denote by I : h∞ the saturated ideal of I w.r.t. h (i.e. the set of
the a ∈ A such that there exists a non-negative integer e with he a ∈ I). For p ∈ A[x]
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we denote by pI the canonical image of p in fr(A/I)[x]. Finally, for any prime ideal P
associated to I, defining κ = fr( A/P), we will write pκ for pP .

Remark 4.1. The following basic relations and properties will be useful in this section
and in the next one. First note that

√
I[x] =

√
I[x] and (I : h∞)[x] = (I[x]) : h∞. Let

p ∈ A[x] with p 6∈ A. The polynomial pI is monic in fr(A/I)[x] iff for any prime ideal
P associated to I the initial of p does not belong to P. See vol. 1, p.214 in Samuel and
Zariski (1967). Assume from now on that pI is monic. Then we clearly have deg(p, x) =
deg(pI , x). Moreover, giving another polynomial r ∈ A[x] with r 6∈ A, if deg(r, x) <
deg(p, x) because we have deg(rI , x) < deg(pI , x).

Example 4.1. Assume n ≥ 3, let k = Q the field of rational numbers. Let T5 = {p1, p2}
where p1 = x4

1 − 5 x2
1 + 6 and p2 =

(
x2

1 − 2
)
x2

2 +
(
−2 x3

1 + 4 x1

)
x2 + x4

1 − 2 x2
1. Let I

be the ideal generated by T5 in Pn. We have the following primary decomposition:

I = 〈x2
1 − 3, (x2 − x1)2〉 ∩ 〈x2

1 − 2〉.
Thus the associated prime ideals of I are P1 = 〈x2

1 − 3, (x2 − x1)〉 and P2 = 〈x2
1 − 2〉 so

that we have
√
I = P1 ∩ P2. Hence the associated fields of I are

κ1 = fr(Q[x1, x2]/P1) = Q(
√

3) and κ2 = fr(Q[x1, x2]/P2) = Q(
√

2)(x2).

Now let p3 = (x2
1 − 2) x4

3 + (x2 − x1) x3
3 + (1− x1) x3 + 1 and put h = init(p3). We have

h
κ1 = 1 and h

κ2 = 0. This shows that pI is not monic in fr(A/I)[x].

Notation 4.2. Let T be a triangular set of Pi and let j ∈ {1, . . . , i}. From now on
Repj(T ) will denote an ideal of Pj and we define Rep0(T ) = {0}. Then Kj(T ) will denote
the set of all fields κ = fr(Pj/P), where P is a prime ideal associated to Repj(T ). Finally
we denote by satj(T ) the saturated ideal of T ∩Pj in Pj . Note from Remark 4.1 that if
xi 6∈ algVar(T ) then we have sati(T ) = sati−1(T )[xi].

Definition 4.1. We say that T is a regular chain in Pi whose representation is Repi(T )
if one of the following conditions holds:

(i) i = 0 and the set T is empty,
(ii) i > 0, the set T−xi is a regular chain of Pi−1 whose representation is Repi−1(T )

such that one of both assertions holds:

(a) xi 6∈ algVar(T ) and for every p ∈ Pi we have:

p ∈ Repi(T ) ⇐⇒ (∀κ ∈ Ki−1( T−xi)) pκ = 0,

(b) xi ∈ algVar(T ), and for every κ ∈ Ki−1( T−xi) we have init( Txi)
κ 6= 0 and for

every p ∈ Pi we have:

p ∈ Repi(T ) ⇐⇒ (∀κ ∈ Ki−1( T−xi)) pκ ∈
√
〈 Txi

κ〉.

Example 4.2. Assume n ≥ 3 and let p1, p2, p3 be as in Example 4.1. The set {p1} is
clearly a regular chain in Pn whose representation is 〈p1〉. However, {p1, p2} is not a
regular chain in Pn because init(p2) vanishes w.r.t. one of the prime ideals associated to
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〈p1〉. The two sets C1 = {x2
1− 3, (x2−x1)2} and C2 = {x2

1− 2} are regular chains whose
representations are respectively P1 and P2. The set C1 ∪{p3} is a regular chain because
h
κ1 = 1 where h = init(p3) and its representation is 〈x2

1 − 3, x2 − x1, (x2
3 − x1) (x2

3 + 1)〉.

Proposition 4.1. Let T be a regular chain in Pi. Then we have

xi 6∈ algVar(T ) =⇒ Repi(T ) =
√

Repi−1(T )[xi].

Proof. Let p ∈ Pi and let κ ∈ Ki−1( T−xi). The relation pκ = 0 means that every
coefficient of p as a univariate polynomial in Pi−1[xi] is null in κ. Thus f ∈ Repi(T )
means that every coefficient of p as a univariate polynomial in Pi−1[xi] lies in every
prime ideal associated to Repi−1(T ). Finally, the statement results from the fact that√

Repi−1(T ) is the intersection of the prime ideals associated to Repi−1(T ).2

Proposition 4.2. Let T be a regular chain in Pi. Then we have

xi ∈ algVar(T ) =⇒ Repi(T ) = {p ∈ Pi | (∃m ≥ 0) prem(pm, Txi) ∈ Repi( T−xi)}.

Proof. Let p ∈ Pi. We define t = Txi and h = init(t). Let e ≥ 0 be an integer. We
define re = prem(pe, t). Let δe be a non-negative integer and let qe ∈ Pi such that:

hδepe = qet+ re. (4.1)

We first assume that p ∈ Repi(T ). We prove that there exists an integer m ≥ 0 such that
rm ∈ Repi( T−xi). Let κ ∈ Ki−1( T−xi). By point (b) of Definition 4.1 there exists an integer
m ≥ 0 such that (pκ)m lies in the ideal generated by tκ. By choosing an m big enough,
we can take the same integer m for every prime ideal P associated to Repi−1( T−xi). With
the relation (4.1) we see that rmκ lies in the ideal generated by t

κ. By Remark 4.1 it
follows that rmκ = 0. In the same way as in the proof of Proposition 4.1 we obtain:

rm ∈
√

Repi−1( T−xi)[xi].

Finally, from the statement of the same proposition we are led to rm ∈ Repi( T−xi).
Conversely, assume that there exists an integer m ≥ 0 such that rm ∈ Repi( T−xi). We
prove that p ∈ Repi(T ). Let κ ∈ Ki−1( T−xi). As rmκ = 0, with the above relation (4.1),
we see that hδmpm

κ ∈ 〈tκ〉. By point (b) of Definition 4.1, the element hδm
κ

is invertible.
Then it follows that pκ lies in the radical of 〈tκ〉. Finally we obtain p ∈ Repi(T ).2

Proposition 4.3. Let T be a non-empty triangular set of Pi with xi ∈ algVar(T ) and
let r ∈ Pi. We define t = Txi . We assume that the following assertions hold:

(i) for every prime ideal P associated to sati−1( T−xi) we have init(t) 6∈ P,
(ii) r ∈ sati(T ),

(iii) deg(r, xi) < mdeg(t).

Then we have r ∈
√

sati( T−xi).

Proof. We define h = init(t). We distinguish two cases. First we assume that T−xi = ∅.
From hypothesis (ii), there exists an integer δ ≥ 0 such that t divides hδr. From hy-
pothesis (iii), and because we are working in the integral domain Pi−1[xi] we obtain



On the Theories of Triangular Sets 119

r = 0, which proves our claim. Now let us assume that T−xi 6= ∅. We denote by h′

the product of the initials of the polynomials in T−xi . From hypothesis (ii), there ex-
ists an integer δ ≥ 0 and q ∈ Pi such that (hh′)δr + qt lies in the ideal generated by
T−xi in Pi. Let P be a prime ideal associated to sati−1( T−xi) and put κ = fr(Pi−1/P).

It is a classical remark that h′ 6∈ P. Thus, by hypothesis (i), the element hh′
κ

is in-
vertible. Therefore tκ divides rκ. As we are working with univariate polynomials with
coefficients in a field, hypothesis (iii) yields rκ = 0. Finally, the statement follows from
Remark 4.1.2

Proposition 4.4. Let T be a non-empty triangular set of Pi with xi ∈ algVar(T ) and
let p ∈ Pi. We define t = Txi . We assume that for every prime ideal P associated to
sati−1( T−xi) we have init(t) 6∈ P. Then the following conditions are equivalent:

(i) p ∈
√

sati(T ),

(ii) (∃m ≥ 0) | prem(pm, t) ∈
√

sati( T−xi).

Proof. We first prove that (i)⇒ (ii). Let m ≥ 0 be an integer such that pm ∈ sati(T ).
As t ∈ sati(T ), we clearly have prem(pm, t) ∈ sati(T ). Then Proposition 4.3 applies with
r = prem(pm, t) and we obtain (ii). We now prove (ii) ⇒ (i). Let m ≥ 0 be an integer
such that prem(pm, t) lies in the radical of sati( T−xi). If T−xi is empty we easily obtain (i).
So we assume T−xi 6= ∅. We denote by h′ the product of the initials of the polynomials
in T−xi . There exists an integer δ ≥ 0 and q ∈ Pi such that hδpm = qt + prem(pm, t).
Let I be the ideal generated by T in Pi. From (ii) we deduce prem(pm, t) ∈

√
I : h′∞.

As qt ∈ I we obtain hδpm ∈
√
I : h′∞. As sati(T ) = I : (hh′)∞, it is easy to check that

p ∈
√

sati(T ) and this completes the proof.2

Theorem 4.1. Let T be a regular chain in Pi. Then we have

Repi(T ) =
√

sati(T ).

Proof. We first assume i = 0. According to Definition 4.1, we have T = ∅ and Repi(T ) =
{0}. On the other hand, from Definition 2.7, we have sati(T ) = {0}. As Pi is an integral
domain, the result is obvious in that case. Now let i > 0. As T−xi is a regular chain, we
can assume that the theorem is true for i− 1. If xi 6∈ algVar(T ), then the equality easily
follows from Proposition 4.1, Remark 4.1 and the final remark in Notation 4.2. We now
assume xi ∈ algVar(T ). From Proposition 4.2, we have

Repi(T ) = {p ∈ Pi | (∃m ≥ 0) prem(pm, Txi) ∈ Repi( T−xi)}.
As xi 6∈ algVar( T−xi), we obtain from the previous case

Repi( T−xi) =
√

sati( T−xi).

Finally, the conclusion follows from Proposition 4.4.2

Proposition 4.5. If T is a regular chain in Pi, then T is consistent.
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Proof. From Theorems 2.1 and 4.1, and from Hilbert theorem of zeros we only need to
prove that Repi(T ) 6= Pi. It follows from Propositions 4.1 and 4.2 that 1 ∈ Repi(T ) iff
1 ∈ Repi−1( T−xi). Thus, as the statement is clear for i = 0, it also holds for any i.2

5. Towers of Simple Extensions

The notion of tower of simple extensions presented in this section generalize the usual
notion of tower of field extensions. Towers of simple extensions and regular chains will
appear in the final section as equivalent notions (Theorem 6.1). Moreover, the former
concept is useful to present Lazard triangular sets (Lazard, 1991a) in a simple way. It
is also convenient for presenting computations with multivariate polynomials modulo a
regular chain as computations with univariate polynomials, especially when working with
Lazard triangular sets (Moreno Maza, 1997).

Let us give first an idea of this notion, before introducing a precise definition (Defini-
tion 5.2). Given a tower of simple extensions, for i = 1 . . . n− 1, if Ai−1 is a floor in this
tower, the next floor Ai is built by applying one of the following rules:

(i) Ai = fr(Ai−1[xi]),
(ii) there exists a non-constant and monic ti ∈ Ai−1[xi] such that Ai=fr(Ai−1[xi]/〈ti〉).

As A0 = k, if each ti is irreducible as a polynomial in Ai−1[xi] then An is a field
and there exists a prime ideal P in Pn such that An and fr(Pn/P) are isomorphic.
Conversely, let P be a prime ideal in Pn and let Ai = fr(Pi/Pi ∩ P). If ξi is the image
of xi in Ai, then Ai = Ai−1(ξi) is a simple field extension. Thus, there is a one-to-one
correspondence between towers of field extensions (of k with n floors) and prime ideals (of
Pn). Therefore varieties can be represented by describing the towers of field extensions of
their irreducible components. These towers of field extension are given in Lazard (1991a)
by Lazard triangular sets.

More generally, Theorem 6.1 will state that towers of (ring) simple extension cor-
respond to regular chains. In order to show it, we need to introduce an intermediate
concept, namely the concept of a regular set. Regular sets are special fine triangular sets
which naturally encode towers of simple extensions. Note that each one of the above
ti can be viewed as a polynomial in Pi−1[xi] and that the set of the ti is a triangular
set.

Definition 5.1 presents the inverse construction: from a suitable triangular set to a tower
of simple extensions. Proposition 5.1 is an important step to establish Theorem 6.1: it
states that if T is a regular set in Pn then sat(T ) and red7→0(T ) are the same objects.
Finally, the main result of this section is Theorem 5.1: it can be viewed as an analogous
result of Theorem 4.1 but stated for regular sets.

The results of this section appear in Moreno Maza (1997) and Proposition 5.1 is also
established in Wang (1998b).

Notation 5.1. Let A0,A1, . . . ,An be commutative rings with units such that k = A0

and Ai−1 is a sub-ring of Ai for i ∈ {1, . . . , n}. Let xn+1 be an additional variable and
put Pn+1 = k[x1, . . . , xn+1]. Let F0 be the identity map of P1. Finally, for i ∈ {1, . . . , n},
let Fi be an algebra homomorphism from Pi+1 onto Ai[xi+1] such that Fi(xi+1) = xi+1.
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Definition 5.1. Let T be a triangular set of Pi. The set T is a regular set of Pi

whose associated map is (F0, . . . , Fi) and whose associated tower of simple extensions is
(A0, . . . ,Ai) if one of the following conditions holds:

(i) i = 0 and the set T is empty,
(ii) i > 0, the set T−xi is a regular set of Pi−1 whose associated map is (F0, . . . , Fi−1)

and whose associated tower of simple extensions is (A0, . . . ,Ai−1) such that one of
the two assertions holds:

(a) xi 6∈ algVar(T ) and we have Ai = fr(Ai−1[xi]) and for every p ∈ Pi, the element
Fi(p) is the canonical image of Fi−1(p) in Ai,

(b) xi ∈ algVar(T ), the element Fi−1(init( Txi)) is a unit in Ai−1, and we have
Ai = fr(Ai−1[xi]/〈ti〉) and, for every p ∈ Pi, the element Fi(p) is the canonical

image of Fi−1(p)
〈ti〉 in Ai where ti denotes Fi−1( Txi).

Definition 5.2. The sequence (A0, . . . ,Ai) is called a tower of simple extensions of
k (t.o.s.e. for short) if there exists a regular set of Pi whose associated tower of simple
extensions is (A0, . . . ,Ai).

Example 5.1. Assume n ≥ 4. The subset T1 (Example 2.2) is not a regular set of Pn

whereas T−x4
is one: as F2( Tx3) = (x1x3 − 1)2 the element F2(init( Tx4)) = (x1x3 − 1) is

nilpotent in A3 where (A0, . . . ,An) denotes the associated t.o.s.e. of T−x4
.

Remark 5.1. Let T ⊆ Pi be a regular set whose associated t.o.s.e. is (A0, . . . ,Ai) and
whose associated map is (F0, . . . , Fi). For 0 ≤ j ≤ i and x ∈ Aj , note that x is either a
unit in Aj or a zero-divisor in Aj . Moreover, if j < i and if x is a unit in Aj then it is
also a unit in Aj+1. Proposition 5.2 characterizes the units of Ai whereas Proposition 5.1
characterizes the kernel of Fi, and, consequently the zero-divisors of Ai.

Proposition 5.1. Let T ⊆ Pi be a regular set whose associated t.o.s.e. is (A0, . . . ,Ai)
and whose associated map is (F0, . . . , Fi). Then, for every p ∈ Pi the following three
conditions are equivalent:

(i) Fi(p) = 0,
(ii) prem(p, T ) = 0,

(iii) p ∈ sati(T ).

Proof. We prove that the above assertions are equivalent by induction on i. We first
assume i = 0. By virtue of Definition 5.1, we have F0(p) = 0 ⇐⇒ p = 0. Moreover,
we have T = ∅ and thus prem(p, T ) = 0 ⇐⇒ p = 0. On the other hand, we have
sat0(T ) = {0} from Definition 2.7. It follows that the result is obvious in this case.
Now let i > 0. As T−xi is a regular set, we can assume that the result is true for i − 1.
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Following Definition 5.1, we distinguish two cases: xi 6∈ algVar(T ) and xi ∈ algVar(T ).
First we assume xi 6∈ algVar(T ). From Definition 5.1, we obviously have

Fi(p) = 0 ⇐⇒ Fi−1(p) = 0.

Regarding p as a univariate polynomial in Pi−1[xi], we obtain by the induction hypothesis

Fi−1(p) = 0 ⇐⇒ p ∈ sati−1( T−xi)[xi] ⇐⇒ prem(p, T−xi) = 0.

As sati(T ) = sati−1(T )[xi] we obtain the desired result.
Now we assume xi ∈ algVar(T ). We define t = Txi , h = init(t) and r = prem(p, t).

From Definition 5.1 and Remark 5.1 the element Fi(h) of Ai is a unit and we have
Fi(t) = 0. Thus we easily obtain

Fi(p) = 0 ⇐⇒ Fi(r) = 0.

From Definition 5.1 we have

Fi(r) = 0 ⇐⇒ Fi−1(r) ∈ 〈Fi−1(t)〉.
As deg(r, xi) < mdeg(t) and since Fi−1(t) is monic, we obtain from Remark 4.1

Fi(r) = 0 ⇐⇒ Fi−1(r) = 0.

Regarding r as a univariate polynomial in Pi−1[xi], we obtain by the induction hypothesis

Fi−1(r) = 0 ⇐⇒ r ∈ sati−1( T−xi)[xi] ⇐⇒ prem(r, T−xi) = 0.

As prem(p, T ) = prem(r, T−xi) we easily obtain

Fi(p) = 0 ⇐⇒ prem(p, T ) = 0.

Thus, we have by Proposition 2.3

Fi(p) = 0 =⇒ p ∈ sati(T ).

Conversely, assume p ∈ sati(T ). We denote by h′ the product of the initials of the
polynomials in T−xi . Thus there exists an integer m ≥ 0 such that (hh′)mp ∈ 〈T 〉. From
Remark 5.1 the element Fi(hh′) is a unit in Ai. Moreover, we have (∀t ∈ T )Fi(t) = 0.
Finally, we obtain

p ∈ sati(T ) =⇒ Fi(p) = 0. 2

Theorem 5.1. Let T ⊆ Pi be a regular set whose associated t.o.s.e. is (A0, . . . ,Ai)
and whose associated map is (F0, . . . , Fi). Then we have

Ai
∼= fr(Pi/sati(T )).

Proof. If i = 0 the result is trivial. So, we assume i > 0. Recall that Fi−1 is a sur-
jective algebra homomorphism from Pi onto Ai−1[xi] such that Fi−1(xi) = xi. From
Proposition 5.1 we know that for p ∈ Pi−1 we have

Fi−1(p) = 0 ⇐⇒ p ∈ sati−1( T−xi).

Thus, the kernel of Fi−1 is sati−1( T−xi)[xi] and we have

Ai−1[xi] ∼= Pi/(sati−1( T−xi)[xi]).
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If xi 6∈ algVar(T ), we know that sati−1( T−xi)[xi] = sati(T ). Moreover, from Definition 5.1,
we have Ai = fr(Ai−1[xi]) Thus we obtain the desired isomorphism. The same conclusion
easily follows if xi ∈ algVar(T ).2

Proposition 5.2. Let T ⊆ Pi be a regular set whose associated t.o.s.e. is (A0, . . . ,Ai)
and whose associated map is (F0, . . . , Fi). Let p be an element of Pi. Then Fi(p) is a
unit in Ai iff for every prime ideal P associated to sati(T ) we have p 6∈ P.

Proof. From Remark 5.1 we know that Fi(p) is a unit in Ai iff it is not a zero-divisor
in Ai. From Theorem 5.1 Fi(p) is a zero-divisor in Ai iff the class of p in Pi/sati(T )
is a zero-divisor. Thus the statement follows from the following classical remark. For an
ideal I in a Noetherian ring A, for x ∈ A, the class of x in A/I is a zero-divisor iff there
exists a prime ideal P associated with I such that x belongs to P. See vol.1, p.214 in
Samuel and Zariski (1967).2

6. The Main Result

Theorem 6.1. For any non-empty triangular set T ⊆ Pn the following four conditions
are equivalent:

(i) T is a regular chain in Pi,
(ii) T is a regular set in Pi,

(iii) red 7→0(T ) = sati(T ),
(iv) T is a Ritt characteristic set of sati(T ).

Proof. From Proposition 5.2 and Theorem 4.1 we easily obtain (i) ⇐⇒ (ii). From
Proposition 5.1 we have (ii) ⇒ (iii). We now prove (iii) ⇐⇒ (iv). From Theorem 3.1
we have (iv) ⇐⇒ sati(T ) ⊆ red7→0(T ). Thus together with Proposition 2.3 we obtain
(iii) ⇐⇒ (iv). Finally we prove (iii) ⇒ (ii). We assume that (iii) holds and that (ii)
does not. We can assume that T−xi is a regular set in Pi−1 and that T is not a regular
set in Pi. So let (A0, . . . ,Ai−1) be the associated t.o.s.e. of T−xi and let (F0, . . . , Fi−1)
be its associated map. We define t = Txi and h = init(t). Thus we assume that Fi−1(h)
is a zero-divisor in Ai−1. In other words, there exists p ∈ Pi−1 such that Fi−1(hp) = 0
and Fi−1(p) 6= 0. From Proposition 5.1 we obtain

hp ∈ sati−1( T−xi) and prem(p, T−xi) 6= 0.

We define r = prem(p, T−xi). Note that we also have hr ∈ sati−1( T−xi) and then r ∈
sati(T ). Consequently we have found a polynomial r ∈ Pi−1 such that

r ∈ sati(T ) and r 6∈ red7→0(T ).

This contradicts (iii).2

Acknowledgements

We would like to thank Dongming Wang, Mike Dewar and the referees for their helpful
suggestions on an earlier version of this paper. The third author is also grateful to the
European research project FRISCO † for supporting his work.

†A Framework for Integrated Symbolic/Numeric Computation. Esprit Scheme Project No. 21 024.



124 P. Aubry et al.

References
——Aubry, P., Moreno Maza, M. (1997). Triangular sets for solving polynomial systems: a comparative

implementation of four methods. J. Symb. Comput., 28 125–154
——Boulier, F., Lazard, D., Ollivier, F., Petitot, M. (1995). Representation for the radical of a finitely

generated differential ideal. In Proceedings of ISSAC’95, Montréal, Canada, pp. 158–166.
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