
Truth Table Invariant Cylindrical Algebraic

Decomposition by Regular Chains

Russell Bradford1, Changbo Chen2, James H. Davenport1, Matthew England1,
Marc Moreno Maza3 and David Wilson1

1 University of Bath, Bath, BA2 7AY, UK.
2 CIGIT, Chinese Academy of Sciences, Chongqing, 400714, China.

3 University of Western Ontario, London, Ontario, N6A 5B7, Canada.
{R.Bradford, J.H.Davenport, M.England, D.J.Wilson}@bath.ac.uk,

moreno@csd.uwo.ca, changbo.chen@hotmail.com

Abstract. A new algorithm to compute cylindrical algebraic decompo-
sitions (CADs) is presented, building on two recent advances. Firstly,
the output is truth table invariant (a TTICAD) meaning given formulae
have constant truth value on each cell of the decomposition. Secondly,
the computation uses regular chains theory to first build a cylindrical
decomposition of complex space (CCD) incrementally by polynomial.
Significant modification of the regular chains technology was used to
achieve the more sophisticated invariance criteria. Experimental results
on an implementation in the RegularChains Library for Maple verify
that combining these advances gives an algorithm superior to its indi-
vidual components and competitive with the state of the art.

Keywords: cylindrical algebraic decomposition; equational constraint;
regular chains; triangular decomposition

1 Introduction

A cylindrical algebraic decomposition (CAD) is a collection of cells such that:
they do not intersect and their union describes all of Rn; they are arranged cylin-
drically, meaning the projections of any pair of cells are either equal or disjoint;
and, each can be described using a finite sequence of polynomial relations.

CAD was introduced by Collins in [15] to solve quantifier elimination prob-
lems, and this remains an important application of CAD (including the new work
presented here). Other applications include epidemic modelling [8], parametric
optimisation [21], theorem proving [24], robot motion planning [26] and reason-
ing with multi-valued functions and their branch cuts [17]. CAD has complexity
doubly exponential in the number of variables. While for some applications there
now exist algorithms with better complexity (see for example [5]), CAD imple-
mentations remain the best general purpose approach for many.

In this paper we present a new CAD algorithm which combines two recent
advances in CAD theory: the technique of producing CADs via regular chains
in complex space [14], and the idea of producing CADs closely aligned to the
structure of given logical formulae [2]. The introduction continues by reminding
the reader of CAD theory and these advances.

1.1 Background on CAD

We work with polynomials in ordered variables x = x1 ≺ . . . ≺ xn. The main
variable of a polynomial (mvar) is the greatest variable present with respect
to the ordering. Denote by QFF a quantifier free Tarski formula: a Boolean
combination (∧,∨,¬) of statements fi σ 0 where σ ∈ {=, >,<} and the fi are
polynomials. CAD was developed as a tool for the problem of quantifier elimi-
nation over the reals: given a quantified Tarski formula

Ψ(x1, . . . , xn) := Qk+1xk+1 . . . QnxnF (x1, . . . , xn)
(where Qi ∈ {∀, ∃} and F is a QFF), produce an equivalent QFF ψ(x1, . . . , xk).
Collins proposed to build a CAD of Rn which is sign-invariant, so each fi ∈ F

is either positive, negative or zero on each cell. Then ψ is the disjunction of
the defining formulae of those cells c ∈ Rk where Ψ is true, which given sign-
invariance, requires us to only test one sample point per cell.

Collins’ algorithm works by first projecting the problem into decreasing real
dimensions and then lifting to build CADs of increasing dimension. Important
developments range from improved projection operators [23] to the use of certi-
fied numerics when lifting [27] [22]. See for example [2] for a fuller discussion.

1.2 Truth table invariant CAD

One important development is the use of equational constraints (ECs), which
are equations logically implied by a formula. These may be given explicitly as in
(f = 0) ∧ ϕ, or implicitly as f1f2 = 0 is by (f1 = 0 ∧ ϕ1) ∨ (f2 = 0 ∧ ϕ2).

In [23] McCallum developed the theory of a reduced operator for the first
projection, so that the CAD produced was sign-invariant for the polynomial
defining a given EC, and then sign-invariant for other polynomials only when
the EC is satisfied. Extensions of this to make use of more than one EC have
been developed (see for example [9]) while in [3] it was shown how McCallum’s
theory could allow for further savings in the lifting phase.

The CADs produced are no longer sign-invariant for polynomials but instead
truth-invariant for a formula. Truth-invariance was defined in [6] where sign-
invariant CADs were refined to maintain it. We consider a related definition.

Definition 1 ([2]). Let Φ = {φi}ti=1 be a list of QFFs. A CAD is Truth Table
Invariant for Φ (a TTICAD) if on each cell every φi has constant Boolean value.

In [2] an algorithm to build TTICADs when each φi has an EC was derived
by extending McCallum’s theory [23] to define a reduced projection operator.
Implementations in Maple showed this offered great savings in both CAD size
and computation time when compared to the sign-invariant theory. In [3] this
theory has been extended to work on arbitrary φi, with savings if at least one
has an EC. Note that there are two distinct reasons to build a TTICAD:
1. As a tool to build a truth-invariant CAD: If a parent formula φ∗ is built from

{φi} then any TTICAD for {φi} is also truth-invariant for φ∗.
A TTICAD may be the best truth-invariant CAD, or at least the best we
can compute. Note that the TTICAD theory allows for more savings than
the use of [23] with an implicit EC built as the product of ECs from φi [2].

2. When truth table invariance is required: There are applications which provide
a list of formulae but no parent formula. For example, decomposing complex
space according to a set of branch cuts for the purpose of algebraic simplifi-
cation [1] [25] [20]. When the branch cuts can be expressed as semi-algebraic
systems a TTICAD provides exactly the required decomposition.

1.3 CAD by regular chains

Recently, a radically different method to build CADs has been investigated.
Instead of projecting and lifting the problem is moved to complex space where the
theory of triangular decomposition by regular chains is used to build a complex
cylindrical decomposition (CCD), a decomposition of Cn such that each cell is
cylindrical. This is encoded as a tree data structure, with each path through the
tree describing the end leaf as a solution of a regular system [29].

This was first proposed in [14] to build a sign-invariant CAD. Techniques
developed for comprehensive triangular decomposition [11] were used to build a
sign-invariant decomposition of Cn which was then refined to a CCD. Finally,
real root isolation is applied to refine further to a CAD of Rn. The computation
of the CCD may be viewed as an enhanced projection phase since gcds of pairs
of polynomials are calculated as well as resultants. The extra work used here
makes the second phase, which may be compared to lifting, less expensive. The
main advantage is the use of case distinction in the second phase, so that the
zeros of polynomials not relevant in a particular branch are not isolated there.

The construction of the CCD was improved in [13]. The former approach
built a decomposition for the input in one step using existing algorithms. The
latter approach proceeds incrementally by polynomial, each time using purpose-
built algorithms to refine an existing tree whilst maintaining cylindricity. Ex-
perimental results showed that the latter approach is much quicker, with its
implementation in Maple’s RegularChains library now competing with exist-
ing state of the art CAD algorithms: Qepcad [7] and Mathematica [28]. One
reason for this improvement is the ability of the new algorithm to recycle sub-
resultant calculations, an idea introduced and detailed in [12] for the purpose of
decomposing polynomial systems into regular chains incrementally.

Another benefit of the incremental approach is that it allows for simplifi-
cation when constructing a CAD in the presence of ECs. Instead of working
with polynomials, the algorithm can be modified to work with relations. Then
branches in which an EC is not satisfied may be truncated, offering the possi-
bility of a reduction in both computation time and output size. In [13] it was
shown that using this optimization allowed the algorithm to process examples
which Mathematica and Qepcad could not.

1.4 Contribution and outline

In Section 2 we present our new algorithms. Our aim is to combine the savings
from an invariance criteria closer to the underlying application, with the sav-
ings offered by the case distinction of the regular chains approach. It requires

adapting the existing algorithms for the regular chains approach so that they
refine branches of the tree data structure only when necessary for truth-table
invariance, and so that branches are truncated only when appropriate to do so.

We implemented our work in the RegularChains library for Maple. In Sec-
tion 3 we qualitatively compare our new algorithm to our previous work and in
Section 4 we present experimental results comparing it to the state of the art.
Finally, in Section 5 we give our conclusions and ideas for future work.

2 Algorithm

2.1 Constructing a complex cylindrical tree

Let x = x1 ≺ · · · ≺ xn be a sequence of ordered variables. We will construct
TTICADs of Rn for a semi-algebraic system sas (Definition 5). However, to
achieve this we first build CCDs of Cn with respect to a complex system.

Definition 2. Let F = {p1, . . . , ps} be a finite set from Q[x], G ⊆ F and σi ∈
{=, 6=}. Then we define a complex system (denoted by cs) as a set

{pi σi 0 | pi ∈ G} ∪ {pi | pi ∈ F \G}.

The complex systems we work with will be defined in accordance with a semi-
algebraic counterpart (see Definition 5). For p ∈ Q[x] we denote the zero set of
p in Cn by ZC(p), or ZC(p = 0), and its complement by ZC(p 6= 0).

We compute CCDs as trees, following [14, 13]. Throughout let T be a rooted
tree with each node of depth i a polynomial constraint of type either, “any xi”
(with zero set defined as Cn), or p = 0, or p 6= 0 (where p ∈ Q[x1, . . . , xi]). For
any i denote the induced subtree of T with depth i by Ti. Let Γ be a path of
T and define its zero set ZC(Γ) as the intersection of zero sets of its nodes. The
zero set of T , denoted ZC(T), is defined as the union of zero sets of its paths.

Definition 3. T is a complete complex cylindrical tree (complete CCT) of Q[x]
if it satisfies recursively:
1. If n = 1: either T has one leaf “any x1”, or it has s+ 1 (s ≥ 1) leaves p1 =

0, . . . , ps = 0,
∏s

i=1 pi 6= 0, where pi ∈ Q[x1] are squarefree and coprime.
2. The induced subtree Tn−1 is a complete CCT.
3. For any given path Γ of Tn−1, either its leaf V has only one child “any xn”,

or V has s + 1 (s ≥ 1) children p1 = 0, . . . , ps = 0,
∏s

i=1 pi 6= 0, where
p1, . . . , ps ∈ Q[x] are squarefree and coprime satisfying:

3a. for any α ∈ ZC(Γ), none of lc(pj , xn), j = 1, . . . , s, vanishes at α, and
3b. p1(α, xn), . . . , ps(α, xn) are squarefree and coprime.

The set {ZC(Γ) | Γ is a path of T} is called the complex cylindrical decom-
position (CCD) of Cn associated with T : condition (3b) assures that it is a
decomposition. Note that for a complete CCT we have ZC(T) = Cn. A proper
subtree rooted at the root node of T of depth n is called a partial CCT of Q[x].
We use CCT to refer to either a complete or partial CCT. We call a complex
cylindrical tree T an initial tree if T has only one path and T is complete.

Definition 4. Let T be a CCT of Cn and Γ a path of T . A polynomial p ∈
Q[x] is sign invariant on Γ if either ZC(Γ) ∩ ZC(p) = ∅ or ZC(p) ⊇ ZC(Γ). A
constraint p = 0 or p 6= 0 is truth-invariant on Γ if p is sign-invariant on Γ . A
complex system cs is truth-invariant on Γ if the conjunction of the constraints
in cs is truth-invariant on Γ , and each polynomial in cs is sign-invariant on Γ .

Example 1. Let q := (x22 + x2 + x1) and p := x1q. The following tree is a CCT
such that p is sign-invariant (and p = 0 is truth invariant) on each path.

r

4x1 − 1 = 0

2x2 + 1 = 0 2x2 + 1 6= 0

x1 = 0

any x2

x1(4x1 − 1) 6= 0

q = 0 q 6= 0

We introduce Algorithm 1 to produce truth-table invariant CCTs, and new
sub-algorithms 2 and 3. It also uses IntersectPath and NextPathToDo from
[13]. IntersectPath takes: a CCT T ; a path Γ ; and p, either a polynomial or
constraint. When a polynomial it refines T so p is sign-invariant above each
path from Γ (still satisfying Definition 3). When a constraint it refines so
the constraint is true, possibly truncating branches if there can be no solu-
tion. This necessitates the housekeeping algorithm MakeComplete which restores
to a complete CCT by simply adding missing siblings (if any) to every node.
NextPathToDo simply returns the next incomplete path Γ of T .

Proposition 1. Algorithm 1 satisfies its specification.

Proof. It suffices to show that Algorithm 2 is as specified. First observe that Al-
gorithm 3 just recursively calls IntersectPath on constraints and so its correct-
ness follows from that of IntersectPath. (When called on ECs IntersectPath
may return a partial tree and so MakeComplete must be used in line 6).

Algorithm 2 is clearly correct is its base cases, namely (line 2), (line 5) and
(line 9). It also clearly terminates since the input of each recursive call has less
constraints. For each path C of the refined Γ , by induction, it is sufficient to
show that cs is truth-invariant on C. If p 6= 0 on C, then cs is false on C. If
p = 0 on C, then the truth of cs is invariant since it is completely determined
by the truth of cs′ := cs \ {p = 0}, invariant on C by induction.

Algorithm 1: TTICCD(L)

Input: A list L of complex systems of Q[x].
Output: A complete CCT T with each cs ∈ L truth-invariant on each path.

1 Create the initial CCT T and let Γ be its path;
2 IntersectLCS(L, Γ, T);

Algorithm 2: IntersectLCS(L, Γ, T)

Input: A CCT T of Q[x]. A path Γ of T . A list of complex systems L.
Output: Refinements of Γ and T such that T is complete, and cs ∈ L is

truth-invariant above each path of Γ .
1 if L = ∅ then
2 return
3 else if |L| = 1 then
4 Let cs be the only complex system;
5 IntersectPolySet(cs, Γ, T);
6 MakeComplete(T);

7 else if no cs ∈ L has an equational constraint then
8 Let F be the set of polynomials appearing in L;
9 IntersectPolySet(F, Γ, T)

10 else
11 Let cs be a complex system of L with an EC denoted p = 0;
12 IntersectPath(p, Γ, T) // Γ may become a tree

13 while C := NextPathToDo(Γ) 6= ∅ do
14 if p = 0 on C then
15 cs′ := cs \ {p = 0};
16 IntersectLCS(L \ {cs} ∪ {cs′}, C, T)
17 else
18 IntersectLCS(L \ {cs}, C, T)

Algorithm 3: IntersectPolySet(F, Γ, T)

Input: A CCT T , a path Γ and a set F of polynomials (constraints).
Output: T is refined and Γ becomes a subtree. Each polynomial

(constraint) of F is sign (truth)-invariant above each path of Γ .
1 if F = ∅ then return;
2 Let p ∈ F ; F ′ := F \ {p};
3 IntersectPath(p, Γ, T) // Γ may become a tree

4 if F ′ 6= ∅ then
5 while C := NextPathToDo(Γ) 6= ∅ do
6 IntersectPolySet(F ′, C, T);

2.2 Illustrating the computational flow

Consider using Algorithm 1 on input of the form
L = [cs1, cs2] := [{f1 = 0, g1 6= 0}, {f2 = 0, g2 6= 0}].

Algorithm 1 constructs the initial tree and passes to Algorithm 2. We enter the
fourth branch of the conditional, let p = f1, and refine to a sign invariant CCT
for f1. This makes a case distinction between f1 = 0 and f1 6= 0. On the branch
f1 6= 0, we recursively call IntersectLCS on [cs2] which then passes directly to
IntersectPolySet. On the branch f1 = 0, we recursively call IntersectLCS on [{g1 6=

0}, {f2 = 0, g2 6= 0}]. This time p = f2 and a case discussion is made between
f2 = 0 and f2 6= 0. On the branch f2 6= 0, we end up calling IntersectPolySet(g1 6=
0) while on the branch f2 = 0 we call IntersectLCS on [{g1 6= 0}, {g2 6= 0}], which
reduces to IntersectPolySet(g1, g2). The case discussion is summarised by:

f1 = 0 :

{

f2 = 0 : g1, g2
f2 6= 0 : g1 6= 0

f1 6= 0 : f2 = 0, g2 6= 0
.

2.3 Refining to a TTICAD

We now discuss how Section 2.1 can be extended from CCDs to CADs.

Definition 5. A semi-algebraic system of Q[x] (sas) is a set of constraints
{pi σi 0} where each σi ∈ {=, >,≥, 6=} and each pi ∈ Q[x]. A corresponding
complex system is formed by replacing all pi > 0 by pi 6= 0 and all pi ≥ 0 by pi.

A sas is truth-invariant on a cell if the conjunction of its constraints is.

Note that the ECs of an sas are still identified as ECs of the corresponding cs.
Algorithm 4 produces a TTICAD of Rn for a sequence of semi-algebraic systems.

Algorithm 4: RC− TTICAD(L)

Input: A list L of semi-algebraic systems of Q[x].
Output: A CAD such that each sas ∈ L is truth-invariant on each cell.

1 Set L′ to be the list of corresponding complex systems ;
2 D := TTICCD(L′) ;
3 MakeSemiAlgebraic(D, n)

Proposition 2. Algorithm 4 satisfies its specification.

Proof. Algorithm 4 starts by building the corresponding cs for each sas in the
input. It uses Algorithm 1 to form a CCD truth-invariant for each of these and
then the algorithm MakeSemiAlgebraic introduced in [14] to move to a CAD.
MakeSemiAlgebraic takes a CCD D and outputs a CAD E such that for each
element d ∈ D the set d∩Rn is a union of cells in E . Hence E is still truth-invariant
for each cs ∈ L′. It is also a TTICAD for L, (as to change sign from positive to
negative would mean going through zero and thus changing cell). The correctness
of Algorithm 4 hence follows from the correctness of its sub-algorithms.

The output of Algorithm 4 is a TTICAD for the formula defined by each semi-
algebraic system (the conjunction of the individual constraints of that system).
To consider formulae with disjunctions we must first use disjunctive normal form
and then construct semi-algebraic systems for each conjunctive clause.

3 Comparison with prior work

We now compare qualitatively to our previous work. Quantitative experiments
and a comparison with competing CAD implementations follows in Section 4.

3.1 Comparing with sign-invariant CAD by regular chains

Algorithm 4 uses work from [13] but obtains savings when building the complex
tree by ensuring only truth-table invariance. To demonstrate this we compare
diagrams representing the number of times a constraint is considered when build-
ing a CCD for a complex system.

Definition 6. Let cs be a complex system.We define the complete (resp. partial)
combination diagram for cs, denoted by ∆0(cs) (resp. ∆1(cs)), recursively:
– If cs = ∅, then ∆i(cs) (i = 0, 1) is defined to be null.
– If cs has any ECs then select one, ψ (defined by a polynomial f), and define

∆0(cs) :=

{

f = 0 ∆0(cs \ {ψ})
f 6= 0 ∆0(cs \ {ψ}) ,

∆1(cs) :=

{

f = 0 ∆1(cs \ {ψ})
f 6= 0

.

– Otherwise select a constraint ψ (which is either of the form f 6= 0, or f) and
for i = 0, 1 define

∆i(cs) :=

{

f = 0 ∆i(cs \ {ψ})
f 6= 0 ∆i(cs \ {ψ}) .

The combination diagrams illustrate the combinations of relations that must be
analysed by our algorithms, with the partial diagram relating to Algorithm 1
and the complete diagram the sign-invariant algorithm from [13].

Lemma 3. Assume that the complex system cs has s ECs and t constraints of
other types. Then the number of constraints appearing in ∆0(cs) is 2s+t+1 − 2,
and the number appearing in ∆1(cs) is 2(2t + s)− 2.

Proof. The diagram ∆0(cs) is a full binary tree with depth s + t. Hence the
number of constraints appearing is the geometric series

∑s+t

i=1 2
i = 2s+t+1 − 2.

∆1(cs) will start with a binary tree for the ECs, with only one branch con-
tinuing at each depth, and thus involves 2s constraints. The full binary tree for
the other constraints is added to the final branch, giving a total of 2t+1+2s−2.

Definition 7. Let L be a list of complex systems. We define the complete (resp.
partial) combination diagram of L, denoted by ∆0(L) (resp. ∆1(L)) recursively:
If L = ∅, then ∆i(L), i = 0, 1, is null. Otherwise let cs be the first element of L.
Then ∆i(L) is obtained by appending ∆i(L \ {cs}) to each leaf node of ∆i(cs).

Theorem 4. Let L be a list of r complex systems. Assume each cs ∈ L has s
ECs and t constraints of other types. Then the number of constraints appearing
in ∆0(L) is 2r(s+t)+1 − 2 and the number of constraints appearing in ∆1(L) is
N(r) = 2(s+ 2t)r − 2.

Proof. The number of constraints in ∆0(L) again follows from the geometric
series. For ∆1(L) we proceed with induction on r. The case r = 1 is given by
Lemma 3, so now assume N(r − 1) = 2(s+ 2t)r−1 − 2.

Fig. 1. The left is a sign-invariant CAD, and the right a TTICAD, for (1).

The result for r will follow from C(r) = C(1)+ (s+2t)C(r− 1). To conclude
this identity consider the diagram for the first cs ∈ L. To extend this to ∆1(L)
we need to append ∆1(L\cs) to each end node. There are s such nodes for cases
where an EC was not satisfied and a further 2t from the cases where all ECs
were (and non-equational constraints were included).

We now give an example to demonstrate these savings.

Example 2. Assume ordering x ≺ y and consider

f1 := x2 + y2 − 4, g1 := (x− 3)2 − (y + 3), φ1 := f1 = 0 ∧ g1 < 0,

f2 := (x− 6)2 + y2 − 4, g2 := (x− 3)2 + (y − 2), φ2 := f2 = 0 ∧ g2 < 0. (1)

The polynomials are graphed in Figure 1 where the solid circles are the fi and
the dashed parabola the gi. To study the truth of the formulae {φ1, φ2} we could
create a sign-invariant CAD. Both the incremental regular chains technology of
[13] and Qepcad [7] do this with 231 cells. The 72 full dimensional cells are
visualised on the left of Figure 1, (with the cylinders on each end actually split
into three full dimensional cells out of the view).

Alternatively we may build a TTICAD using Algorithm 4 to obtain only
63 cells, 22 of which have full dimension as visualised on the right of Figure 1.
By comparing the figures we see that the differences begin in the CAD of the
real line, with the sign-invariant case splitting into 31 cells compared to 19. The
points identified on the real line each align with a feature of the polynomials.
Note that the TTICAD identifies the intersections of fi and gj only when i = j,
and that no features of the inequalities are identified away from the ECs.

3.2 Comparing with TTICAD by projection and lifting

We now compare Algorithm 4 with the TTICADs obtained by projection and
lifting in [2]. We identify three main benefits which we demonstrate by example.

(I) Algorithm 4 can achieve cell savings from case distinction.

Example 3. Algorithm 4 produces a TTICAD for (1) with 63 cells compared
to a TTICAD of 67 cells from the projection and lifting algorithm in [2]. The
full-dimensional cells are identical and so the image on the right of Figure 1 is
an accurate visualisation of both. To see the difference we must compare lower

dimensional cells. Figure 2 compares the lifting to R2 over a cell on the real line
aligned with an intersection of f1 and g1. The left concerns the algorithm in [2]
and the right Algorithm 4. The former isolates both the y-coordinates where
f1 = 0 while the latter only one (the single point over the cell where φ1 is true).

Fig. 2. Comparing TTICADs for (1). The left uses [2] and the right Algorithm 4.

If we modified the problem so the inequalities in (1) were not strict then φ1
becomes true at both points and Algorithm 4 outputs the same TTICAD as [2].
Unlike [2], the type of the non-ECs affects the behaviour of Algorithm 4.

(II) Algorithm 4 can take advantage of more than one EC per clause.

Example 4. We assume x ≺ y and consider

f1 := x2 + y2 − 1, h := y2 − x
2 , g1 := xy − 1

4

f2 := (x− 4)2 + (y − 1)2 − 1 g2 := (x− 4)(y − 1)− 1
4 ,

φ1 := h = 0 ∧ f1 = 0 ∧ g1 < 0, φ2 := f2 = 0 ∧ g2 < 0. (2)

The polynomials are graphed in Figure 3 where the dashed curves are f1 and h,
the solid curve is f2 and the dotted curves are g1 and g2. A TTICAD produced
by Algorithm 4 has 69 cells and is visualised on the right of Figure 3 while a
TTICAD produced by projection and lifting has 117 cells and is visualised on
the left. This time the differences are manifested in the full-dimensional cells.

The algorithm from [2] works with a single designated EC in each QFF (in
this case we chose f1) and so treats h in the same way as g1. This means for
example that all the intersections of h or g1 with f1 are identified. By compar-
ison, Algorithm 4 would only identify the intersection of g1 with an EC if this
occurred at a point where both f1 and h were satisfied (does not occur here).
For comparison, a sign-invariant CAD using Qepcad or [13] has 611 cells.

When using [2] in Example 4 we needed to designate either f1 or h as the EC.
Choosing f1 gave 117 cells while choosing h gives 163 cells. Algorithm 4 also offers
a similar choice: what order should the systems be considered and what order
the components within? Currently these choices are made informally. Processing
f1 first gives 69 cells but other choice can decrease this to 65 or increase it to
145. Making these choices intelligently is an important topic for future work.

(III) Algorithm 4 will succeed given sufficient time and memory.

Fig. 3. TTICAD for (2). The left uses [2] and the right Algorithm 4.

This contrasts with the theory of reduced projection operators used in [2],
where input must satisfy be well-oriented (meaning that certain projection poly-
nomials cannot be nullified when lifting over a cell with respect to them).

Example 5. Consider the identity
√
z
√
w =

√
zw over C2. We analyse its truth

by decomposing according to the branch cuts and testing each cell at its sample
point. Letting z = x + iy,w = u + iv we see that branch cuts occur when

(y = 0 ∧ x < 0) ∨ (v = 0 ∧ u < 0) ∨ (yu+ xv = 0 ∧ xu− yv < 0).
We can obtain a truth-invariant CAD for this formula by building the TTICAD
for the three disjoined clauses. With ordering v ≺ u ≺ x ≺ y Algorithm 4 does
this using 97 cells, while the projection and lifting approach identifies the input
as not well-oriented. The failure is triggered by yu + xv being nullified over a
cell where u = x = 0 and v < 0.

4 Experimental Results

We present experimental results obtained on a Linux desktop (3.1GHz Intel
processor, 8.0Gb total memory). We tested on 52 different examples, with a
representative subset of these detailed in Table 1. Maple code for all examples
is stored at: www.cs.bath.ac.uk/∼djw42/RCTTICADexamples.txt.

One set of problems was taken from CAD papers [10] [2] and a second from
system solving papers [11] [13]. The polynomials from the problems were placed
into different logical formulations: disjunctions in which every clause had an EC
(indicated by †) and disjunctions in which only some do (indicated by ††). A
third set was generated by branch cuts of algebraic relations: addition formulae
for elementary functions and examples previously studied in the literature.

Each problem had a declared variable ordering (with n the number of vari-
ables). For each experiment a CAD was produced with the time taken (in sec-
onds) and number of cells (cell count) given. The first is an obvious metric and
the second crucial for applications acting on each cell. T/O indicates a time out
(set at 30 minutes), FAIL a failure due to theoretical reasons such as input not
being well-oriented (see [23] [2]) and Err an unexpected error.

We start by comparing our new algorithm with our previous work (all im-
plemented and tested in development Maple) by considering the first five algo-
rithms in Table 1. RC-TTICAD refers to Algorithm 4, PL-TTICAD the algo-
rithm from [2], PL-CAD an implementation of CAD with McCallum projection,
RC-Inc-CAD the algorithm from [13] and RC-Rec-CAD the algorithm from [14].

Those starting RC are part of the RegularChains library and those starting PL
the ProjectionCAD package [19]. RC-Rec-CAD is a modification of the algo-
rithm distributed with Maple 17; the construction of the CCD is the same but
the conversion to a CAD has been improved. Algorithms RC-TTICAD and RC-
Rec-CAD are currently being integrated in the RegularChains library, to be
downloaded from www.regularchains.org.

We see that RC-TTICAD never gives higher cell counts than any of our
previous work and that in general the TTICAD theories allow for cell counts
an order of magnitude lower. RC-TTICAD is usually the quickest in some cases
offering vast speed-ups. It is also important to note that there are many examples
where PL-TTICAD has a theoretical failure but for which RC-TTICAD will
complete (see point (III) in Section 3.2). Further, these failures largely occurred
in the examples from branch cut analysis, a key application of TTICAD.

The results allow us to conclude that our new algorithm successfully com-
bines the good features of our previous approaches, giving an approach superior
to either. We now compare with competing CAD implementations, detailed in
the last four columns of Table 1: Mathematica [28] (V9 graphical interface);
Qepcad-B [7] (with options +N500000000 +L200000, initialization included in
the timings and implicit EC declared when present); the Reduce package Red-

log [18] (2010 Free CSL Version); and the Maple package SyNRAC [22].

As reported in [2], the TTICAD theory allows for lower cell counts than
Qepcad even when manually declaring an EC. We found that both SyNRAC

and Redlog failed for many examples, (with SyNRAC returning unexpected
error messages and Redlog hanging producing no output or messages). When
computations succeed there were examples for which Redlog had a lower cell
count than RC-TTICAD due to their use of partial lifting techniques, but this
was not the case in general. We note that we were using the most current public
version of SyNRAC which has since been replaced by a superior development
version, (to which we do not have access) and that Redlog is mostly focused
on the virtual substitution approach to quantifier elimination but that we only
tested the CAD command.

Mathematica is the quickest in general, often impressively so. However,
the output there is not a CAD but a formula with a cylindrical structure [28]
(hence cell counts are not available). Such a formula is sufficient for many ap-
plications (such as quantifier elimination) but not for others (such as algebraic
simplification by branch cut decomposition). Further, there are examples for
which RC-TTICAD completes but Mathematica times out. Mathematica’s
output only references the CAD cells for which the input formula is true. Our
implementation can be modified to do this and in some cases this can lead to
significant time savings; we will investigate this further in a later publication.

Finally, note that the TTICAD theory allows those algorithms to change
with the logical structure of a problem. For example, Solotareff† is simpler than
Solotareff†† (the later has an inequality where the former has an equation). A
smaller TTICAD can hence be produced, while the sign-invariant algorithms
give the same output.

5 Conclusions and further work

We presented a new algorithm to compute CADs. It combined the benefits of case
distinction from regular chains construction (meaning more efficient computa-
tion and no well-orientedness conditions leading to theoretical failure), with the
reduced information requirements of truth-table invariance. We demonstrated its
benefit over our previous work and its competitiveness with the state of the art
in CAD computation. However, there are still many questions to be considered:
– Can we use heuristics to make choices such as what variable ordering to use?

This has been shown to be useful for other CAD algorithms [18] [4].
– Can we make educated choices for the order systems and constraints are

analysed by the algorithm? Example 4 shows that this could be beneficial.
– Can we modify the algorithm for the case of providing truth invariant CADs

for a formula in disjunctive normal form? In this case we could cease refine-
ment in the complex tree once a branch is known to be true.

– Can we combine with other theory such as partial CAD [16] or cylindrical
algebraic sub-decompositions [30]?

Acknowledgements

Supported by EPSRC grant: EP/J003247/1 and NSFC grant: 11301524.

References

1. R. Bradford and J.H. Davenport. Towards better simplification of elementary
functions. In Proc. ISSAC ’02, pp 16–22. ACM, 2002.

2. R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson. Cylin-
drical algebraic decompositions for boolean combinations. In Proc. ISSAC ’13,
pp 125–132. ACM, 2013.

3. R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson. Truth
table invariant cylindrical algebraic decomposition. Preprint at: http://opus.

bath.ac.uk/38146/, 2014.
4. R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising problem for-

mulations for cylindrical algebraic decomposition. In Intelligent Computer Math-

ematics, (LNCS vol. 7961), pp 19–34. Springer Berlin Heidelberg, 2013.
5. S. Basu, R. Pollack, and M.F. Roy. Algorithms in Real Algebraic Geometry.

Springer, 1996.
6. C.W. Brown. Simplification of truth-invariant cylindrical algebraic decompositions.

In Proc. ISSAC ’98, pp 295–301. ACM, 1998.
7. C.W. Brown. An overview of QEPCAD B: A program for computing with semi-

algebraic sets using CADs. SIGSAM Bulletin, 37(4):97–108, ACM, 2003.
8. C.W. Brown, M. El Kahoui, D. Novotni, and A. Weber. Algorithmic methods

for investigating equilibria in epidemic modelling. J. Symb. Comp., 41:1157–1173,
2006.

9. C.W. Brown and S. McCallum. On using bi-equational constraints in CAD con-
struction. In Proc. ISSAC ’05, pp 76–83. ACM, 2005.

10. B. Buchberger and H. Hong. Speeding up quantifier elimination by Gröbner bases.
Technical report, 91-06. RISC, Johannes Kepler University, 1991.

11. C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, andW. Pan. Comprehensive
triangular decomposition. In Computer Algebra in Scientific Computing, (LNCS
vol. 4770), pp 73–101. Springer Berlin Heidelberg, 2007.

12. C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comp., 47(6):610–642, 2012.

13. C. Chen and M. Moreno Maza. An incremental algorithm for computing cylindri-
cal algebraic decompositions. Proc. ASCM ’12, (to appear, Springer). Preprint:
arXiv:1210.5543, 2012.

14. C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic
decomposition via triangular decomposition. In Proc. ISSAC ’09, pp 95–102. ACM,
2009.

15. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proc. 2nd GI Conference on Automata Theory and Formal

Languages, pp 134–183. Springer-Verlag, 1975.
16. G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier

elimination. J. Symb. Comp., 12:299–328, 1991.
17. J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program verification

in the presence of complex numbers, functions with branch cuts etc. In Proc.

SYNASC ’12, pp 83–88. IEEE, 2012.
18. A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for CAD. In

Proc. ISSAC ’04, pp 111–118. ACM, 2004.
19. M. England. An implementation of CAD in Maple utilising problem formula-

tion, equational constraints and truth-table invariance. Uni. of Bath Dept. Com-

puter Science Tech. Report series, 2013-04. Available at http://opus.bath.ac.

uk/35636/, 2013.
20. M. England, R. Bradford, J.H. Davenport, and D. Wilson. Understanding branch

cuts of expressions. In Intelligent Computer Mathematics (LNCS vol. 7961),
pp 136–151. Springer Berlin Heidelberg, 2013.

21. I.A. Fotiou, P.A. Parrilo, and M. Morari. Nonlinear parametric optimization us-
ing cylindrical algebraic decomposition. In Proc. Decision and Control, European

Control Conference ’05, pp 3735–3740, 2005.
22. H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An effective implementation of

a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In Proc. SNC ’09, pp 55–64, 2009.

23. S. McCallum. On projection in CAD-based quantifier elimination with equational
constraint. In Proc. ISSAC ’99, pp 145–149. ACM, 1999.

24. L.C. Paulson. Metitarski: Past and future. In L. Beringer and A. Felty, editors,
Interactive Theorem Proving, (LNCS vol. 7406), pp 1–10. Springer, 2012.

25. N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of branch cuts. ACM
Communications in Computer Algebra, 44(3):132–135, 2010.

26. J.T. Schwartz and M. Sharir. On the “Piano-Movers” Problem: II. General tech-
niques for computing topological properties of real algebraic manifolds. Adv. Appl.

Math., 4:298–351, 1983.
27. A. Strzeboński. Cylindrical algebraic decomposition using validated numerics. J.

Symb. Comp., 41(9):1021–1038, 2006.
28. A. Strzeboński. Computation with semialgebraic sets represented by cylindrical

algebraic formulas. In Proc. ISSAC ’10, pp 61–68. ACM, 2010.
29. D. Wang. Computing triangular systems and regular systems. J. Symb. Comp.,

30(2):221–236, 2000.
30. D. Wilson, R. Bradford, J.H. Davenport, and M. England. Cylindrical algebraic

sub-decompositions. Preprint at: http://opus.bath.ac.uk/38148/, 2014.

Table 1. Comparing our new algorithm to our previous work and competing CAD implementations.

RC-TTICAD RC-Inc-CAD RC-Rec-CAD PL-TTICAD PL-CAD Mathematica Qepcad SyNRAC Redlog

Problem n Cells Time Cells Time Cells Time Cells Time Cells Time Time Cells True Time Cells Time Cells Time

Intersection† 3 541 1.0 3723 12.0 3723 19.0 579 3.5 3723 29.5 0.1 3723 721 4.9 3723 12.8 Err —
Ellipse† 5 71231 317.1 81183 544.9 81193 786.8 FAIL — FAIL — 11.2 500609 94816 275.3 Err — Err —
Solotareff† 4 2849 8.8 54037 209.1 54037 539.0 FAIL — 54037 407.6 0.1 16603 333 5.2 Err — 3353 8.6
Solotareff†† 4 8329 21.4 54037 226.9 54037 573.4 FAIL — 54037 414.3 0.1 16603 751 5.3 Err — 8367 13.6
2D Ex† 2 97 0.2 317 1.0 317 2.6 105 0.6 317 1.8 0.0 249 36 4.8 317 1.1 305 0.9
2D Ex†† 2 183 0.4 317 1.1 317 2.6 183 1.1 317 1.8 0.0 317 55 4.6 317 1.2 293 0.9
3D Ex† 3 109 3.5 3497 63.1 3525 1165.7 109 2.9 5493 142.8 0.1 739 116 5.4 — T/O Err —
MontesS10 7 3643 19.1 3643 28.3 3643 26.6 — T/O — T/O T/O — — T/O — T/O Err —
Wang 93 5 507 44.4 507 49.1 507 46.9 — T/O — T/O 897.1 FAIL — — Err — Err —
Rose† 3 3069 200.9 7075 498.8 7075 477.1 — T/O — T/O T/O FAIL — — — T/O Err —
genLinSyst-3-2† 11 222821 3087.5 — T/O — T/O FAIL — FAIL — T/O FAIL — — Err — Err —
BC-Kahan 2 55 0.2 409 2.4 409 4.9 55 0.2 409 2.4 0.1 261 29 4.8 409 1.5 Err —
BC-Arcsin 2 57 0.1 225 0.9 225 1.9 57 0.2 225 0.9 0.0 225 26 4.8 225 0.7 161 2.4
BC-Sqrt 4 97 0.2 113 0.5 113 1.3 FAIL — 113 0.6 0.0 105 15 4.7 105 0.4 73 0.0
BC-Arctan 4 211 3.5 — T/O — T/O FAIL — — T/O T/O — — T/O Err — — T/O
BC-Arctanh 4 211 3.5 — T/O — T/O FAIL — — T/O T/O — — T/O Err — — T/O
BC-Phisanbut-1 4 325 0.8 389 1.8 389 5.8 FAIL — 389 3.6 0.1 377 53 4.8 389 2.0 217 0.2
BC-Phisanbut-4 4 543 1.6 2007 13.6 2065 21.5 FAIL — 51763 932.5 11.9 51763 6560 8.6 Err — Err —

