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Abstract

We propose a new algorithm for converting a characteristic set of a prime
differential ideal from one ranking into another. It identifies the purely
algebraic subproblems which arise during differential computations and
solves them algebraically. There are improvements w.r.t. other approaches.
Formerly unsolved problems are carried out. It is conceptually very sim-
ple. Different variants are implemented.

differential algebra. PDE. characteristic sets. change of rankings. gcd.

Introduction

In this paper, we propose an algorithm which solves the following problem: given
a characteristic set C of a prime differential ideal p w.r.t some ranking R and
another ranking R 6= R, compute a characteristic set C of p w.r.t. R.

The algorithm that we present, called∗ PARDI applies for systems of partial
differential polynomial equations. It specializes to systems of ordinary differential
polynomial equations and is then called† PODI. It specializes to nondifferential
polynomial equations where it is called‡ PALGIE.

Consider the following three partial differential polynomials. There are two dif-
ferential indeterminates u and v (which can be viewed as two unknown functions
of two independent variables x and y) and two derivations ∂/∂x and ∂/∂y.

u2
x − 4u, uxyvy − u + 1, vxx − ux.

The differential ideal p generated by these differential polynomials is prime. With

∗PARDI is an acronym for Prime pARtial Differential Ideal. In French, “pardi” is an old-
fashioned swearword such as, say, “egad” in English.

†PODI is an acronym for Prime Ordinary Differential Ideal.
‡PALGIE is an acronym for Prime ALGebraic IdEal. However, since “algie” means “suffer-

ing” in French, one might also understand PALGIE as “polynomial suffering” say.
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respect to the following ordering (ranking) R on the derivatives of u and v

· · · > vxx > vxy > vyy > uxx > uxy > uyy > vx > vy > ux > uy > v > u

the differential ideal p admits the following set C for characteristic set

vxx − ux, 4vyu + uxuy − uxuyu, u2
x − 4u, u2

y − 2u.

With respect to the following elimination ranking R,

· · · > ux > uy > u > · · · > vxx > vxy > vyy > vx > vy > v

it admits the following set C for characteristic set

v4
yy − 2v2

yy − 2v2
y + 1, vxyvy − v3

yy + vyy, vxx − 2vyy, u − v2
yy.

The PARDI algorithm is able to compute C from C, R and R or C from C, R
and R. The computations are immediate for this system and take 60 kilobytes
in the C programming language on a SUN ULTRA 5.

Euler’s equations for perfect fluids write

~v + (~v · ~∇)~v + ~∇p = ~0, ~∇~v = 0.

In two dimensions, denoting ~v = (v1, v2) and ~∇ = (∂/∂x, ∂/∂y), we get three
differential polynomial equations

v1
t + v1v1

x + v2v1
y + px = 0, v2

t + v1v2
x + v2v2

y + py = 0, v1
x + v2

y = 0.

The differential polynomials which appear on the lefthand sides of the equations
generate a prime differential ideal p. There are three differential indeterminates
v1, v2 (components of the speed) and the pressure p. They depend on three inde-
pendent variables x, y (space variables) and the time t. For some orderly ranking,
the general simplifier Rosenfeld–Gröbner provides with nearly no computation the
characteristic set C of p

pxx+2 v2
x v1

y+2 (v2
y)

2+pyy, v1
t +v2 v1

y+px−v2
y v1, v1

x+v2
y, v2

t +v1 v2
x+v2 v2

y+py.

For some elimination ranking (p, v1) � degrevlex(v2) with t > x > y the im-
plementation of PARDI was able to compute a characteristic set C of p. This
characteristic set cannot be written in this paper (the computer file is 600 kilo-
bytes large). It is the first time that the computation of this characteristic set
succeeds. There are 7 equations involving more than 50 different derivatives.
Intermediate computations, performed with the C implementation, took a bit
more than 100 megabytes and a quarter of an hour on a SUN ULTRA 5. We
have

rankC = {px, py, v1, v2
xxxxt, v2

xxxtt, v2
xxytt, v2

xxxyyt}.
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The diagram of the differential indeterminate v2 is§

x

y

t

v2

As far as we know, Ollivier was the first to solve the problem addressed in
this paper. Let’s quote [Ollivier, 1990, page 95]: “one can [design] a method for
constructing a characteristic set of a finitely generated prime differential ideal as
soon as one can effectively test membership to this ideal”. An algorithm is given
in SCRATCHPAD in [Ollivier, 1990, page 97]. In most approaches, a known
characteristic set provides the membership test algorithm. This functionality
was afterwards implemented in the MAPLE diffalg package by the first author.
The implemented algorithm handles differential ideals given by characteristic
sets which do not need to be prime. Such a problem was also considered in
Boulier [1999]. However, the algorithms presented in Boulier [1999] compute dif-
ferential polynomials which are not necessarily part of the desired characteristic
set but only help computing it. They are complementary to PARDI. The prob-
lem was also addressed by [Bouziane et al., 2001, section 3.2]. Their algorithm
does not make use of the primality hypothesis. It computes a representation of
the prime differential ideal as an intersection of differential ideals presented by
characteristic sets. The desired characteristic set can then easily be picked from
these latter (by a dimension argument). Their algorithm relies on a test of alge-
braic invertibility modulo triangular systems (so ours does) but they perform it
by means of Gröbner bases computations.

The restriction to prime ideals is realistic. Indeed most differential systems
coming from real problems generate differential prime ideals. Quite often, non-
differential polynomial systems in positive dimension either generate prime ideals
or can be decomposed into prime ideals.

Assuming that prime ideals are given by characteristic sets is realistic too. In
the differential case, it happens quite often (e.g. dynamical systems in nonlinear

§The authors would like to thank Marc Giusti for his help.
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control theory) that the input equations already form characteristic sets w.r.t.
some rankings.

The algorithm we propose generalizes to ideals which are not necessarily prime.
However, for the reasons explained above and the legibility of the paper, we prefer
to restrict ourselves to the prime case.

Our algorithm easily extends to perform invertible changes of coordinates on
the dependent and independent variables. Such maps realize ring isomorphisms
between two differential polynomial rings φ : R → R, and one–to–one corre-
spondences between the differential ideals of R and the ones of R. However the
image C of a characteristic set C of p is usually not a characteristic set of the
ideal p = φp and there is usually no ranking w.r.t. which a characteristic set of p

could be easily deduced from C. The idea is then to apply PARDI over C but
to test membership in p by performing the inverse changes of coordinates and
testing membership in p using C.

Our approach offers several advantages. It identifies the algebraic subproblems
which occur in the differential computations and solves them by a purely alge-
braic method. This improves the control of the coefficients growth and avoids
many useless computations only due to differential considerations. This very
important advantage w.r.t. all other approaches permits us to handle some un-
solved problems. The three variants were implemented: PARDI in MAPLE and
C, PODI in C and PALGIE in MAPLE, C and Aldor. The application to the
change of variables was implemented in MAPLE.

A last contribution (but not the least one) is the conceptual simplicity of our
algorithm, which contrasts with the high technicity of its implementation. Ev-
erybody knows that the common roots of two univariate polynomials over a field
are given by their gcd. Our algorithm applies this very simple idea and replaces
any two univariate polynomials by one of their gcd over the fraction field of some
quotient ring. This makes much more sense than speaking of full remainders as
in the previous approaches. Some methods for computing triangular decompo-
sitions of arbitrary ideals (prime or not) are also explicitly formulated in terms
of gcd: Kalkbrener [1993], Lazard [1991], Moreno Maza [2000]. The use of the
gcd made by these methods is however more complicated than that made by
PARDI. Indeed in these methods the ideal modulo which the gcd computations
are performed has to change during the triangular decomposition, since it de-
pends on the equations already processed. This is not the case in our particular
context. Hence we wish that the simplicity of our approach helps in popularizing
all triangular decomposition methods.

A preliminary version of this paper was published by Boulier et al. [2001a].
This paper contains two new results: a new subalgorithm called regalise which su-
persedes specialized regCharacteristic but does not always apply for PDE systems
and a new efficient criterion to avoid critical pairs in the completion process.
The version of PARDI is also more efficient than that of Boulier et al. [2001a]
since the set A of the processed equations is maintained as a regular chain. Last,
proofs are given which were omitted by Boulier et al. [2001a].
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1. General definitions and notations

1.1. Computer science

Definition: A while loop invariant is a property which holds each time the loop
condition is evaluated.

Loop invariants are very important for they permit to prove the correctness
of algorithms: they hold in particular when the loop condition evaluates to false
i.e. when the loop terminates. Combined to the negation of the loop condition,
they give the properties of the datas computed by the loop.

1.2. Commutative algebra

Let X be an ordered alphabet (possibly infinite).
Let R = K[X] be a polynomial ring where K is a field. Let p ∈ R \ K be

a polynomial. If x ∈ X is any indeterminate then the leading coefficient of p
viewed as a univariate polynomial in x (with coefficients in the ring K[X \ {x}])
is denoted lcoeff(p, x). If deg(p, x) = 0 then lcoeff(p, x) = p. The leader of p,
denoted ld p, is the greatest indeterminate x which occurs in p. The polynomial p
can be written as p = ad xd + · · · + a1 x + a0 where d = deg(p, x) and the
polynomials ai are free of x. The polynomial ip = ad is the initial of p (the
initial of p is the leading coefficient of p w.r.t. its leader). The rank of p is the
monomial xd. The reductum of p is the polynomial p − ip xd. If xd and ye are
two ranks then xd < ye if x < y or x = y and d < e. The separant of p is the
polynomial sp = ∂p/∂x.

Let A ⊂ R \K be a set of polynomials. Then IA (resp. SA) denotes the set of
the initials (resp. the separants) of its elements. We denote HA = IA ∪ SA. The
set A is said to be triangular if its elements have distinct leaders.

Let q be a polynomial. We denote pquo(q, p, x) and prem(q, p, x) the pseu-
doquotient and the pseudoremainder [Knuth, 1966, volume 2, page 407] of q
by p, viewed as univariate polynomials in x. If x is omitted, both polynomials
are viewed as univariate polynomials in the leader of p. We denote prem(q, A)
“the” pseudoremainder r of q by all the elements of A i.e. any polynomial r
obtained from q and the elements of A by performing successive pseudoreduc-
tions and such that prem(r, p) = r for every p ∈ A. Without further precisions,
r is not uniquely defined. Fix any precise algorithm. By convention, we define
prem(q, ∅) = q.

If A is a subset of a ring R then (A) denotes the ideal generated by A. By
convention, we define (A) = (0) when A is empty. Let a be an ideal of R. If
S = {s1, . . . , st} then the saturation a : S∞ of a by S is the ideal a : S∞ =
{p ∈ R | ∃a1, . . . , at ∈ N such that sa1

1 · · · sat

t p ∈ a}. By convention, we define
a : S∞ = a if S is empty.
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1.3. Regular chains

A regular element of a ring R0 is by definition a non zerodivisor. An element a ∈
R0 is said to be invertible if there exists some a ∈ R0 such that a a = 1. Invertible
implies regular.

In this section, we consider a triangular set A = {p1, . . . , pn} of a poly-
nomial ring R. Renaming the indeterminates if needed, we may assume that
R = K[t1, . . . , tm, x1, . . . , xn] and that ld pi = x1 for each 1 ≤ i ≤ n.

Regular chains are defined in Aubry et al. [1999]. See also Kalkbrener [1993]
and Lazard [1991]. We take for definition the following caracterisation [Boulier
et al., 2001b, theorem 3]:

Definition: Let 1 ≤ ` ≤ n be an index. Denoting ik the initial of pk we define

Z` = K(t1, . . . , tm)[x1, . . . , x`]/ ((p1, . . . , p`) : (i1 · · · i`)
∞) .

Definition: The triangular set A is a regular chain if the initial i` of p` is invertible
in Z`−1 for each 2 ≤ ` ≤ n.

Definition: A regular chain A is squarefree if the separant s` of p` is invertible
in Z` for 1 ≤ ` ≤ n.

A regular chain A = {p1, . . . , pn} is a characteristic set of the ideal (A) : I∞A in
the rings K(t1, . . . , tm)[x1, . . . , xn] and K[t1, . . . , tm, x1, . . . , xn] by [Aubry et al.,
1999, theorem 6.1] and, more precisely, by [Aubry, 1999, théorème 4.6.1]. A
squarefree¶ regular chain A is a characteristic set of the ideal (A) : H∞

A in the
same rings by [Boulier et al., 2001b, theorem 4].

Observe that these properties still hold if we enlarge the t’s with some extra
indeterminates which do not occur in A. They even hold if the set of the t’s is
infinite.

1.3.1. Checking invertibility

Proposition 1.1: The following function is regular takes two parameters: a
nonzero element p of Zn and a regular chain A. It returns a pair (b, g) where b
is a boolean and g ∈ Zn. If b is true then p is invertible in Zn. If b is false then g
satisfies the following properties:

1. g /∈ K(t1, . . . , tm) hence, for some 1 ≤ ` ≤ n, g has x` for leader ;

2. the initial of g is invertible in Z`−1 ;

3. g is a nontrivial divisor of p` in Z`−1[x`].

Observe that the component g of the pair does not matter in the case b is
true. We write a dot for it in the code below.

¶there is a strong analogy with the traditional meaning of “squarefree”. In particular, the
ideal (A) : I∞

A
is radical, it has no multiple zeros in the algebraic closure of K(t1, . . . , tm) and

is equal to (A) : H∞
A

.
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function is regular(p, {p1, . . . , pn})
begin

if p ∈ K(t1, . . . , tm) then

return (true, ·)
else

let x` be the leader of p
let ip be the initial of p
let k be the smallest index such that ip ∈ K(t1, . . . , tm)[x1, . . . , xk]
(b, g) := is regular(ip, {p1, . . . , pk})
if b then

(b′, g′) := Euclidean algorithm(p, p`, x`, {p1, . . . , p`−1})
if b′ and deg(g′, x`) = 0 then

return (true, ·)
else

return (false, g′)
fi

else

return (false, g)
fi

fi

end

The proof of the above proposition cannot be given independently of that of
the following one.

Proposition 1.2: The following function Euclidean algorithm takes four pa-
rameters: two polynomials a, b ∈ Zn[x] with initials invertible in Zn, their lead-
ers x and a regular chain A. It returns a pair (b, g) where b is a boolean and
g ∈ Zn[x]. If b is true then g satisfies the following properties:

1. g ∈ (a, b) in Zn[x]

2. g is a common divisor of a and b in Zn[x]

3. the leading coefficient of g w.r.t. x is invertible in Zn.

If b is false then g satisfies the properties already stated in the above proposition:

1. g /∈ K(t1, . . . , tm) hence, for some 1 ≤ ` ≤ n, g has x` for leader ;

2. the initial of g is invertible in Z`−1 ;

3. g is a nontrivial divisor of p` in Z`−1[x`].

function Euclidean algorithm(a, b, x, {p1, . . . , pn})
begin

p := a
q := b
while q 6= 0 do
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r := prem(p, q, x)
while r 6= 0 and lcoeff(r, x) = 0 in Zn do

r := reductum(r, x) (i.e. r − lcoeff(r, x) xdeg(r,x))
od

if r 6= 0 then

let k be the smallest index such that lcoeff(r, x) ∈ K(t1, . . . , tm)[x1, . . . , xk]
(bool, h) := is regular(lcoeff(r, x), {p1, . . . , pk})
if bool is false then

return (bool, h)
fi

fi

p := q
q := r

od

return (true, p)
end

The two functions above make the definitions of regular chains and of square-
free regular chains algorithmic.

The function Euclidean algorithm actually tries to compute a greatest common
divisor of a and b as defined in Moreno Maza and Rioboo [1995].

A variant of the above functions closer to a true implementation was written by
Moreno Maza [2000]. The pseudoremainder sequence algorithm of Ducos [2000]
is used instead of the basic scheme presented above.

Proposition 1.3: Functions is regular and Euclidean algorithm terminate.

Proof: We prove the proposition by induction on n.
Basis of the induction: the case n = 0. The function is regular terminates for

p ∈ K(t1, . . . , tm). The function Euclidean algorithm terminates for it degenerates
to the usual Euclidean algorithm between univariate polynomials over a field
(apart perhaps at the first turn, the degree of q strictly decreases).

The general case: the case n > 0. We assume inductively that is regular and
Euclidean algorithm terminate. Each time is regular calls itself or the function
Euclidean algorithm, the number of elements of the regular chain is decreasing.
Each time Euclidean algorithm calls is regular, the number of elements of the regu-
lar chain is decreasing. Using the induction hypothesis, recursive calls terminate.
The loop of Euclidean algorithm then always terminates for, apart perhaps at the
first turn, the degree of q in x strictly decreases. 2

Proposition 1.4: The given pseudocodes satisfy the specifications stated in
proposition 1.1 and 1.2.

Proof: We prove the proposition by induction on n.
Basis of the induction: the case n = 0. Every nonzero element of a field is
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invertible. Thus is regular always succeeds and proposition 1.1 is satisfied. The
function Euclidean algorithm and its specifications degenerate to that of the usual
Euclidean algorithm between polynomials over a field. Thus proposition 1.2 is
satisfied.

The general case: n > 0. We assume inductively that results of recursive calls
satisfy both propositions.

First consider is regular. If the first call to is regular returns a pair (false, g)
then, using the induction hypothesis, nothing more needs to be done and the
pair is returned.

If the call to Euclidean algorithm returns a pair (false, g ′) then, using the in-
duction hypothesis, nothing more needs to be done and the pair is returned.

If the call to function Euclidean algorithm returns a pair (true, g ′) such that
deg(g′, x`) > 0 then a nontrivial factorisation of p` is exhibited and, using the
induction hypothesis, the pair (false, g′) is returned.

If the call to function Euclidean algorithm returns a pair (true, g ′) such that
deg(g′, x`) = 0 then, using the induction hypothesis, g′ is regular in Z`−1 and
there exists λ, µ ∈ Z`−1[x`] such that λ p + µ p` = 1 in Z`−1[x`]. Since p` = 0 in
Zn we have λ p = 1 in Zn and p is invertible in Zn. The pair (true, ·) may be
returned.

Consider Euclidean algorithm now. This function is the usual Euclidean algo-
rithm between polynomials. The only difference is that coefficients do not lie in
a field. Relying on is regular, it explicitly contains code which ensures that the
leading coefficient of the polynomial by which divisions are performed is nonzero
and invertible. As soon as some leading coefficient cannot be proven invertible,
the function gives up and returns the exhibited factorisation of some element
of A.

Thus the correction proof is very close to that of the usual Euclidean algorithm.
The core of it is the following classical argument: if a, b, r, g ∈ Zn[x] have leading
coefficients w.r.t. x invertible in Zn and are such such that r = prem(a, b, x) then
g is a common divisor of a, b if and only if g is a common divisor of b, r. The
fact that, in the case of a success, the polynomial p returned by the function lies
in the ideal (a, b) can be proven, very classically, by considering the extended
version of the extended Euclidean algorithm. 2

1.3.2. Saturating ideals

Proposition 1.5: Let A be a squarefree regular chain. Let p be a polynomial
such that is regular (p, A) returns (false, g). Denote x` the leader of g and h =
pquo(p`, g). Then the set Ag (resp. Ah) obtained from A by replacing p` by g
(resp. by h) has the same sets of leaders as A, forms squarefree regular chains.
These sets satisfy

(A) : H∞
A = (Ag) : H∞

Ag
∩ (Ah) : H∞

Ah
.

Proof: See [Boulier et al., 2001b, theorem 5]. 2
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The above proposition provides an algorithm for saturating an ideal presented
by a squarefree regular chain by the multiplicative family generated by a poly-
nomial p.

Proposition 1.6: Let A be a squarefree regular chain. Assume that (A) :H∞
A ⊂

p where p is some prime ideal and that membership testing in p is algorithmic.
Let p /∈ p be a polynomial. Then the following pseudocode computes a squarefree
regular chain A having the same set of leaders as A and such that

(A) : H∞
A ⊂ (A) : (HA ∪ {p})∞ ⊂ (A) : H∞

A
⊂ p. (1)

A := A
(b, g) := is regular(p, A)
while b is false do

let x` be the leader of g
if g /∈ p then

Replace p` by pquo(p`, g) in A
else

Replace p` by g in A
fi

(b, g) := is regular(p, A)
od

Proof: The pseudocode terminates for the degree of the `th element of A strictly
decreases each time the loop body is performed.

We first claim that the relation (2) is a an invariant of the above loop.

(A) : H∞
A ⊂ (A) : H∞

A
⊂ p. (2)

This relation is satisfied initially.
It is sufficient to prove that relation (2) holds after the first turn. We have

(A) : H∞
A ⊂ p. Assume is regular returns false. Denote h the pseudoquotient, we

have by proposition 1.5

(A) : H∞
A = (Ag) : H∞

Ag
∩ (Ah) : H∞

Ah
⊂ p.

Moreover, p`, g, h have the same leader x` and we have a relation c p` = g h
mod p where c is a power of the initial of g. The polynomial c and the initial of
p` are regular modulo p thus so are the initials of g and h.

Therefore if g ∈ p then A = Ag is a squarefree regular chain and we have
(A) : H∞

A
⊂ p.

AAAAAAAAAAAAAAAAA
If g /∈ p we have h ∈ p for p is prime. In that case A = Ah is also a squarefree

regular chain and we also have (A) : H∞
A

⊂ p. The claim is proven.
Putting the claim just proven in an inductive argument, we see that relation

(2) holds after finitely many executions of the loop body.
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The inclusion (A):H∞
A ⊂ (A):(HA∪{p})

∞ is trivial. When the loop terminates,
p is regular modulo (A) : H∞

A
thus (A) : H∞

A
= (A) : (HA ∪ {p})∞. Relation (2)

implies that (A):(HA∪{p})
∞ ⊂ (A):(HA∪{p})

∞. Putting these three arguments
together we see relation (1) holds after termination of the above pseudocode. The
proposition is proven. 2

We are going to encounter the above pseudocode many different times. Observe
that if g and p have the same leader then g /∈ p (quick membership test). Observe
that we do not have in general (A) : (HA∪{p})∞ = (A) :H∞

A
though this is quite

often true since is regular checks the regularity of polynomials different from p.
Any of these tests may fail. For the same reason, is regular may fail even if p is
not a zero divisor.

1.3.3. Variants of I2

Invariant I2 implies that the set of ranks of the elements of A is autoreduced.
This is an old and weaker form of that invariant, used in Boulier et al. [2001a].
The following I2’ is a stronger version of I2 which presents some advantages.

I2’ the set A is squarefree, autoreduced and strongly normalized ; its elements
are primitive over K[t1, . . . , tm].

Strongly normalized means that the initials of the elements of A lie in the ring
K[t1, . . . , tm] (whence A is a regular chain). See Boulier and Lemaire [2000].

Algorithmically, invariant I2’ can be achieved with a variant of is regular based
on an extended variant of Euclidean algorithm. All computations can be per-
formed with no fractions. The use of such an algebraic inverse computation al-
gorithm can be costly. Invariant I2’ is algorithmically interesting anyway when
one computes the content of a differential polynomial p w.r.t. its leader (say) x`

(this operation is very important in practice). The content of a polynomial is
the gcd of its coefficients. This gcd should be computed “modulo the equations”.
Since the word gcd is not really defined in that setting, let’s say roughly that
we would like to catch as many common factors of the coefficients (modulo the
equations), as possible. Strongly normalizing a polynomial seems to have the
effect of making more of these common factors become plain common factors
(i.e. common factors but not modulo the equations). And there are much more
algorithms to compute a plain multivariate gcd than to compute a gcd mod-
ulo a set of equations. A reference book for plain multivariate gcd algorithms is
Geddes et al. [1992].

1.4. Differential algebra

Reference books for differential algebra are Ritt [1950] and Kolchin [1973]. We
also refer to the MAPLE VR5 and following diffalg package and to Boulier et al.
[1995, 1997], Petitot [1999], Hubert [2000], Boulier and Lemaire [2000].

A derivation over a ring R is a map δ : R → R such that δ(a + b) = δa + δb



Boulier, Lemaire and Moreno Maza: PARDI ! 12

and δ(a b) = (δa)b+a(δb) for every a, b ∈ R. A differential ring is a ring endowed
with finitely many derivations which commute pairwise. The commutative mo-
noid generated by the derivations is denoted by Θ. Its elements are the derivation
operators θ = δa1

1 · · · δam
m where the ai are nonnegative integer numbers. The sum

of the exponents ai, called the order of the operator θ, is denoted by ord θ. The
identity operator is the unique operator with order 0. The other ones are called
proper. If φ = δb1

1 · · · δbm
m then θφ = δa1+b1

1 · · · δam+bm
m . If ai ≥ bi for each 1 ≤ i ≤ m

then θ/φ = δa1−b1
1 · · · δam−bm

m .
A differential ideal a of R is an ideal of R closed under derivation i.e. such

that a ∈ a ⇒ δa ∈ a. Let A be a nonempty subset of R. We denote [A] the
differential ideal generated by A which is the smallest differential ideal which
contains A.

1.4.1. Differential polynomials

Let U = {u1, . . . , un} be a set of differential indeterminates. Derivation operators
apply over differential indeterminates giving derivatives θu. We denote ΘU the
set of all the derivatives. Let K be a differential field. The differential ring of
the differential polynomials built over the alphabet ΘU with coefficients in K is
denoted R = K{U}.

A ranking is a total ordering over the set of the derivatives [Kolchin, 1973,
page 75] satisfying the following axioms

1. δv > v for each derivative v and derivation δ,

2. v > w ⇒ δv > δw for all derivatives v, w and each derivation δ.

Let us fix a ranking. The infinite alphabet ΘU gets ordered. Consider a poly-
nomial p ∈ R \ K. Then the leader, initial, . . . of p are well defined. Axioms
of rankings imply that the separant of p is the initial of every proper derivative
of p.

Let rankp = vd. A differential polynomial q is said to be partially reduced
w.r.t. p if no proper derivative of v occurs in q. It is said to be reduced w.r.t. p
if it is partially reduced w.r.t. p and deg(q, v) < d.

A set A of differential polynomials is said to be differentially triangular if
it is triangular and if its elements are pairwise partially reduced. It is said to
be autoreduced if its elements are pairwise reduced. It is said to be partially
auotoreduced if its elements are pairwise partially reduced. Autoreduced implies
differentially triangular.

If A is a set of differential polynomials and v is a derivative then Av = {p ∈
ΘA | ld p ≤ v}. Thus Rv denotes the set of the differential polynomials with
leader less than or equal to v.

1.4.2. Ritt’s reduction algorithms

One distinguishes the partial reduction algorithm, which is denoted partial rem

from the full reduction algorithm, denoted full rem. See [Kolchin, 1973, page 77].
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Let q and p be two differential polynomials. The partial remainder partial rem

(q, p) is the pseudoremainder of q by the (infinite) set of all the proper derivatives
of p. The full remainder full rem (q, p) is the pseudoremainder of q by the set of
all the derivatives of p (including p). A precise algorithm is given in [Kolchin,
1973, chapter I, section 9]. Let A be a set of differential polynomials. We denote
partial rem (q, A) and full rem (q, A) respectively the partial remainder and the
full remainder of q by all the elements of A.

Let v = ld q and A = A ∩ Rv.
The partial remainder q of q by A is partially reduced w.r.t. all the elements

of A and there exists a power product h of elements of SA such that h q ≡ q
mod (Av).

The full remainder q of q by A is reduced w.r.t. all the elements of A and there
exists a power product h of elements of HA such that h q ≡ q mod (Av).

1.4.3. Critical pairs

A pair {p1, p2} of differential polynomials is said to be a critical pair if the
leaders of p1 and p2 are derivatives of some same differential indeterminate u (say
ld p1 = θ1u and ld p2 = θ2u). Denote θ12u = lcd(ld p1, ld p2) the least common
derivative of ld p1 and ld p2 defined by θ12 = lcm(θ1, θ2).

One distinguishes the triangular situation which arises when θ12 6= θ1 and
θ12 6= θ2 from the nontriangular one which arises when θ12 = θ2 (say). In the
last case, the critical pair is said to be a reduction critical pair. In this article,
we do not need to consider the case θ1 = θ2. In the triangular situation, the
∆–polynomial ∆(p1, p2) is

∆(p1, p2) = s2
θ12

θ1
p1 − s1

θ12

θ2
p2.

In the nontriangular one,

∆(p1, p2) = prem(p2,
θ2

θ1
p1).

Definition: If {p, p′} is a reduction critical pair with (say) ld p > ld p′ then
hi ({p, p′}) =

def
p and lo ({p, p′}) =

def
p′. If D is a list of critical pairs then

hi(D) =
def

{hi ({p, p′}) | {p, p′} is a reduction critical pair of D} .

Definition: A critical pair {p, p′} is said to be solved by a system F = 0, S 6= 0 if
there exists a derivative v < lcd(ld p, ld p′) such that ∆(p, p′) ∈ (Fv) : (S ∩Rv)

∞.

1.4.4. Characteristic sets

The traditional definition is due to Ritt: a subset C of a differential ideal a is
said to be a characteristic set of a if C is autoreduced and a contains no nonzero
element reduced w.r.t. C.
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We adopt in this paper a slightly more general definition, which relinquishes
Ritt’s autoreduction requirement and was given by Aubry et al. [1999]. Their
definition, given in the purely algebraic setting readily lifts to the differential
one.

Definition: A subset C of a differential ideal a is said to be a characteristic set
of a if C is differentially triangular, the initials of the elements of C are not
reduced to zero by C (by Ritt’s full reduction algorithm) and a contains no
nonzero element reduced w.r.t. C.

Every characteristic set in the sense of Ritt is a characteristic set in the sense
of Aubry et al. [1999]. Conversely, if C is a characteristic set in the sense of Aubry
et al. [1999], it can be made autoreduced by pseudoreducing each of its elements
by the other ones. This autoreduction process does not change the rank of C
since it is required that the initials of the elements of C are not reduced to zero
by C. Every theorem about Ritt’s characteristic sets which only relies on rank
considerations therefore applies to the more general definition. The following
“well known” proposition provides a useful example.

Proposition 1.7: If C is a characteristic set of a and HC contains no zero
divisor in the quotient ring R/a then a = [C] : H∞

C and p ∈ a if and only if
full rem (p, C) = 0. This is the case when a is prime.

Proof: Denote r =full rem (p, C). If p ∈ a then r ∈ a and is reduced w.r.t. C. It
is thus zero. If r is zero then p ∈ a. This concludes the proof of the first claim.
The elements of HC are reduced w.r.t. C. Thus they do not lie in a. Since a is
prime they are non zero divisors in R/a. This concludes the proof of the second
claim. 2

1.5. Quadruples

Recall the problem addressed in this paper: given a known characteristic set C
w.r.t. a ranking R of a prime differential ideal p and a new ranking R, compute
a characteristic set C of p w.r.t. R.

The ranking implicitly used in this section is the target ranking R.
The main data structure handled by the PARDI algorithm is a quadruple

G = 〈A, D, P, S〉. Roughly speaking, A is the set of the differential polynomial
equations already processed (it will contain C at the end of the computations),
D is the set of the critical pairs to be processed, P is the set of the differential
polynomial equations to be processed, S is the set of the differential polynomial
inequations (6= 0).

Definition: Let G = 〈A, D, P, S〉 be a quadruple and F = A ∪ hi(D) ∪ P . The
system F = 0, S 6= 0 is called the system associated to G and I(G) = [F ] : S∞

is called the differential ideal associated to G.
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Definition: If v is any derivative and F = 0, S 6= 0 is a system then I v(F, S)
denotes the algebraic ideal (Fv) : (S ∩ Rv)

∞. If G = 〈A, D, P, S〉 is a quadruple
then Iv(G) =

def
Iv(F, S) where F = 0, S 6= 0 is the system associated to G.

Definition: A critical pair is said to be solved by a quadruple G if it is solved by
the system associated to G.

Definition: A critical pair {p, p′} is said to be nearly solved by a quadruple G if
it is solved by G or if it lies in D.

2. Statement of the algorithm

Given a known characteristic set C w.r.t. a ranking R of a prime differential
ideal p and a new ranking R, we want to compute a characteristic set C of p

w.r.t. R. The main data structure is a quadruple G = 〈A, D, P, S〉. At the end
of the computations, the desired characteristic set will be found in A.

One of the main ideas of the algorithm consists in applying a “master–student”
relationship between C and A. To decide whether a quantity is zero or not
modulo p we just need to decide whether this quantity is reduced to zero or
not by the “master” C. If it is, we check if it is also reduced to zero by the
“student” A and we store in P (the equations to be processed) every quantity
reduced to zero by C but not by A.

2.1. Making sure of the rank of a polynomial

The following function provides an easy example of function which applies the
“master–student” relationship. It takes as input a differential polynomial p, a
quadruple G and the known characteristic set C. It simplifies p while its initial
or its separant lies in p. It returns the simplified value of p together with an
updated value of P .

function ensure rank(p, G = 〈A, D, P, S〉, C)
begin

r := p
newP := P
while r /∈ K and (ir ∈ p or sr ∈ p) do

if ir ∈ p then

if prem(ir, A) 6= 0 then

newP := newP ∪ {ir}
fi

r := reductum(r) (i.e. r − ir xd) where xd = rankr)
else

if prem(sr, A) 6= 0 then

newP := newP ∪ {sr}
fi
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r := d r − sr x where xd = rankr
fi

od

return (r, newP)
end

2.2. Invariant properties of quadruples

Throughout the execution of the PARDI algorithm, we will keep the following
properties true. Recall G = 〈A, D, P, S〉 is the quadruple handled by the algo-
rithm.

I1 p = I(G) ;

I2 the set A is a partially autoreduced squarefree regular chain ;

I3 every critical pair made of elements of A is nearly solved by G ;

I4 the initials and separants of the elements of A and of the critical pairs of D
belong to S ;

I5 let {p, p′} ∈ D be a reduction pair such that p′ = lo ({p, p′}) and ld p′ = v ;
then p′ ∈ Iv(G).

2.3. Completion of a quadruple

One of the key steps of the PARDI algorithm consists in inserting a new differ-
ential polynomial p (picked or computed from one of the lists D and P ) in the
component A of a quadruple G = 〈A, D, P, S〉. This operation is performed by
the complete subfunction below. The parameter C is the known characteristic
set of p.

Proposition 2.1: The complete function takes three parameters: a quadru-
ple G = 〈A, D, P, S〉 satisfying properties I1 to I5, the known characteristic
set C of the differential ideal p and a polynomial p ∈ p, partially reduced w.r.t. A,
with a leader distinct from that of the elements of A and an initial and a separant
which do not lie in p.

It inserts p in A and returns a quadruple G′ = 〈A′, D′, P ′, S ′〉 which satisfies
properties I1 to I5 and such that Iv(G) ⊂ Iv(G′) for every derivative v.

function complete(〈A, D, P, S〉, C, p)
begin

A′ := insert and rebuild(p, A, C)
D′ := D ∪ {{p`, p} | p` ∈ A, {p`, p} is a critical pair}
P ′ := P
S ′ := S ∪ {ip, sp}
return 〈A′, D′, P ′, S ′〉

end
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The function insert and rebuild is a subfunction of complete. It inserts p in A
giving a new set A in such a way that A is again a partially autoreduced square-
free regular chain. It contains the pseudocode described in proposition 1.6.

function insert and rebuild(p, A, C)
begin

A := {p} ∪ {f ∈ A | ld f is not a derivative of ld p}
Denote A = {p1, . . . , pn} (s.t. ld pi < ld pi+1)
Denote m the index of p in A
k := m
while k ≤ n do

pk := partial rem (pk, A)
(b, g) := is regular(ipk

, A)
if b then

(b, g) := is regular(spk
, A)

fi

if b is false then

if g /∈ p then

Replace p` by pquo(p`, g) in A
else

Replace p` by g in A
fi

else

k := k + 1
fi

od

return A
end

Proposition 2.2: The complete function terminates.

Proof: The while loop of insert and rebuild implements the mechanism whose
termination proof is given in proposition 1.6. 2

Proposition 2.3: The pseudocode of the function complete satisfies the prop-
erties stated in proposition 2.1.

Proof: We first claim that Iv(G) ⊂ Iv(G′) for each derivative v.
We only need to focus on the operations performed by insert and rebuild.
This function withdraws from A′ the polynomials of A whose leader is a deriva-

tive of the leader of p. These polynomials are stored in reduction critical pairs by
complete and they belong to hi(D′) which is part of the associated system of G′.
Thus, after this operation, we still have Iv(G) ⊂ Iv(G′) for each derivative v.

This function also performs some algebraic operations on A′. These operations
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are described by proposition 1.6 which shows that (A) : H∞
A ⊂ (A′) : H∞

A′ . Thus,
after this operation, we still have Iv(G) ⊂ Iv(G′) for each derivative v and the
claim is proven.

Property I1. We have already proven that I(G) ⊂ I(G′).
We thus only need to prove I(G′) ⊂ I(G). G′ is obtained from G by the

following operations. The polynomial p is stored in A′. Since p ∈ p, after this
operation, we still have I(G′) ⊂ I(G). The initial and separant of p are stored
in S ′. Since these polynomials do not lie in p which is prime, after this operation,
we have I(G′) ⊂ p : (ip sp)

∞ = p. Some algebraic operations are performed
by insert and rebuild on A′. Proposition 1.6, which describes them, shows that
(A′) : H∞

A′ ⊂ p. Hence I(G′) ⊂ I(G) and G′ satisfies I1.
Property I2. The fact that A′ is a squarefree regular chain is proven in propo-

sition 1.6. The fact that it is partially autoreduced comes from the fact that p
is partially reduced w.r.t. A and that the polynomials of A whose leader is a
derivative of the leader of p do not lie in A′.

Property I3. It is satisfied by G′ since it is satisfied by G and all the critical
pairs generated by p and any other element of A are stored in D′ (observe A′ is
the union of {p} and of a subset of A).

Property I4. It holds for it is satisfied by G and the initial and separant of
the new polynomials p inserted in A′ are stored in S ′.

Property I5. It is satisfied by G hence, using the already proven fact that
Iv(G) ⊂ Iv(G′) for each derivative v, it holds for reduction critical pairs of D′

which are already in D. Reduction critical pairs which lie in D′ but not in D are
of the form {p, p`} with p = lo({p, p`}). Since p ∈ A′ which is part of the set
of equations of the associated system of G′ we have p ∈ Iv(G′) where v denotes
the leader of p. Hence property I5 is satisfied by G′. 2

2.3.1. Avoiding critical pairs: a new criterion

Not all new critical pairs between p and the elements of A need to be generated.
Moreover, some of the critical pairs present in D can be simply removed (i.e. not
kept in D′).

One can implement an analogue of Buchberger’s second criterion as described
in Boulier et al. [1997] but the resulting algorithm is quite technical. The follow-
ing new criterion is much easier to implement and turns out to be very efficient.
It only tells us how to remove critical pairs in D but it removes more critical
pairs that the analogue of Buchberger’s second criterion.

Proposition 2.4: Let {p, p′} ∈ D be a critical pair. If {p, p′} is not a reduction
critical pair and {p, p′} 6⊂ A′ then the critical pair does not need to be kept in D′.

This criterion is proven in the (less interesting) context of Gröbner bases in
Boulier [2001]. We are not going to prove it in this paper but the idea is very
simple: properties on critical pairs are only useful for proving that the hypotheses
of the so called Rosenfeld’s lemma hold for the set A at the end of computations
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(the main loop of PARDI). Therefore critical pairs which contain at least one
polynomial withdrawn from A are irrelevant. Now, one must take care not to
remove reduction critical pairs for these ones contain generators of the ideal
(elements of the set of equations of the associated system of the quadruple). It is
surprising that this criterion was not discovered earlier (at least in the context of
Gröbner bases, see Becker and Weispfenning [1991]). We believe that this is due
to the fact that reduction critical pairs were not distinguished from the other
ones while they play a very special role.

2.4. The gcd (lsr sorry) of two polynomials over a factor ring

In this section we consider two polynomials a and b with leader x and a quadru-
ple G. We introduce the following notations:

1. R− = K[w ∈ ΘU | w < x]

2. p− = p ∩ R−

3. I−(G) = (F ∩ R−) : (S ∩ R−)∞ where F = 0, S 6= 0 denotes the system
associated to G.

Observe that p− is prime, R−/p− is a domain and Fr(R−/p−) is a field.

Proposition 2.5: The lsr function takes five parameters. The two first ones
are differential polynomials a, b ∈ p with leader x, partially reduced w.r.t. A and
with initials and separants outside p. The remaining ones are the derivative x,
a quadruple G satisfying properties I1 to I5 and the known characteristic set C.

It returns a triple (g, newP, newS) satisfying the following properties.

1. g is a gcd of a and b in the ring Fr(R−/p−)[x]

2. deg(g, x) > 0 and its initial and separant do not lie in p

3. (a, b) ⊂ (g) : h∞ in the ring (R−/I−(G′))[x] where h is an element of the
multiplicative family generated by newS and G′ = 〈A, D, newP, newS〉.

The sets newP and newS are updated version of P and S obtained by applying
the “master–student” relationship idea described in section 2.

function lsr(a, b, x, G = 〈A, D, P, S〉, C)
begin

p := a
q := b
newP := P
newS := S
while q 6= 0 do

r := prem(p, q, x)
while r 6= 0 and lcoeff(r, x) ∈ p do

if prem(lcoeff(r, x), A) 6= 0 then
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newP := newP ∪ {lcoeff(r, x)}
fi

r := reductum(r, x)
od

if r 6= 0 then

newS := newS ∪ {lcoeff(r, x)}
p := q
q := r

fi

od

g := p
return (g, newP, newS)

end

Proposition 2.6: The function lsr terminates.

Proof: It is a variant of the Euclidean algorithm. Apart perhaps at the first turn,
the degree of q in x strictly decreases at each turn. 2

Proposition 2.7: The pseudocode of lsr satisfies its specifications

Proof: Observe that the pseudocode of lsr is nothing but the Euclidean algo-
rithm applied on a and b in Fr(R−/p−)[x] together with instructions which store
in newP every leading coefficient which is zero in R−/p− but not reduced to
zero by A and stores in newS the “true” leading coefficients of the computed
pseudoremainders (among the coefficients in R−, the first one which is nonzero
in R−/p−).

Therefore, the polynomial g returned is a gcd of a and b in Fr(R−/p−)[x] hence
property (1) holds.

All the computed pseudoremainders belong to the ideal (a, b) of the ring
Fr(R−/p−)[x]. Since a, b ∈ p, all the computed pseudoremainders lie in p thus
the first pseudoremainder which does not depend on x is zero in Fr(R−/p−)[x].
Therefore, the last nonzero pseudoremainder g satisfies deg(g, x) > 0

For this reason, the leading coefficients w.r.t. x are equal to the initials of the
computed pseudoremainders and the function explicitly tests that they do not
lie in p.

Denote η a generic zero of p. It is a zero of a and b but not a zero of their
separants sa and sb since these latter do not lie in p. Therefore η is a simple
zero of a and b hence a simple zero of their gcd g. Thus η is not a zero of the
separant sg of g and sg /∈ p. This concludes the proof of property (2).

It is a well-known property of the Euclidean algorithm that a, b ∈ (g) : h∞

in Fr(R−/p−)[x] where h denotes the product of the leading coefficients of the
computed pseudoremainders. On the one hand, these leading coefficients are
stored in newS which is part of the set of inequations of the system associated
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to G′. On the other hand, the leading coefficients in R− of the pseudoremainders
which are zero in R−/p− are either stored in newP (which is part of the set
of equations of the system associated to G′) or reduced to zero by A. Thus
property (3) holds. 2

2.4.1. Performing exact quotient operations

In practical implementations, the returned gcd is actually the last nonzero subre-
sultant of a and b and the computation is performed using a variant of a (good)
pseudoremainder sequence algorithm (we chose the algorithm of Ducos [2000]
but the Lombardi et al. [2000] algorithm would fit as well).

Such an algorithm actually computes a sequence of subresultants p1, . . . , pn

of a and b in (R−/p−)[x].
The only issue with such efficient algorithms consists in performing the exact

quotient operations of the algorithm in R−/p−. Let’s describe how we proceed.
At each step i we verify that the leading coefficient of the current subresul-

tant pi is nonzero in R−/p−. Assume this is the case. Then one continues the
Ducos [2000] algorithm without normalizing pi in any sense w.r.t. p. Assume the
leading coefficients of all the encountered subresultants are nonzero in R−/p−.
Then the algorithm behaves exactly as Ducos [2000] in R−[v] whence exact
quotient operations just have to be done in R−. Assume now that the leading
coefficient of pi is zero in R−/p−. Then one replaces pi by its reductum (i.e. one
removes this coefficient from pi), possibly many times, giving a polynomial pi.
Then one restarts lsr over pi−1 and pi.

This idea is very simple but very important. Elements of R−/p− are residue
classes. They can be computationally represented by any of their elements. For
pseudoremainder sequences algorithms, the most convenient choice is to rep-
resent residue classes by representatives which make easy the exact quotient
operations. This can be done by not normalizing coefficients at all. One just
needs to make sure that leading coefficients are nonzero in the factor ring.

2.4.2. Identifying algebraic subproblems

The lsr algorithm is purely algebraic in the following sense:

1. it does not manipulate the separants of the polynomials p and q ;

2. it does not generate any critical pair.

It is going to be used by the PARDI algorithm when two differential polyno-
mials having the same leader are encountered. This is a true major improve-
ment w.r.t. the Rosenfeld–Gröbner algorithm of the MAPLE diffalg package as
explained in Boulier et al. [2001a].

2.5. The main algorithm

function PARDI(C,R,R)
begin
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〈A, D, P, S〉 := 〈∅, ∅, C, HC taken w.r.t. R〉
while D 6= ∅ or P 6= ∅ do

Take and remove some p ∈ P or some critical pair {p1, p2} ∈ D.
In the latter case let p = ∆(p1, p2).

p := partial rem (p, A)
(p, P ) := ensure rank(p, G = 〈A, D, P, S〉, C)
if p 6= 0 then

if ∃q ∈ A such that ld p = ld q then

(g, P, S) := lsr(p, q, ld q, 〈A, D, P, S〉, C)
if g 6= q then

〈A, D, P, S〉 := complete(〈A \ {q}, D, P, S〉, C, g)
fi

else

〈A, D, P, S〉 := complete(〈A, D, P, S〉, C, p)
fi

fi

od

S := partial rem (S, A)
return strip charset(〈A, D, P, S〉, C,R,R)

end

The strip charset function will be described later.

Proposition 2.8: The main loop of the PARDI algorithm terminates.

Proof: The rank of A decreases at each turn w.r.t. the classical ordering on
autoreduced sets. This rank cannot strictly decrease at each turn by [Kolchin,
1973, proposition 3, page 81]. It is sufficient to establish that it cannot indefinitely
keep the same value.

The rank of A does not change only if g = q after a call to lsr or all the coef-
ficients of the differential polynomial picked and removed from P or computed
from a critical pair of D belong to p.

In the three cases, the algorithm does not generate any critical pair (provided
that the case g = q is handled separately after a call to lsr). Therefore it is
impossible to extract infinitely many critical pairs from D and it is sufficient
to consider the two first cases: In these two cases, one differential polynomial is
picked from P and is replaced by finitely many differential polynomials with a
lower leader. Rankings are well orderings [Kolchin, 1973, page 75]. By a classical
argument of graph theory [König, 1950, Satz 6.6] (i.e. every infinite, locally finite
tree involves a branch of infinite length) this cannot happen infinitely many
times. Thus the algorithm terminates. 2

Proposition 2.9: Property I4 is a loop invariant of PARDI.

Proof: This property is satisfied initially. The only function which modifies A or
D is the complete function. The proof is concluded by proposition 2.1. 2
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Before proving that the other properties I1 to I5 are loop invariants of PARDI,
we establish a lemma which proves that the ideals Iv(G) grow i.e. that if

v1 < v2 < v3 < · · ·

is an increasing sequence of derivatives then

Iv1(G) ⊂ Iv2(G) ⊂ Iv3(G) ⊂ · · ·
∩ ∩ ∩

Iv1(G′) ⊂ Iv2(G′) ⊂ Iv3(G′) ⊂ · · ·

This lemma is very important for it proves that if a critical pair is solved at some
loop iteration then it keeps being solved afterwards.

Proposition 2.10: Denote G = 〈A, D, P, S〉 the value of the quadruple at the
beginning of the loop body and G′ = 〈A′, D′, P ′, S ′〉 its value after execution of
the loop body. Assume G satisfies property I5. Then

(α) Iv(G) ⊂ Iv(G′) for every derivative v ;

(β) G′ satisfies property I5.

Proof: Denote F = 0, S 6= 0 the system associated to G and F ′ = 0, S ′ 6= 0 the
system associated to G′.

We first consider the case p is picked from the set P .
Denote v the leader of p and p the partial remainder of p by A. Then, for some

h ∈ S ∩ Rv we have h p = p mod Iv(G). The call to ensure rank may modify p
but stores in P the initials and separants needed to keep this relation true.

Now, if p = 0 then p ∈ Iv(G) and (α) is proven. Since D is not modified, (β)
is proven also. Assume then p 6= 0.

If there is not any q ∈ A having the same leader as p then complete is called
and, using proposition 2.1, the proposition is proven. Observe though that, when
complete is called, G does not satisfy I1 to I5 since p is already withdrawn
from P . However, for the needs of the proof, we may assume that we have
delayed the withdrawal of p from P : once p is inserted in A, the polynomial p is
redundant.

If there does exist some q ∈ A having the same leader as p then, by propo-
sition 2.5, the call to lsr provides a gcd g of p and q which has leader v and
satisfies p, q ∈ (g) : h∞ in the ring Fr(R−/p−)[v] where h ∈ S ∩ Rv (the value
of S being the one updated by lsr). This gcd is inserted in G by complete hence,
using proposition 2.1 as above, the proposition is proven. Here also, observe that
when complete is called, G does not satisfy I1 to I5 since p is already withdrawn
from P and q from A. However, for the needs of the proof, we may assume that
we have delayed the withdrawal of those polynomials: once g is inserted in A,
they are redundant.

This concludes the case p is picked from P .
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We now consider the case a critical pair is picked from D. First observe we
only need to focus on the case of a reduction critical pair since the other ones
do not enter the definition of the associated systems of the quadruples.

To shorten the proof, we may also assume that ∆–polynomials are temporarily
stored in P before being handled by the remaining instructions of the loop body.
That way, relying on the analysis of the case p is picked from P , we only need to
prove that (α) and (β) hold when a reduction critical pair is picked and removed
from D and the corresponding ∆–polynomial is stored in P .

Both properties are proven by induction on v.
The basis (v is the lowest derivative). Fv 6= F ′

v only if the critical pair {p, p′}
is such that ld(hi({p, p′})) = v. No such pair exists. Thus (α) and (β) hold.

The general case. We assume both properties hold for every derivative v ′ < v.
We prove them for v. Assume the critical pair {p, p′} is such that ld p > ld p′.

If v = ld p′ then Fv = F ′
v and S = S ′ and (α) holds. Property (β) follows

from (α) and the fact that we have just removed one pair from D.
If v = ld p then it is sufficient to prove p ∈ Iv(G′). Since the critical pair is a

reduction one we have ∆(p, p′) = prem(p, φp′) where φ = θ/θ′, denoting v = θu,
and v′ = ld p′ = θ′u. We have p′ ∈ Iv′

(G) and Iv′

(G) ⊂ Iv′

(G′) by induction
hypothesis whence φp′ ∈ Iv(G′) and p ∈ Iv(G′). Property (β) follows from (α)
and the fact that we have just removed one pair from D. 2

Proposition 2.11: Properties I1 to I5 are loop invariants of PARDI.

Proof: These properties are all satisfied initially. The case of I4 is already solved.
Then proposition 2.10 proves that I5 is also a loop invariant and that the

ideals Iv(G) grow.
Invariant I1. The inclusion p ⊂ I(G) comes from proposition 2.10 (α). The

converse inclusion is clear.
Invariant I2 comes from proposition 2.1.
Invariant I3. Proposition 2.10 (α) proves that any critical pair solved by G

is solved by G′. Consider a critical pair {p, p′} removed from D. It is nearly
solved by G since it lies in D. It is solved (hence nearly solved) by G′ for the
∆–polynomial is stored in A′ by complete and has a leader strictly less than
the leader of hi({p, p′}). The case of the critical pairs generated by complete is
considered in proposition 2.1. 2

2.6. An example

We illustrate the behaviour of PARDI over the first example given in introduction
and verify that some of the properties stated in section 2.2 hold at each step.
The criterion stated in proposition 2.4 is applied (though it is not proven in this
paper). The reader may check that the avoided corresponding ∆–polynomial are
reduced to zero by the set A of the quadruple.

This implementation of PARDI was done in the C programming language. It
maintains invariant I2’ and performs full reductions instead of partial ones. The
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strategy consists in picking differential polynomials in P first and critical pairs
in D only if P is empty. The lists P and D are sorted according to some heuristic
criterion which does not need to be stated.

Each time a differential polynomial is written, its leader w.r.t. the ranking R
occurs at the leftmost place: it is the first derivative written.

When PARDI first enters the loop, A and D are empty, all elements of C belong
to P and the initials and separants of C taken w.r.t. the ranking R lie in S i.e.

A = []

D = []

P = [u2
y − 2u, −ux + vxx, u2

x − 4u, −uxuyu + uxuy + 4uvy]

S = [u, ux, uy]

Since F = P = C and S = HC invariant I1 is clearly satisfied. The other
invariants are initially trivial.

At the first turn, the differential polynomial u2
y − 2u is picked and removed

from P . The complete subfunction stores it in A′. It inserts also its initial and
separant in S ′ to keep invariant I4 but this operation has no effect for the initial
lies in the base field and the separant is already present in S.

A = [u2
y − 2u]

D = []

P = [−ux + vxx, u2
x − 4u, −uxuyu + uxuy + 4uvy]

S = [u, ux, uy]

At the second turn the differential polynomial −ux+vxx is picked and removed
from P . The complete subfunction inserts it in A′ (after normalizing its sign) and
stores in D′ a critical pair generated by this differential polynomial and the one
already present in A.

A = [u2
y − 2u, ux − vxx]

D = [{ux − vxx, u2
y − 2u}]

P = [u2
x − 4u, −uxuyu + uxuy + 4uvy]

S = [u, ux, uy]

At the third turn the differential polynomial u2
x − 4u is picked and removed

from P . After reduction by A it becomes 4u − v2
xx. The complete subfunction

stores it in A′ and stores in D′ the two (reduction) critical pairs generated by
this differential polynomial and the elements of A.

The former elements u2
y − 2u and ux − vxx of A are not kept in A′. These two

differential polynomials belong however to hi(D′) so that

F =
def

A ∪ hi(D) ∪ P = F ′ =
def

A′ ∪ hi(D′) ∪ P ′.
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Thus I(G) = I(G′) and invariant I1 still holds. The old critical pair in D is not
kept in D′ by proposition 2.4.

A = [4u − v2
xx]

D = [{4u − v2
xx, u2

y − 2u}, {4u − v2
xx, ux − vxx}]

P = [−uxuyu + uxuy + 4uvy]

S = [u, ux, uy]

At the fourth turn the differential polynomial −uxuyu+uxuy +4uvy is picked
and removed from P .

The differential polynomial obtained after the reduction by A has a nontrivial
content. The implementation of PARDI verifies that this content does not lie in p

and removes it. The obtained differential polynomial is vxxxvxxyv
2
xx−4vxxxvxxy −

16vy. It is stored in A′ and its initial (splitted in two factors) is stored in S ′.

A = [vxxxvxxyv
2
xx − 4vxxxvxxy − 16vy, 4u − v2

xx]

D = [{4u − v2
xx, u2

y − 2u}, {4u − v2
xx, ux − vxx}]

P = []

S = [vxxy, v2
xx − 4, u, ux, uy]

At the fifth turn, the critical pair {4u − v2
xx, u2

y − 2u} is picked and removed
from D. The ∆–polynomial is computed, reduced by A. The content of the result
is removed. This provides the new differential polynomial v2

xxy − 2.
It is stored in A′ and one critical pair is stored in D′. It has a trivial initial

and its separant is already present in S.
The implementation of insert and rebuild, which maintains invariant I2’, mul-

tiplies the differential polynomial with leader vxxx by the algebraic inverse vxxy/2
of vxxy modulo (v2

xxy − 2) and simplifies using the new differential polynomial.

A = [v2
xxy − 2, vxxxv

2
xx − 4vxxx − 8vxxyvy, 4u − v2

xx]

D = [{4u − v2
xx, ux − vxx}, {v

2
xxy − 2, vxxxv

2
xx − 4vxxx − 8vxxyvy}]

P = []

S = [vxxy, v2
xx − 4, u, ux, uy]

At the sixth turn, the critical pair {4u− v2
xx, ux − vxx} is picked and removed

from D. The ∆–polynomial is computed and reduced by A. The content of the
result is removed. This provides the new differential polynomial p = 4vxxyvy −
v2

xx + 4. Since p has the same leader as the element q = v2
xxy − 2 ∈ A the lsr

function is called.
The lsr function is called in order to compute a gcd g of q = v2

xxy − 2 and p =
4vxxyvy −v2

xx +4 in the ring Fr(R−/p−)[vxxy]. Here R− = K[w ∈ ΘU | w < vxxy].
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The pseudoremainder prem(q, p, vxxy) is the polynomial r = v4
xx−8v2

xx−32v2
y+16.

It does not involve vxxy thus it is equal to its leading coefficient w.r.t. this
derivative. The characteristic set C of p pseudoreduces r to zero (notice that
proposition 2.5 proves this fact without having to perform the pseudoreductions).
Thus the gcd g = p. Since r is not reduced to zero by A, it is stored in P . The
initial 4 vy of g is stored in S.

The old critical pair in D is removed using proposition 2.4.

A = [4vxxyvy − v2
xx + 4, vxxx − 2, 4u − v2

xx]

D = [{4vxxyvy − v2
xx + 4, vxxx − 2}]

P = [v4
xx − 8v2

xx − 32v2
y + 16]

S = [vy, vxxy, v2
xx − 4, u, ux, uy]

At the seventh turn the differential polynomial v4
xx − 8v2

xx − 32v2
y + 16 is

picked and removed from P . It is stored in A′ and throws away the differential
polynomials with leaders vxxy and vxxx. Its separant factors. Only the factor vxx

needs to be stored in S ′. Two reduction critical pairs are stored in D′ but the
old critical pair can be removed using proposition 2.4.

A = [v4
xx − 8v2

xx − 32v2
y + 16, 4u − v2

xx]

D = [{v4
xx − 8v2

xx − 32v2
y + 16, vxxx − 2},

{v4
xx − 8v2

xx − 32v2
y + 16, 4vxxyvy − v2

xx + 4}]

P = []

S = [vxx, vy, vxxy, v2
xx − 4, u, ux, uy]

At the eighth turn, the first critical pair is picked and removed from D. After
reduction by A, it provides a differential polynomial p = v3

xx − 4vxx − 8vxyvy.
The lsr function is called on p and the polynomial q ∈ A with rank v4

xx. It
returns a gcd g = vxxv

2
xy − 2vxx − 4vxyvy (after removal of its content). It stores

in P ′ a differential polynomial representing the resultant of p and q (after removal
of its content) but which is not reduced to zero by A. The initial of g is stored
in S ′.

The gcd is stored in A′ and replaces the differential polynomial with rank v4
xx.

The function insert and rebuild pseudoreduces the differential polynomial with
leader u using it. This does not simplify this polynomial at first sight. No critical
pair is generated.

A = [vxxv
2
xy − 2vxx − 4vxyvy, uv4

xy − 4uv2
xy + 4u − 4v2

xyv
2
y]

D = [{v4
xx − 8v2

xx − 32v2
y + 16, 4vxxyvy − v2

xx + 4}]

P = [v4
xy − 4v2

xy − 8v2
y + 4]

S = [v2
xy − 2, vxx, vy, vxxy, v2

xx − 4, u, ux, uy]
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At the ninth turn, the differential polynomial v4
xy − 4v2

xy − 8v2
y + 4 is picked

and removed from P . It is stored in A′. Its separant factors. Only the factor vxy

needs to be stored in S ′. One critical pair is stored in D′.

A = [v4
xy − 4v2

xy − 8v2
y + 4, 2vxxvy − v3

xy + 2vxy, 2u − v2
xy]

D = [{v4
xx − 8v2

xx − 32v2
y + 16, 4vxxyvy − v2

xx + 4},

{v4
xy − 4v2

xy − 8v2
y + 4, 2vxxvy − v3

xy + 2vxy}]

P = []

S = [vxy, v2
xy − 2, vxx, vy, vxxy, v2

xx − 4, u, ux, uy]

At the tenth turn, the first critical pair is picked and removed from D. The ∆–
polynomial is computed and reduced by A. The content of the result is removed.
One gets a differential polynomial p = v3

xy − 2vxy − 4vyyvy.
The situation is very similar to that of the eighth turn. The lsr function is

called on p and the polynomial q ∈ A with rank v4
xy. It returns a gcd g =

vxyv
2
yy − vxy − 2vyyvy (after removal of its content). It stores in P ′ a differential

polynomial representing the resultant of p and q (after removal of its content)
but which is not reduced to zero by A. The initial of g is stored in S ′.

The implementation of insert and rebuild pseudoreduces the differential poly-
nomial with leader vxx using it (this does not simplify the differential polyno-
mial).

The gcd is stored in A′ and replaces the differential polynomial with rank v4
xy.

The function insert and rebuild pseudoreduces the differential polynomial with
leader vxx using it. This does not simplify this polynomial at first sight. A critical
pair is stored in D′. An old critical pair is removed from D using proposition 2.4.

A = [vxyv
2
yy − vxy − 2vyyvy,

vxxv
6
yy − 3vxxv

4
yy + 3vxxv

2
yy − vxx + 2v5

yy − 4v3
yyv

2
y − 4v3

yy + 2vyy,

uv4
yy − 2uv2

yy + u − 2v2
yyv

2
y]

D = [{vxyv
2
yy − vxy − 2vyyvy,

vxxv
6
yy − 3vxxv

4
yy + 3vxxv

2
yy − vxx + 2v5

yy − 4v3
yyv

2
y − 4v3

yy + 2vyy}]

P = [v4
yy − 2v2

yy − 2v2
y + 1]

S = [v2
yy − 1, vxy, v2

xy − 2, vxx, vy, vxxy, v2
xx − 4, u, ux, uy]

At the eleventh turn, the differential polynomial v4
yy − 2v2

yy − 2v2
y + 1 is picked

and removed from P . It is inserted in A′. The function insert and rebuild pseu-
doreduces the other differential polynomials of A′ using it and removes the con-
tents. This simplifies A′. An analogue of Buchberger’s second criterion Boulier
et al. [1997] not stated in this paper permits us to generate only one critical pair
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instead of two (the fact that the corresponding ∆–polynomial is reduced to zero
by A can be checked directly).

A = [v4
yy − 2v2

yy − 2v2
y + 1, vxyvy − v3

yy + vyy, vxx − 2vyy, u − v2
yy]

D = [{vxyvy − v3
yy + vyy, vxx − 2vyy},

{v4
yy − 2v2

yy − 2v2
y + 1, vxyvy − v3

yy + vyy}]

P = []

S = [vyy, v2
yy − 1, vxy, v2

xy − 2, vxx, vy, vxxy, v2
xx − 4, u, ux, uy]

There are two critical pairs left. At the next steps, A pseudoreduces the first
one to zero, it pseudoreduces the second one to zero and PARDI calls strip charset.

3. The strip charset algorithm

The following definition is borrowed from Boulier et al. [1997].

Definition: A differential system A = 0, S 6= 0 is a regular differential system if

C1 A is differentially triangular (partially autoreduced and triangular) ;

C2 the separants of A belong to S and S is partially reduced w.r.t. A ;

C3 all the critical pairs that can be formed with the elements of A are solved
by the system A = 0, S 6= 0.

Proposition 3.1: Let G = 〈A, D, P, S〉 denote the quadruple that PARDI pro-
vides to strip charset as first parameter.

Then A = 0, S 6= 0 is a regular differential system and [A] : S∞ = p.

Proof: The quadruple G satisfies properties I1 to I5 by proposition 2.11. It also
satisfies D = P = ∅.

Property I2 implies property C1. Property I4 and the fact that PARDI par-
tially reduces the elements of S by A just before calling strip charset implies that
C2 holds. Property I3 combined with the fact that D is empty implies that C3

holds. Therefore A = 0, S 6= 0 is a regular differential system.
Property I1 combined to the fact that D = P = ∅ imploes that [A] : S∞ = p.

2

We recall the two main theorems satisfied by regular differential systems.

Theorem 3.1: (Rosenfeld’s lemma)
If A = 0, S 6= 0 is a regular differential system then [A] : S∞ ∩ R0 = (A) :

S∞ where R0 denotes the ring of the differential polynomials partially reduced
w.r.t. A.

Proof: Rosenfeld’s lemma is due to Rosenfeld [1959] who generalizes a result
of Seidenberg [1956]. Its formulation for regular differential systems is given in
Boulier et al. [1997]. A generalized version is given in Morrison [1999]. 2
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Theorem 3.2: (Lazard’s lemma)
Let A be a triangular set of a polynomial ring K[X] and SA be the set of its

separants. The ideal (A) : S∞
A is radical. The set of the indeterminates which

are not leaders of elements of A provides a transcendence basis of the field of
fractions of K[X]/b over K where b is any prime ideal minimal over (A) : S∞

A .

Proof: Lazard’s lemma is stated for the first time in Boulier et al. [1995] with
an incomplete proof. The first complete proof is due to Morrison [1995] and
published in Morrison [1999]. Different proofs of Lazard’s lemma were written
later by Schicho and Li [1995], Boulier et al. [1997], Hubert [2000] and Sadik
[2000]. See also [Boulier et al., 2001b, theorems 1 and 2]. 2

Theorem 3.3: (corollary to Lazard’s and Rosenfeld’s lemmas)
Let A = 0, S 6= 0 be a regular differential system. Then the ideal [A] : S∞ is

radical. Denote p1, . . . , pt its minimal differential primes, R0 the ring of the dif-
ferential polynomials partially reduced w.r.t. A and bi = pi ∩R0. Then b1, . . . , bt

are the minimal primes of (A) : S∞.

Proof: This theorem is already present in [Boulier et al., 1997, lifting of Lazard’s
lemma] and Hubert [2000]. We prove it anew.

The first part is well known. Assume pα ∈ [A] : S∞. Denote p =partial rem

(p, A). For some power product h of separants of A we have h p = p mod [A].
By Rosenfeld’s lemma pα ∈ (A) : S∞. Thus by Lazard’s lemma, p ∈ (A) : S∞.
Since the separants of A are inequations of the system A = 0, S 6= 0 we have
p ∈ [A] : S∞.

The second part. We have (A) : S∞ = [A] : S∞ ∩ R0 by Rosenfeld’s lemma
whence (A) : S∞ = b1 ∩ · · · ∩ bt. It is thus sufficient to prove that none of the
b is redundant. Let p ∈ p2 ∩ · · · ∩ pt. Let p and h be defined as above. Then
p ∈ b2 ∩ · · · ∩ bt. Assume b1 is redundant. Then p ∈ b1. Since A, b1 ⊂ p1 and
h /∈ p1 we conclude that p ∈ p1 i.e. that p1 is redundant. Contradiction. 2

The strip charset algorithm can be implemented by at least two different algo-
rithms. The first one, called specialized regCharacteristic, always applies. The sec-
ond one, called regalise always applies in the algebraic case or for ODE systems.
It may not work for PDE systems (without a few preliminary computations).

Proposition 3.2: The specialized regCharacteristic function takes four param-
eters: a regular differential system A = 0, S 6= 0 w.r.t. ranking R such that
[A] : S∞ = p, the known characteristic set C of p w.r.t. ranking R and the two
rankings.

It returns a characteristic set C of p w.r.t. R.

function specialized regCharacteristic({A = 0, S 6= 0}, C, R, R)
begin

Denote S = {s1, . . . , sm}
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C := A
k := 1
while k ≤ m do

(b, g) := is regular(sk, A)
if b is false then

Let x` be the leader of g
if g /∈ p then

Replace p` by pquo(p`, g) in C
else

Replace p` by g in C
fi

else

k := k + 1
fi

od

return C
end

Over the example, is regular always returns pairs of the form (true, ·) and the
set A = C is returned.

Proposition 3.3: The function specialized regCharacteristic terminates.

Proof: This function implements the mechanism whose termination proof is
given in proposition 1.6. 2

Proposition 3.4: The pseudocode of function specialized regCharacteristic sat-
isfies the properties stated in proposition 3.2.

Proof: The rings of the differential polynomials partially reduced w.r.t. C and A
are the same. Denote it R0. The set C is a partially autorduced squarefree regular
chain and by proposition 1.6 we have:

(A) : H∞
A ⊂ (A) : S∞ ⊂ (C) : H∞

C
⊂ p ∩ R0.

By Rosenfeld’s lemma [A] : S∞ ∩ R0 = (A) : S∞. Since [A] : S∞ = p we have
(A) : S∞ = p ∩ R0 hence, using the above inclusions p ∩ R0 = (C) : H∞

C
. Now,

consider any p ∈ p, reduced w.r.t. C. It belongs to p ∩ R0. It must then be
zero for C is a characteristic set (a regular chain) of that ideal. Thus C is a
characteristic set in the differential sense of p. 2

3.1. The regalise subalgorithm

It computes C from A and the known characteristic set C of p. Basic idea:
building a set C which reduces C to zero and such that the initials and separants
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of C are non zero divisors modulo the ideal defined by C. This gives us the
inclusion p = [C] : H∞

C ⊂ [C] : H∞
C

. The other inclusion follows easily from the

way C is built.
The basic idea does not work in general because the system A = 0, HA 6= 0

does not necessarily satisfy condition C3 whence is not necessarily a regular
differential system though A = 0, S 6= 0 is.

Observe that condition C3 is irrelevant for both purely algebraic and ordinary
differential equations. In these cases, the basic idea works perfectly.

Proposition 3.5: The regalise function takes four parameters: a regular differ-
ential system A = 0, S 6= 0 w.r.t. ranking R such that [A] : S∞ = p, the known
characteristic set C of p w.r.t. ranking R and the two rankings.

It is assumed moreover that A = 0, S 6= 0 is an ordinary differential system
or that it is a partial differential system such that every ∆–polynomial that can
be formed between any two elements of A is reduced to zero by A.

It returns a characteristic set C of p w.r.t. R.

function regalise({A = 0, S 6= 0}, C, R, R)
begin

Denote C = {f1, . . . , fn}
C := A
k := 1
while k ≤ n do

fk := partial rem (fk, C)

if prem(fk, C) 6= 0 then

(b, g) := is regular(f k, C)
This call necessarily returns with b = false.
Let x` be the leader of g
if g ∈ p then

Replace p` by g in C
else

Replace p` by pquo(p`, g) in C
fi

k := 1
else

k := k + 1
fi

od

Denote HC = {h1, . . . , hm}
k := 1
while k ≤ m do

hk := partial rem (hk, C)

(b, g) := is regular(hk, C)
if b is false then
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Let x` be the leader of g
if g /∈ p then

Replace p` by pquo(p`, g) in C
else

Replace p` by g in C
fi

else

k := k + 1
fi

od

return C
end

Over the example, it is sufficient to verify that the ∆–polynomial between the
second and the third element of A is reduced to zero by A in order to prove
that A = 0, HA 6= 0 is a regular differential system (for the ∆–polynomial
between the first and the second element of A has just been considered and the
∆–polynomial between the first and the third does not need to be considered by
the analogue of Buchberger’s second criterion). This verification done, regalise

can be applied to G. All the elements of C are reduced to zero by A in the first
loop. is regular always returns pairs of the form (true, ·) in the second loop. The
set A = C is returned.

Observe that it is actually not necessary to reset k to 1 in the if statement of
the first loop. The proof of this claim is left to the reader.

Proposition 3.6: The regalise algorithm terminates.

Proof: Both loops carry out the mechanism whose termination is proven in
proposition 1.6. 2

Proposition 3.7: The properties J1 to J5 are invariants of both loops of regalise.

J1 The set C is a squarefree partially autoreduced regular chain. It has the same
set of leaders as A. It satisfies the relation: (A) :H∞

A ⊂ (C) :H∞
C

⊂ p∩R0.

J2 The ideal (C):H∞
C

is radical. Its minimal primes are minimal over (A) :H∞
A .

J3 The system C = 0, HC 6= 0 is a regular differential system.

J4 The differential ideal [C] : H∞
C

is radical. Its minimal differential primes are
minimal differential primes of [A] : H∞

A .

J5 The set C is a characteristic set of the differential ideal [C] : H∞
C

.

Proof: Property J1 comes from proposition 1.6. Invariant J2 then follows from
Lazard’s lemma, the fact that A and C have the same set of leaders and the
inclusion (A) : H∞

A ⊂ (C) : H∞
C

.
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To prove J3 it suffices to prove that the system C = 0, HC 6= 0 satisfies
condition C3. For this, we consider some critical pair {p, p′} ⊂ C and prove it
is reduced to zero by C. Since C is a characteristic set of (C) : H∞

C
, it suffices

to show that partial rem (∆(p, p′), C) lies in that ideal. The ideal (C) : H∞
C

is
the intersection of some of the minimal primes b1, . . . , bk of (A) : H∞

A by J2. By
theorem 3.3 applied to A = 0, HA 6= 0, each bi is the intersection with R0 of some
prime differential ideal pi. Thus ∆(p, p′) ∈ pi. Thus the differential polynomial
partial rem (∆(p, p′), C) lies in the ideals bi for 1 ≤ i ≤ k whence it lies in their
intersection (C) : H∞

C
. This concludes the proof of J3.

Invariant J4 comes from J3, theorem 3.3 and the fact that the minimal primes
of (C) : H∞

C
are minimal over (A) : H∞

A . Invariant J5 comes from the fact that

every differential polynomial lying in [C]:H∞
C

and reduced w.r.t C lies in (C):H∞
C

by J3 and Rosenfeld’s lemma. It must be zero for C is a characteristic set of this
latter ideal. 2

Proposition 3.8: Assume that, in the second loop, is regular(hk, C) returns a
pair (true, ·). Then hk is a non zero divisor modulo [C] : H∞

C
.

Proof: By J3, theorem 3.3 applies. Denote b1, . . . , bk the minimal primes of
the radical ideal (C) : H∞

C
and p1, . . . , pk the minimal differential primes of the

radical differential ideal [C] :H∞
C

. Assume the call is regular(hk, C) returns a pair

(true, ·). Then hk is a non zero divisor modulo (C) : H∞
C

i.e. it lies in none of

the b’s. Thus hk lies in none of the p’s. Thus hk does not either whence does not
divide zero modulo [C] : H∞

C
. 2

The following proposition proves the claim stated in the first loop.

Proposition 3.9: Assume that, in the first loop, prem(f, C) 6= 0. Then the call
is regular(f, C) returns a pair (false, g).

Proof: Observe f /∈ (C) : H∞
C

for C is a characteristic set of that ideal (by J1).

It is sufficient to show that f belongs to a prime ideal minimal over (C) : H∞
C

.
Since A = 0, S 6= 0 is a regular differential system, Rosenfeld’s lemma applies
and [A] : S∞ ∩ R0 = (A) : S∞. Thus (A) : S∞ = p ∩ R0 (for G satisfies I1). On
one hand, the ideal p∩R0 is minimal over (A) : H∞

A for it is obtained from it by
saturation ; on the other hand, (A) : H∞

A ⊂ (C) : H∞
C

⊂ p ∩ R0. Thus p ∩ R0 is

minimal over (C) : H∞
C

and since f and C lie in p we have f ∈ p ∩ R0. 2

Proposition 3.10: The pseudocode of regalise satisfies the properties stated in
proposition 3.5.

Proof: According to loop invariant J5, it suffices to show [C] : H∞
C

= p. The

inclusion from left to right. Invariant J1 proves that C ⊂ p and that the initials
and separants of the elements of C do not lie in (C) : H∞

C
(for they are nonzero
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and reduced w.r.t. C). They thus do not lie in p using J3 and Rosenfeld’s lemma.
Thus [C] : H∞

C
⊂ p. The converse inclusion. At the end of the first loop C is

reduced to zero by C. At the end of the second loop the initials and the separants
of C are nonzero divisors modulo [C] : H∞

C
by proposition 3.8. Thus we have

p = [C] : H∞
C ⊂ [C] : H∞

C
. 2
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